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1 introduction

1.1 frequently asked questions

It is our experience that questions about continuity of real functions in

two real variables arise very frequently. So we have made an effort to

collect exercises that we have discussed in the past. I hope they are

interesting and of some help for students studying this theory.

1.2 prerequisites

We will assume that the reader is acquainted with the theory of continu-

ity in one real variable. We assume for example that the reader knows

about standard continuity theorems like limα→0
sin(α)
α = 1 or

limα→0
tan(α)
α = 1. We assume that the reader is able to write down sim-

ple ϵ-δ proofs in one variable. Knowledge of exponential functions and

basic behaviour of e.g. the arctan function is also necessary. We will

try to avoid building upon notions of differentiability in one variable

because we are basically working with continuity and prefer for that rea-

son topological continuity arguments. This is a deliberate choice and if

the instructor of readers of this text thinks otherwise, please follow his

instructions.

We give in the appendix clues and hints for proving basic essential in-

equalities about logarithms and exponential functions without making

use of differentiability arguments.

We assume also that the reader is familiar with level curves plots of

functions of two variables. But this is only important for a good under-

standing of the graphical interpretations of the exercises.

1.3 types of exercises

All exercises are of the kind that a reader encounters in standard courses

of general mathematics. Some exercises can be found in almost all text

books and can be considered as standard examples. We have written

down the solutions of all exercises. The solutions are meant to be in

a style and a technical level that is commonly used in general calculus

undergraduate texts.

Very important functions as e.g. functions defined by the limit of a



www.mathandphoto.eu. Exercise Notes 2

sequence of functions are generally not known when a student meets

for the first time functions of two variables in a standard course.

Important topological topics as the Cantor set and the Cantor function

are in this context also not considered.

Functions defined by series are not treated here.

1.4 notation

It is understood that all functions of two variables are real functions. So

we understand that they are of the type f : R2 → R : (x,y) ֏ f(x,y).
All functions of one variable are of the type g : R → R : x ֏ g(x). Be-

cause no confusing can arise, we are not going to repeat that throughout.

1.5 list of all exercises

We list all exercises in the following pages. This can help the readers

who are interested in searching for special functions that capture their

current interest. In order to keep the list short and concise, we give only

the main parts of the definitions of the functions.
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Table 1: We give a list of the main part of the definitions of the functions

in the exercises in this table. The exercises that are marked with “see

below" are based on definitions that are too long to put them in the

table and they are placed immediately below the table.

1.
xy

x2 +y2
2.

(2x +y)3
x2 +y2

3.
1

x2 +y2
4.

1

x −y

5.
x2y

x2 +y2
6.

xy2

x2 +y4

7.
xy3

x2 +y4
8.

xy

3x2 +y2

9.
xy cos(y)

x2 +y2
10.

ex
2+y2 − 1

x +y

11.
5x2y −y3

x2 +y2
12.

x3y2

x4 +y4

13.
sin(x y)

x +y 14.
sin(x y)

x2 +y2

15.
5x2y −y3

x2 +y2
16.

x2y2

x2 +y2

17.
x3 +y3

x2 +y2
18.

x3y

x4 +y4

19.
x3 −y3

x2 +y2
20.

2x −y
x2 +y2

21.
(x − 1)2 ln(x)

(x − 1)2 +y2
22.

sin((x −y)2)
|x| + |y|

23.
1

x2 −y 24. arctan

(

xy2

x +y

)



www.mathandphoto.eu. Exercise Notes 4

25.
x2 −y2

x2 +y2
26.

x
√

x2 +y2

27.
x −y
x +y 28.

x2 +y
y

29.
x3 − xy3

x2 +y2
30.

x2

x2 +y2

31.
x2 +y2 − x3y3

x2 +y2
32.

x2y

x4 +y4

33.
x2y2

x2 +y2
34.

|x|a |y|b
(x2 +y2)c

35. (x +y) sin(1/x) sin(1/y) 36.
xy

x2 +y2
+y sin(1/x)

37. x sin(1/y)+y sin(1/x) 38.
x2y2

x3 +y3

39.
xy (x2 −y2)

x2 +y2
40.

x2 + sin2(y)

2x2 +y2

41.
xy

√

x2 +y2
42.

sin(x y)
√

x2 +y2

43.
arcsin(x/y)

1+ xy 44.
x +y

x2 +y2 + 1

45.
(x − 1)2 ln(x)

(x − 1)2 +y2
46.

x +y
x2 +y2

47.
x3 −y3

x3 +y3
48. arctan

(

|x| + |y|
x2 +y2

)

49.
e−x

2−y2 − 1

x2 +y2
+ 1 50. See below.

51.
xy

|x| + |y| 52.
x2 − 2y

y2 + 2x
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53.
x2y2

(x4 +y2)
54.

sin
(

x2 + 4y2
)

x2 +y2

55. |x|y − 1 56.
e−

x
y

y

57.
sin

(

xy3
)

x2
58.

x3 +y5

x2 + 2y2

59.
x2 + sin2(y)

x2 + 2y2
60.

tan
(

xy
xy+1

)

xy

61. (x2 +y2)x
2 y2

62.
(x + 1) (y − x)
(y + 1) (x +y)

63.
|y|a |x|b
|x|a + |y|b 64. arctan

(

y

x

)

65.
x3y3

x6 +y6
66.

x3y

x6 +y2

67.
(x − 1)y2

x2 +y2
68.

x2 −y6

xy3

69. arctan

(

2y

x2 +y2

)

70. |y| sin

(

x
√

|y|

)

71. x2

(

1− cos

(

y

x

))

72. sin

(

1

xy

)

73. sin

(

1

x2 +y2

)

74. (x2 +y2)µ sin

(

1

x2 +y2

)

75.
cos(x y) sin

(

4x
√

|y|
)

√

|xy| 76. xnym sin

(

1

x2 +y2

)

77.
1− cos

(

x2y
)

x2 + 2y2
78.

x2y

x2 −y2

79.
x −y
x +y
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The following exercise is not in the table.

50. Is the following function continuous in (0,0)?

f(x,y) =











0 if xy ≠ 0;

1 if xy = 0.

1.6 graphical illustrations of the exercises

We give a graphical interpretations of almost all exercises. These are not

a part of the solution of the exercises but only serve to have a better

understanding of what is going on. The reader can safely skip these

illustrations if he is only interested in the mathematical solutions.

Illustrations are a good motivational and educational help tool in a gen-

eral mathematics course.

The drawback of visualisation is that one can wrongly assume that draw-

ing is a tool that is sufficient for deciding whether or not a function is

continuous. This can be the case for the type of functions used in this

text. But one should realise that calculus texts do not in general use

more refined functions for which a visual representation is of little or no

help at all. Continuity is as a matter of fact an extremely difficult and

also very subtle concept when considered in a more general context.

It is the opinion of this author that no visual tool can replace an alpha-

betical argument in mathematics.

We should also mention the fact that we stretched the possibilities of

the visualisation tool to the absolute maximum. There are exercises in

which the visualisation is not an exact description of the mathematical

facts but it can even in those cases be a help to understand what is

exactly going on. We encounter examples in which the oscillations are

too wild, or that discontinuities cause gaps in the graphical presentation

of the function.
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1.7 solution strategies

At least as far as this author knows, there is no general method with

which to proceed. One can however learn by experience how to handle

a problem. The basic difficulty is deciding if a function is continuous

or not. If one is sure that the function is continuous, then a classical

ϵ-δ proof is the way to go. If one feels sure that the function is dis-

continuous, then a typical attack strategy is showing that the function

behaves differently if one restricts it to continuous curves going through

the point in which the continuity has to be investigated. Another way to

go is to search for numerical information. We can calculate some nu-

merical approximations of function values in the neighbourhood of the

point in which we are interested. But basically one has to develop a gut

feeling for deciding whether to go for a discontinuity proof or a conti-

nuity proof. This intuitive feeling can be developed by making plenty of

exercises.

1.8 style of solutions

The solutions are written in a style of a technical level that is suited for

general calculus students in their first year. Powerful tools like homeo-

morphisms are thus out of the question. It is probably very unlikely that

students have heard about it when following a general calculus course.

Important and fundamental inequalities like the inequality of the geo-

metrical mean and the arithmetic mean are also not used because many

students for which this text document was originally written do not

know this. That inequality could make some inequalities in the text

much easier and more elegant.

But I would advise any student who is an advanced student or an ad-

venturous student to develop his own style and change the arguments

used in the text suiting this style and his own mathematical background.

Any mathematical creativity is encouraged. The reader should never be

entirely pleased by mathematics created by another person. Create your

own solutions!

1.9 use with care

The reader should realize that these notes are exercise notes. This text

is never peer reviewed as it is in the case of theoretical publications.
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Use the text with care and ask whenever necessary advise from your

instructor. He is best placed to guide you. And remember that Murphy’s

law is merciless in all circumstances. Remarks are welcome! The reader

can find my contact address at the end of this text.

1.10 create your own examples

This section is not suited for a first reading. It can also considerably

lessen the fun in solving this type of exercises. The attention of the

reader will then invariably undergo an inevitable change of attention

from the solution to how the function is created and why it works in the

first place.

When we create a function that behaves critically only around (0,0), we

can use a denominator like x2 + y2 or other even powers like x4 + y2.

We can also use absolute values as in |x| + |y|. Then we have to take

care that the function behaves in some directions very differently as in

other directions. In order to ensure that, we can e.g. use x2y in the

numerator or x+y . This ensures in the first case that in the X-direction

and the Y -direction the function is identically zero. In the second case

the function is identically zero in the direction y = −x. If the function

behaves now differently in another direction, say y = λx for a suitably

λ, then we are done and have our first exercise. If one wants the function

to be continuous, make the degrees of polynomials in the numerator

large enough to ensure that. In the other case, lessen the degrees of

polynomials in the numerator.

Another way to go is making the exercise technically a little bit more

difficult by using asymptotically equivalent functions. Replace for e.g.

xy with sin(x y). They have both an equivalent converging behaviour

in a neighbourhood of (0,0).

It is also interesting to start from the behaviour of functions like x ln(x)
in a neighbourhood of 0. Another example is ex − 1 in a neighbourhood

of 0. Because these functions behave nicely in a neighbourhood of 0, we

can for example use (x +y) ln(x +y) in the build up of our function.

If we want diverging behaviour, divide somewhere by a suitable xnym

or multiply with something like e(1/(x
2+y2)).

We can also start from something that is essentially bounded but be-

haves wildly around (0,0). This is then e.g. sin(1/(x2 + y2)). Then
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multiply it with e.g. a power of x or y in order to force continuity. We

can end up with something like (x + y) sin(1/x). We could also start

with a bounded function of one variable and substitute something like

e−x
2−y2

for that variable. Then multiply it again with e.g. a power of x
or y in order to force continuity.

We can let our phantasy run rampant with this type of exercises.

1.11 mathematical notation

We are going a function f(x,y) restricted to the subset {(x,y) | y =
h(x)} where h(x) is a function in one variable by

f
∣

∣

y=h(x)(x,y).

We are always going to restrict to a continuous curve y = h(x) so that

f
∣

∣

y=h(x) is continuous if f is continuous.

1.12 limits

Almost all exercises can be asked in two styles. Either one asks if the

function f(x) with f(a) = b is continuous in x = a or one asks this

question in the following way: is the following limit limx→a f(x) = b
valid? So one can translate almost every continuity exercise in an exer-

cise about limits and vice versa.
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2 exercises and solutions

Exercise 1.
Is the function

f(x,y) =











xy

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
Let us calculate the function restricted to a line y = λx. We have in that

case:

f
∣

∣

y=λx(x,y) =















f(x, λx) = λx2

x2 + λ2x2
= λ

1+ λ2
if x ≠ 0;

0 if x = 0.

So the limit for x → 0 is then

lim
x→0

f(x, λx) = λ

1+ λ2
.

This gives us different values for at least two different lines. If the func-

tion is continuous, then all these values should give us the function value

in (0,0), that is f(0,0) = 0. So this function is not continuous.
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Figure 1. We see here a three dimensional figure of the graph of the

function. We see that the function above the point (0,0) shows a verti-

cal line. The reason for this is that the limit points of the level curves

unavoidably are visible above (0,0). The graph does not show a function

any more, because it looks like (0,0) is mapped onto many points. But

it seems to be unavoidable. Otherwise we could show nothing at all.
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Figure 2. We have restricted the function here to y = 1/2x and y =
3/10x and y = 9/10x. We see in this figure clearly that the restrictions

of the function to these lines are functions that have different limits in

0.



www.mathandphoto.eu. Exercise Notes 13

Figure 3. We see here a figure of the contour plot of the function. Remark

that level curves of very different levels approach (0,0) infinitesimally.

This is always very suspicious and it is almost certain that the function

is not continuous in a neighbourhood of (0,0). The level curves plot

shows a very peculiar picture. It consists of straight lines through the

origin which are level lines with many different levels. This gives us a

picture of a spiral staircase in which the lines represent the steps and the

vertical line above (0,0) is the supporting beam of the spiral staircase.

This cannot be a picture of a continuous point.

Exercise 2.
Is the function

f(x,y) =















(2x +y)3
x2 +y2

if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?
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Solution.
We take an arbitrary ϵ > 0. The problem is now to find a δ > 0 such that

if
∥

∥(x,y)− (0,0)
∥

∥ < δ holds then |f(x,y)− f(0,0)| < ϵ is valid.

By looking at our function, we can translate this as follows. Try to find

a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we have that

∣

∣

∣

∣

∣

(2x +y)3
x2 +y2

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

(2x +y)3
x2 +y2

− 0

∣

∣

∣

∣

∣

≤ (|2x| + |y|)
3

x2 +y2

≤ (2 |x| + |y|)
3

x2 +y2

≤
(2
√

x2 +y2 +
√

x2 +y2)3

x2 +y2

≤ 27

√

x2 +y2
3

√

x2 +y2
2

≤ 27
√

x2 +y2.

It is sufficient to prove that 27
√

x2 +y2 < ϵ by manipulating the value of

δ in the inequality
√

x2 +y2 < δ. We can choose for example
√

x2 +y2 <
δ with δ = ϵ/27. We have found our δ and the function is indeed con-

tinuous.
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Figure 4. We see here a three dimensional figure of the graph of the

function.
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Figure 5. We see here a figure of the contour plot of the function. This

looks like a classic picture of a continuous point. We see that the level

lines that come close to (0,0) tend to have a level approximating 0.

Exercise 3.
Is the function

f(x,y) =















1

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

continuous in (0,0)?

Solution.
We restrict the function to the X-axis. We have then the following func-

tion by restricting to y = 0:

f
∣

∣

y=0(x,y) =















f(x,0) = 1

x2
if x ≠ 0;

0 if x = 0.
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It is clear that this restricted function has the following limit in x = 0

lim
x→0

1

x2
= ∞.

So this limit is not going to 0, and this function f(x,0) should have

the limit 0 if it is continuous. The function is in fact unbounded in

any neighbourhood of (0,0) and this is not possible if the function is

continuous in (0,0). We conclude that the function is discontinuous in

(0,0).

Figure 6. We see here a three dimensional figure of the graph of the func-

tion. Remark that the function is unbounded in any neighbourhood of

(0,0). The horizontal intersection with a horizontal plane of the graph

at level 20 is pictured as grey area.
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Figure 7. We see here a figure of the function restricted to the X-axis.

Remark that the function is unbounded in any neighbourhood of (0,0).

Exercise 4.
Is the function

f(x,y) =















1

x −y
if x ≠ y ;

0 if x = y.
continuous in (0,0)?

Solution.
We restrict the function to the X-axis. We have then the following func-

tion by restricting y = 0:

f
∣

∣

y=0(x,y) = f(x,0) =















1

x
if x ≠ 0;

0 if x = 0.

It is clear that this restricted function has the following limits in x = 0

lim
x
<→0

1

x
= −∞ and lim

x
>→0

1

x
= +∞.

It is clear that the restricted function is not continuous in x = 0 because

the function is not bounded there.
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Figure 8. We see here a three dimensional figure of the graph of the

function. We see that the function above the graph of the line x −y = 0

in the X-Y plane is infinite. The function is not continuous on any point

of the line. The reason is that if the function would be continuous on

any point of the line with equation x −y = 0, then it would be bounded

on at least one closed neighbourhood of that point which is clearly not

the case.
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Figure 9. We see here a figure of the function restricted to the X-axis.

Remark that the function is unbounded in a neighbourhood of (0,0).

Exercise 5.
Is the function

f(x,y) =















x2y

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We choose an arbitrary ϵ > 0. The problem is now to find a δ > 0 such

that if
∥

∥(x,y)− (0,0)
∥

∥ < δ holds then |f(x,y)− f(0,0)| < ϵ is valid.

By looking at our function, we have the following. Try to find a δ such

that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we have that

∣

∣

∣

∣

∣

x2y

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have
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the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

x2y

x2 +y2

∣

∣

∣

∣

∣

≤ x2 |y|
x2 +y2

≤

√

x2 +y2
2√

x2 +y2

x2 +y2

≤

√

x2 +y2
3

x2 +y2

≤
√

x2 +y2.

We can manipulate now the value of δ in the inequality
√

x2 +y2 < δ. In

order to have
√

x2 +y2 < ϵ, it is clearly enough to take δ = ϵ. We have

found our δ and the function is continuous in (0,0).

Figure 10. We see here a three dimensional figure of the graph of the

function.
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Figure 11. We see here a figure of the contour plot of the function.

We see in this plot of the level curves that the level curve that come

infinitesimally close to (0,0) have a level close to 0. This looks like a

classic picture the plot of the contour lines of a continuous point.

Exercise 6.
Is the function

f(x,y) =















xy2

x2 +y4
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We look for an interesting curve on which the restriction of f behaves in

a weird way. Let us take the standard parabola x = λy2. Our function

is then
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f
∣

∣

x=λy2(x,y) =























f(λy2, y) = λy2y2

λ2y4 +y4
= λ

λ2 + 1
if y ≠ 0;

0 if y = 0.

So the limit for y → 0 on this restricted function is

lim
y→0

f(λy2, y) = λ

λ2 + 1

which takes many different values dependent on λ. But the limit should

have the value 0 if the function is continuous. We conclude that the

function is not continuous in (0,0).

Figure 12. We see here a three dimensional figure of the graph of the

function. The function behaves so weird that it is not easy to make a

good drawing. We see again the vertical line above (0,0). This line is

caused by the limit points of the level curves.
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Figure 13. We have restricted the function here to x = 4/5y2, x =
1/5y2 and x = 1/2y2. We see in this figure clearly that the restrictions

of the function to these lines are functions that have different limits in

0.
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Figure 14. We see here a figure of the contour plot of the function. We

see in this plot of the level curves that many level curves of different

levels not close to zero come infinitesimally close to (0,0). This makes

continuity very suspicious.

Exercise 7.
Is the function

f(x,y) =















xy3

x2 +y4
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We choose an arbitrary ϵ > 0. The problem is now to find a δ > 0 such

that if
∥

∥(x,y)− (0,0)
∥

∥ < δ it follows that |f(x,y)−f(0,0)| < ϵ is valid.
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By looking at our function, we can translate this in the following. Try to

find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we have that

∣

∣

∣

∣

∣

xy3

x2 +y4
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

We observe for the inequality that we have

ab ≤ (1/2)(a2 + b2) because this is equivalent with 0 ≤ (a− b)2.

∣

∣

∣

∣

∣

xy3

x2 +y4

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

xy2y

x2 +y4

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(x2 +y4)y

2 (x2 +y4)

∣

∣

∣

∣

∣

≤ |y|
2

≤

√

x2 +y2

2
.

We can manipulate now the value of δ in the inequality
√

x2 +y2 < δ. In

order to have 1/2
√

x2 +y2 < ϵ, it is clearly sufficient to take δ = 2 ϵ. We

have found a δ and the function is continuous in (0,0).
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Figure 15. We see here a three dimensional figure of the graph of the

function.



www.mathandphoto.eu. Exercise Notes 28

Figure 16. We see here a figure of the contour plot of the function. We

see that level curves that come close to the point (0,0) have levels that

come close to 0. This looks like a classical continuity case.

Exercise 8.
Is the following function continuous in (0,0)?

f(x,y) =











xy

3x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

Solution.
If we restrict in this case the function to the points on the continuous

curve with equation y = λx.

f
∣

∣

y=λx(x,y) =























f(x, λx) = λx2

λ2x2 + 3x2
= λ

λ2 + 3
if x ≠ 0;

0 if x = 0.
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We have infinitely many different limit values for x → 0. But we ob-

serve that if f(x,y) is a continuous function, there should be only one

solution for the limits: f(0,0) = 0. So the function is not continuous.

Figure 17. We see here a three dimensional figure of the graph of the

function.
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Figure 18. We have restricted the function here to y = 3/2x and y = x
and y = 4x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have different limits in 0.
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Figure 19. We see here a figure of the plot of the contour lines of the

function. Many level curves of a level not equal to zero come infinites-

imally close to (0,0). This is very suspicious and the picture does not

look like a picture of a continuous point.

Exercise 9.
Is the following function continuous in (0,0)?

f(x,y) =















xy cos(y)

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

Solution.
If we restrict this function to the continuous curves with equation y =
λx, then
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f
∣

∣

y=λx(x,y) =



















f(x, λx) = λ cos(λx)

λ2 + 1
if x ≠ 0;

0 if x = 0.

So the limit is then

lim
x→0

(x, λx) = λ

λ2 + 1
.

There are infinitely many limit values. They should be both equal to

f(0,0) = 0 if the function f is a continuous function. So the function is

discontinuous in (0,0).

Figure 20. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) gives an indication of non conti-

nuity.
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Figure 21. We have restricted the function here to y = 1/2x and y = x
and y = 2x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have different limits in 0.
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Figure 22. We see here a figure of the contour plot of the function.

Many level curves of very different levels come arbitrarily close to (0,0).
This is exactly the phenomenon we described in our solution. This is

intuitively an almost sure sign of non continuity.

Exercise 10.
Is the following function continuous in (0,0)?

f(x,y) =















ex
2+y2 − 1

x +y
if x ≠ −y ;

0 if x = −y.
It is allowed to use the traditional inequality: ex−1 ≥ x which says basi-

cally that the tangent line in x = 0 at the graph of f(x) = ex lies under

the graph of f(x). We remark that this inequality can be proven by ele-

mentary means and does not require the heavy machinery of derivatives.

So no series are involved though one can surely produce an easy and ele-

gant proof of this inequality with these tools. The reader can read more

information about this inequality in the appendix of this text.
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Solution.
We might expect that the behaviour of this function in a neighbourhood

of (0,0) is unbounded. In order to investigate that, we take a curve that

is strongly tangent to the line with equation x + y = 0. Let us choose

the curve y = −x+x3. Let us restrict the function f(x,y) to this curve.

f
∣

∣

y=−x+x3(x,y) =















f(x,−x + x3) = e
x2+(x−x3)

2

−1

x3 if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

We are going to take the limit for x
>→ 0 of this function. We use the

inequality for x ≥ 0.

0 ≤ x
2 +

(

x − x3
)2

x3
≤ e

x2+(x−x3)
2

− 1

x3
.

We take the limits.

lim
x
>→0

0 ≤ lim
x
>→0

x2 +
(

x − x3
)2

x3
≤ lim
x
>→0

ex
2+(x−x3)

2

− 1

x3
.

Because lim
x
>→0

x2+(x−x3)
2

x3 = ∞, we have unboundedness in any neigh-

bourhood of (0,0) and the function is not continuous in (0,0).

Note that the exponent of the second term in x in the equation of the

curve y = −x + x3 is quite arbitrary. It can be changed at leisure. We

can take any n > 2. In that case we have y = −x + xn. The larger

the n, the stronger is the tangential behaviour and the behaviour of

unboundedness.

Let us check these results with the plot of the level curves.
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Figure 23. We see here a three dimensional figure of the graph of the

function.

Figure 24. We have restricted the function here to y = −x + x2 and

y = −x + 2x2 and y = −x + 3x2. We see in this figure clearly that

the restrictions of the function to these lines are functions that have an

unbounded behaviour in 0.
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Figure 25. We see here a figure of the contour plot of the function.

Many level curves of very different levels come arbitrarily close to (0,0).
This is exactly the phenomenon we described in our solution. This is

intuitively an almost sure sign of discontinuity.

Exercise 11.
Is the function

f(x,y) =















5x2y −y3

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0. The problem is now to find a δ > 0 such that

if
∥

∥(x,y)− (0,0)
∥

∥ < δ it follows that |f(x,y)− f(0,0)| < ϵ is valid.
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When applying this to our function definition, we have then the following

statements. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ,

we have that

∣

∣

∣

∣

∣

5x2y −y3

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

5x2y −y3

x2 +y2
− 0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

y (5x2 −y2)

x2 +y2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

y (5x2 +y2)

x2 +y2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

y (5x2 + 5y2)

x2 +y2

∣

∣

∣

∣

∣

≤ 5 |y|

≤ 5
√

x2 +y2.

So it is sufficient to prove that 5
√

x2 +y2 < ϵ by manipulating the value

of δ in the inequality
√

x2 +y2 < δ. It is for example sufficient to take

δ = ϵ/5. We can find a δ, so we conclude that the function is continuous.
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Figure 26. We see here a three dimensional figure of the graph of the

function.
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Figure 27. We see here a figure of the contour plot of the function. All

level curves close to (0,0) have a level close to level 0. This is intuitively

an almost sure sign of continuity.

Exercise 12.
Is the function

f(x,y) =















x3y2

x4 +y4
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x3y2

x4 +y4
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

x3y2

x4 +y4
− 0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

xx2y2

x4 +y4

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

x (x4 +y4)2/4 (x4 +y4)2/4

x4 +y4

∣

∣

∣

∣

∣

≤ |x|

≤
√

x2 +y2.

We have made use of the fact that |x| ≤ (x4 +y4)1/4.

So it is sufficient to prove that
√

x2 +y2 < ϵ by manipulating the value

of δ in the inequality
√

x2 +y2 < δ. It is for example sufficient to take

δ = ϵ. We can find a δ, so we conclude that the function is continuous.

There is another elegant way to prove it. We remark that 2ab ≤ a2+b2.

So

∣

∣

∣

∣

∣

x3y2

x4 +y4
− 0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

xx2y2

x4 +y4

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

x 1/2 (x4 +y4)

x4 +y4

∣

∣

∣

∣

∣

≤ 1/2 |x|

≤ 1/2
√

x2 +y2.
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Figure 28. We see here a three dimensional figure of the graph of the

function.
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Figure 29. We see here a figure of the contour plot of the function. All

level curves close to (0,0) have a level close to level 0. This is intuitively

an almost sure sign of continuity.

Exercise 13.
Is the function

f(x,y) =















sin(x y)

x +y
if x +y ≠ 0;

0 if x = −y

continuous in (0,0)?

Solution.
We restrict the function to the curve y = −x+x3. This is a curve tangent

to the line with equation x +y = 0. We compute now the restriction.
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f
∣

∣

y=−x+x3(x,y) =















f(x,−x + x3) = sin
(

x
(

x3 − x
))

x3
if x ≠ 0;

0 if x = 0.

Let us try to estimate the behaviour of f
∣

∣

y=−x+x3(x,y). We know that

limα→0 sin(α)/α = 1. We have consequently for small values of x that

|1/2x| ≤ | sin(x)|, we see that

∣

∣

∣

∣

∣

sin
(

x
(

x3 − x
))

x3

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

x
(

x3 − x
)

2x3

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

x

2
− 1

2x

∣

∣

∣

∣

.

We take the limit for x → 0 in these inequalities and we see immediately

that the function f(x,−x + x3) is unbounded in any small neighbour-

hood of x = 0. This function cannot be continuous because in that case

the limit should be f(0,0) = 0.

Figure 30. We see here a three dimensional figure of the graph of the

function. The function is not bounded in a neighbourhood of (0,0).
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Figure 31. We have restricted the function here to y = −x + x2 and

y = −x + 2x2 and y = −x + 3x2. We see in this figure clearly that the

restrictions of the function to these lines are functions that that have

unbounded behaviour in 0.



www.mathandphoto.eu. Exercise Notes 46

Figure 32. We see here a figure of the contour plot of the function.

There are many level curves close to (0,0) of very different levels. This

is intuitively an almost sure sign of non continuity.

Figure 33. We see here a figure of the plot of the function

f
∣

∣

y=−x+x3(x,y). This illustrates the unbounded behaviour in a neigh-

bourhood of 0.
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Exercise 14.
Is the function

f(x,y) =















sin(x y)

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
Because we know that limα→0 sin(α)/α = 1, we know that sin(α) ≈ α
for small values α and we see that we have essentially the function

xy/(x2 + y2). We dealt with this function before. This is of course

pure intuition and we have to use some stronger formal argument.

Let us restrict the function to lines y = λx through the origin. We have

then

f
∣

∣

y=λx(x,y) =



















f(x, λx) = sin(x λx)

x2 + λ2x2
if x ≠ 0;

0 if x = 0.

Let us calculate the limit when x → 0. We will use in the calculation that

limα→0 sin(α)/α = 1.

lim
x→0

sin(x λx)

x2 + λ2x2
= lim
x→0

sin(λx2)

λx2

λx2

x2 + λ2x2

= lim
x→0

λx2

x2 + λ2x2

= lim
x→0

λ

1+ λ2
.

There are infinitely many limit values depending on the value of λ. If the

function is continuous, there can be only one value and that is f(0,0) =
0. We conclude that the function is not continuous.
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Figure 34. We see here a three dimensional figure of the graph of the

function. The graph shows a vertical line above (0,0). This is an almost

sure visual sign of discontinuity.

Figure 35. We have restricted the function here to y = x and y = 2x
and y = 3x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have different limits in 0.
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Figure 36. We see here a figure of the contour plot of the function. There

are many level curves infinitesimally close to (0,0) of very different lev-

els. This is intuitively an almost sure sign of non continuity.

Exercise 15.
Is the function

f(x,y) =















5x2y −y3

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

5x2y −y3

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

5x2y −y3

x2 +y2
− 0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

y (5x2 −y2)

x2 +y2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

y (5x2 +y2)

x2 +y2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

y (5x2 + 5y2)

x2 +y2

∣

∣

∣

∣

∣

≤ 5 |y|

≤ 5
√

x2 +y2.

So it is sufficient to prove that 5
√

x2 +y2 < ϵ by manipulating the value

of δ in the inequality
√

x2 +y2 < δ. It is for example sufficient to take

δ = ϵ/5. We can find a δ, so we conclude that the function is continuous.
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Figure 37. We see here a three dimensional figure of the graph of the

function.
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Figure 38. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 16.
Is the function

f(x,y) =















x2y2

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)
continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0. The problem is now to find a δ > 0 such that

if
∥

∥(x,y)− (0,0)
∥

∥ < δ it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we
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have that

∣

∣

∣

∣

∣

x2y2

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

x2y2

x2 +y2
− 0

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

√

x2 +y2
2√

x2 +y2
2

x2 +y2

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

√

x2 +y2
4

x2 +y2

∣

∣

∣

∣

∣

∣

∣

≤
√

x2 +y2
2

.

We have made use of the fact that |x| ≤ (x2 +y2)1/2.

So it is sufficient to prove that
√

x2 +y2
2

< ϵ by manipulating the value

of δ in the inequality
√

x2 +y2 < δ. It is for example sufficient to take

δ = √ϵ. We can find a δ, so we conclude that the function is continuous.
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Figure 39. We see here a three dimensional figure of the graph of the

function.
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Figure 40. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 17.
Is the function

f(x,y) =















x3 +y3

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)
continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0. The problem is now to find a δ > 0 such that

if
∥

∥(x,y)− (0,0)
∥

∥ < δ it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we
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have that

∣

∣

∣

∣

∣

x3 +y3

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

x3 +y3

x2 +y2
− 0

∣

∣

∣

∣

∣

≤ |x|
3 + |y|3
x2 +y2

≤

√

x2 +y2
3

+
√

x2 +y2
3

x2 +y2

≤
2
√

x2 +y2
3

x2 +y2

≤ 2
√

x2 +y2.

We have made use of the fact that |x| ≤ (x2 +y2)1/2.

So it is sufficient to prove that 2
√

x2 +y2
2

< ϵ by manipulating the

value of δ in the inequality
√

x2 +y2 < δ. It is for example sufficient

to take δ = ϵ/2. We can find a δ, so we conclude that the function is

continuous.
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Figure 41. We see here a three dimensional figure of the graph of the

function.
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Figure 42. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 18.
Is the function

f(x,y) =















x3y

x4 +y4
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We restrict the function to the curve y = λx.

f
∣

∣

y=λx(x,y) =



















f(x, λx) = x3 λx

x4 + λ4x4
= λ

1+ λ4
if x ≠ 0;

0 if x = 0.
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lim
x→0

λx4

x4 (1+ λ4)
= λ

1+ λ4
.

We have an infinite amount of limit values depending upon the value of

λ.

This function cannot be continuous because in that case all those limits

should be f(0,0) = 0.

Figure 43. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks very suspicious. This does

not seem to be a graph of a continuous function.
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Figure 44. We have restricted the function here to y = x and y = 2x
and y = 7/10x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have different limits in 0.
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Figure 45. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

very discontinuous indeed.

Exercise 19.
Is the function

f(x,y) =















x3 −y3

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)
continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0. The problem is now to find a δ > 0 such that

if
∥

∥(x,y)− (0,0)
∥

∥ < δ it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x3 −y3

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

x3 −y3

x2 +y2
− 0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

|x|3 + |y|3
x2 +y2

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

√

x2 +y2
3

+
√

x2 +y2
3

x2 +y2

∣

∣

∣

∣

∣

∣

∣

≤ 2
√

x2 +y2.
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We have made use of the fact that |x| ≤ (x2 +y2)1/2.

So it is sufficient to prove that 2
√

x2 +y2 < ϵ by manipulating the value

of δ in the inequality
√

x2 +y2 < δ. It is for example sufficient to take

δ = ϵ/2. We can find a δ, so we conclude that the function is continuous.

Figure 46. We see here a three dimensional figure of the graph of the

function.
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Figure 47. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 20.
Is the function

f(x,y) =















2x −y
x2 +y2

if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)
continuous in (0,0)?

Solution.
This seems to be a discontinuous function. Restricting the function to

the X-axis or putting y = 0 gives

f
∣

∣

y=0(x,y) =















f(x,0) = 2x

x2
= 2

x
if x ≠ 0;

0 if x = 0.
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This function is unbounded in any neighbourhood of x = 0 and cannot

have the limit 0 as it should have if the function f(x,y) is continuous.

Figure 48. We see here a three dimensional figure of the graph of the

function. This does not seem to be a graph of a continuous function.



www.mathandphoto.eu. Exercise Notes 65

Figure 49. We have restricted the function here to y = x and y = 2x
and y = 7/10x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have unbounded behaviour in

0.
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Figure 50. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

very discontinuous indeed.

Exercise 21.
Is the function

f(x,y) =















(x − 1)2 ln(x)

(x − 1)2 +y2
if (x,y) ≠ (1,0);

0 if (x,y) = (1,0)

continuous in (0,0)? One may assume that one knows that the function

ln(x) is continuous.

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0. The problem is now to find a δ > 0 such that

if
∥

∥(x,y)− (1,0)
∥

∥ < δ it follows that |f(x,y)− f(1,0)| < ϵ is valid.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (1,0)
∥

∥ =
√

(x − 1)2 +y2 <
δ, we have that

∣

∣

∣

∣

∣

(x − 1)2 ln(x)

(x − 1)2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

(x − 1)2 ln(x)

(x − 1)2 +y2
− 0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(x − 1)2 | ln(x)|
(x − 1)2

∣

∣

∣

∣

∣

≤ | ln(x)|.

Because we may assume that ln(x) is continuous, we may assume that

there exists a δ1 such that if |x − 1| < δ1, then | ln(x)− 0| < ϵ. So if we

take
√

(x − 1)2 +y2 < δ1, we have also that |x − 1| ≤
√

(x − 1)2 +y2 <
δ1, it follows that | ln(x) − 0| < ϵ. It suffices to choose δ = δ1. We

conclude that the function is continuous.

Figure 51. We see here a three dimensional figure of the graph of the

function.
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Figure 52. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 22.
Is the function

f(x,y) =















sin((x −y)2)
|x| + |y|

if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
Let us investigate this with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

sin((x −y)2)
|x| + |y| − 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

We know that limα→0(sin(α))/α = 1. So we may assume that (sin(α))/α
is bounded from above in at least one neighbourhood of 0. We have then

|(sin(α))/α| < 3/2 for |α| < δ1.

∣

∣

∣

∣

∣

sin((x −y)2)
|x| + |y| − 0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

sin((x −y)2)
(x −y)2

(x −y)2
|x| + |y|

∣

∣

∣

∣

∣

≤ 3

2

(x −y)2
|x| + |y|

≤ 3

2

(|x| + |y|)2
|x| + |y|

≤ 3

2
(|x| + |y|)

≤ 3

2
2
√

x2 +y2

≤ 3
√

x2 +y2.

We have made use of the fact that e.g. |x| ≤ (x2 + y2)1/2 and |y| ≤
(x2 +y2)1/2.

So it is sufficient to prove that
√

x2 +y2 < ϵ by manipulating the value

of δ in the inequality
√

x2 +y2 < δ. It is for example sufficient to take

δ2 = ϵ/3. We can find a δ such that the two demands both are satis-

fied, we can take δ = min{δ1, δ2}. So we conclude that the function is

continuous.
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Figure 53. We see here a three dimensional figure of the graph of the

function.
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Figure 54. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 23.
Is the function

f(x,y) =















1

x2 −y
if y ≠ x2;

0 if y = x2

continuous in (0,0)?

Solution.
We restrict the function on the X-axis, so y = 0.

We have
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f
∣

∣

y=0(x,y) =















f(x,0) = 1

x2
if x ≠ 0;

0 if x = 0.

This restricted function is unbounded in any neighbourhood of x = 0,

so it cannot be continuous. If f(x,y) is continuous, then the restricted

function is also continuous with value 0 in x = 0. So the function

f(x,y) is not continuous.

Figure 55. We see here a three dimensional figure of the graph of the

function. The function shows unbounded behaviour in a neighbourhood

of (0,0).
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Figure 56. We have restricted the function here to y = x and y = 2x
and y = 3x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have unbounded behaviour in

0.
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Figure 57. We see here a figure of the contour plot of the function. The

function has unbounded behaviour above points in the neighbourhood

of y = x2.

Exercise 24.
Is the function

f(x,y) =















arctan

(

xy2

x +y

)

if x ≠ −y ;

0 if x = −y

continuous in (0,0)? We may assume that the one variable function

arctan(x) is proven to be continuous.

Solution.
Let us try to restrict the function to curves through the origin with equa-

tion x = −y + λy3.
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f
∣

∣

x=−y+λy3(x,y) =















f(−y + λy3, y) = arctan

(

y2 − 1

λ

)

if y ≠ 0;

0 if y = 0.

We see that this function has many limits dependent on the value of λ.

But if f(x,y) is continuous, all these limit values should be f(0,0) = 0.

So this function is not continuous.

Figure 58. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks very suspicious. This does

not seem to be a graph of a continuous function.
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Figure 59. We have restricted the function here to x = −y − y3 and

x = −y − 2y3 and x = −y − 4y3. We see in this figure clearly that

the restrictions of the function to these lines are functions that have

different limits in 0.
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Figure 60. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 25.
Is the function

f(x,y) =















x2 −y2

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
Let us restrict this function to straight lines through the origin with

equation y = λx.
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f
∣

∣

y=λx(x,y) =



















f(x, λx) = x
2 − λ2x2

λ2x2 + x2
= 1− λ2

λ2 + 1
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have many different limits. But if

f(x,y) is continuous, all these limit values should be f(0,0) = 0. So

this function is not continuous.

Figure 61. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks very suspicious. This does

not seem to be a graph of a continuous function.
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Figure 62. We have restricted the function here to y = 1/10x and y =
3/5x and y = 1/2x. We see in this figure clearly that the restrictions of

the function to these lines are functions that have different limits in 0.
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Figure 63. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

very discontinuous indeed.

Exercise 26.
Is the function

f(x,y) =











x
√

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
Let us restrict this function to the X-axis with y = 0, then we have

f
∣

∣

x=λy2(x,y) =















f(x,0) = x√
x2

if x ≠ 0;

0 if x = 0.
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So we have

f(x,0) =























−1 if x < 0;

0 if x = 0;

1 if x > 0.

This function has no limit in x = 0 and it should have the limit f(0,0) =
0 if the function f(x,y) is continuous. The function f(x,y) cannot be

continuous.

Figure 64. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks very suspicious. This does

not seem to be a graph of a continuous function.
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Figure 65. We have restricted the function here to y = 1/10x and y =
2x and y = 3x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have different limits in 0.
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Figure 66. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 27.
Is the function

f(x,y) =











x −y
x +y

if x ≠ −y ;

0 if x = −y

continuous in (0,0)?

Solution.
Let us restrict this function to lines through the origin with equation

y = λx with λ ≠ −1.
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f
∣

∣

y=λx(x,y) =



















f(x, λx) = x − λx
λx + x

= 1− λ
λ+ 1

if x ≠ 0;

0 if x = 0.

We see that these restricted functions have many different limits. But if

f(x,y) is continuous, all these limit values should be f(0,0) = 0. So

this function is not continuous.

Figure 67. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 68. We have restricted the function here to y = 1/2x and y = x
and y = 3/2x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have different limits in 0.
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Figure 69. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 28.
Is the function

f(x,y) =















x2 +y
y

if y ≠ 0;

0 if y = 0.

continuous in (0,0)?

Solution.
Let us restrict this function to the line through the origin with equation

x = 0.
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f
∣

∣

x=0(x,y) =















f(0, y) = y
y
= 1 if y ≠ 0;

0 if y = 0.

In this case the limit

lim
y→0

f
∣

∣

x=0(x,y) = 1.

Let us restrict this function to the continuous curves through the origin

with equation y = λx2.

f
∣

∣

y=λx2(x,y) =



















f(x, λx2) = λx
2 + x2

λx2
= 1+ λ

λ
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 70. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 71. We have restricted the function here to y = −5x2 and

y = −7/5x2 and y = −9/10x2. We see in this figure clearly that the re-

strictions of the function to these lines are functions that have different

limits in 0.
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Figure 72. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 29.
Is the function

f(x,y) =















x3 − xy3

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x3 − xy2

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

x3 − xy2

x2 +y2
− 0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

x (x2 −y2)

x2 +y2

∣

∣

∣

∣

∣

≤ |x| (x
2 +y2)

x2 +y2

≤ |x|

≤
√

x2 +y2.

So it is sufficient to prove that
√

x2 +y2 < ϵ by manipulating the value

of δ in the inequality
√

x2 +y2 < δ. It is for example sufficient to take

δ = ϵ. We can find a δ, so we conclude that the function is continuous.
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Figure 73. We see here a three dimensional figure of the graph of the

function.
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Figure 74. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 30.
Is the function

f(x,y) =















x2

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)
continuous in (0,0)?

Solution.
We restrict the function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx) = x2

λ2x2 + x2
= 1

λ2 + 1
if x ≠ 0;

0 if x = 0.
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We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is discontinuous.

Figure 75. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 76. We have restricted the function here to y = 3/2x and y = 2x
and y = 3x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have different limits in 0.
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Figure 77. We see here a figure of the contour plot of the function. Many

level curves of very different levels approach (0,0). This is typically a

function with a discontinuity.

Exercise 31.
Is the function

f(x,y) =















x2 +y2 − x3y3

x2 +y2
if (x,y) ≠ (0,0);

1 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We observe that proving that f(x,y) is continuous in (0,0)with f(0,0) =
1, is equivalent with proving that g(x,y) = f(x,y)− 1 is continuous in

(0,0) with g(0,0) = 0.
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g(x,y) = f(x,y)− 1 = −x
3y3 + x2 +y2

x2 +y2
− 1 = − x3y3

x2 +y2
.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to proof that |g(x,y)−g(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |g(x,y)− g(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

− x3y3

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

− x3y3

x2 +y2
− 0

∣

∣

∣

∣

∣

≤

√

x2 +y2
3√

x2 +y2
3

x2 +y2

≤ (x
2 +y2)3

x2 +y2

≤ (x2 +y2)2

≤
√

x2 +y2
4

.

So it is sufficient to prove that
√

x2 +y2 < ϵ by manipulating the value

of δ in the inequality
√

x2 +y2 < δ. It is for example sufficient to take

δ = ϵ1/4. We can find a δ, so the function g(x,y) is continuous and

consequently also the function f(x,y).
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Figure 78. We see here a three dimensional figure of the graph of the

function.

Figure 79. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).
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Exercise 32.
Is the function

f(x,y) =















x2y

x4 +y4
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We restrict the function to the continuous curves with equations y =
λx2. We observe then that

f
∣

∣

y=λx2(x,y) =



















f(x, λx2) = λx4

λ4x8 + x4
= λ

λ4x4 + 1
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 80. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 81. We have restricted the function here to y = 1/2x2 and y =
7/10x2 and y = x2. We see in this figure clearly that the restrictions of

the function to these curves are functions that have different limits in 0.
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Figure 82. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 33.
Is the function

f(x,y) =















x2y2

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ it

follows that |f(x,y)− f(0,0)| < ϵ.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x2y2

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

x2y2

x2 +y2
− 0

∣

∣

∣

∣

∣

≤ x2y2

x2 +y2

≤

√

x2 +y2
2√

x2 +y2
2

x2 +y2

≤ (x
2 +y2)2

x2 +y2

≤
√

x2 +y2
2

.

So it is sufficient to prove that
√

x2 +y2
2

< ϵ by manipulating the value

of δ in the inequality
√

x2 +y2 < δ. In order to do that it is sufficient

to take δ = √
ϵ. We can find a δ, so we conclude that the function is

continuous.
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Figure 83. We see here a three dimensional figure of the graph of the

function.
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Figure 84. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 34.
Let a, b and c be three positive real numbers. Suppose also that a+b >
2 c. Is the function

f(x,y) =















|x|a |y|b
(x2 +y2)c

if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0. We try to find a δ > 0 such that if
∥

∥(x,y)− (0,0)
∥

∥ <
δ it follows that |f(x,y)− f(0,0)| < ϵ.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

|x|a |y|b
(x2 +y2)c

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

|x|a |y|b
(x2 +y2)c

− 0

∣

∣

∣

∣

∣

≤ |x| a |y|b
(x2 +y2) c

≤

√

x2 +y2
a√

x2 +y2
b

(x2 +y2) c

≤

√

x2 +y2
a+b

√

x2 +y2
2 c

≤
√

x2 +y2
a+b−2 c

.

So it is sufficient to prove that
√

x2 +y2
a+b−2 c

< ϵ by manipulating

the value of δ in the inequality
√

x2 +y2 < δ. In order to do that it is

sufficient to take δ = ϵ1/(a+b−2 c). We can find a δ, so we conclude that

the function is continuous.
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Figure 85. We see here a three dimensional figure of the graph of the

function. This does not seem at first sight to be a graph of a continuous

function. If we look at it closely, we see that functions above y = λx
seem to dive very steeply to level 0. The function is drawn here for the

values a = 2, b = 3 and c = 2.
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Figure 86. We see here a figure of the contour plot of the function. We

see that the levels of curves in a neighbourhood are approximately of

level 0. The function is drawn here for the values a = 2, b = 3 and c = 2.
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Figure 87. We see here a three dimensional figure of the graph of the

function. This does not seem at first sight to be a graph of a continuous

function. If we look at it closely, we see that functions above y = λx
seem to dive very steeply to level 0. The function is drawn here for the

values a = 2, b = 3 and c = 2.4.
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Figure 88. We see here a figure of the contour plot of the function. We

see that the levels of curves in a neighbourhood of (0,0) are still approx-

imately of level 0. Many differently coloured curves in a neighbourhood

of (0,0) stop abruptly before reaching (0,0). More explanation for this

behaviour follow in the next pictures. The function is drawn here for the

values a = 2, b = 3 and c = 2.4.
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Figure 89. We see here a three dimensional figure of the graph of the

function. This does not seem at first sight to be a graph of a continuous

function. If we look at it closely, we see that functions above y = λx
seem to dive very steeply to level 0. The function is drawn here for the

values a = 0.6, b = 0.3 and c = 0.4.
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Figure 90. We see here a figure of the contour plot of the function.

We see that the levels of curves in a neighbourhood are still approxi-

mately of level 0. Many coloured curves in a neighbourhood of (0,0)
stop abruptly before reaching (0,0). More explanation for this behaviour

follow in the next pictures. The function is drawn here for the values

a = 0.6, b = 0.3 and c = 0.4.
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Figure 91. We see here a figure of the contour plot of the function. We

see that lines with equation y = λx are mapped to curves that take a

very steep dive to 0 when approaching the Z-axis. The function is drawn

here for the values a = 0.6, b = 0.3 and c = 0.4.

Figure 92. We see here a figure showing more clearly what happens close

to z = 0. The function is drawn here for the values a = 0.6, b = 0.3 and

c = 0.4.

We see that if we restrict the function f(x,y) to y = λx, then the main
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part of the function definition is

f
∣

∣

y=λx(x,y) =















|λ|b |x|a+b
(

|λ|2 + 1
)

|x|2 c
= |λ|

b |x|a+b−2 c

|λ|2 + 1
if x ≠ 0;

0 if x = 0.

The phenomenon that we observe is the following. Consider the se-

quence of functions gn(x) = x1/n that converge pointwise but not uni-

formly to the function g(x) = 1 on (0,1] and g(0) = 0. When the

argument x of the function gn(x) is in a very small neighbourhood of 0

and very close to 0, the function takes a sudden deep dive from approx-

imately level 1 to level 0 with a vertical tangent line in x = 0. See the

following plot.

Figure 93. We see here a figure of the graphs of the function gn(x)
described above. We pictured the three functions g2(x) = x1/2, g10(x) =
x1/10, g20(x) = x1/20. We see that they tend to have function value 1

away from x = 0 and then descend steeply to function height 0 in a

neighbourhood of x = 0. They have all vertical tangent lines in x = 0.

Exercise 35.
Is the function

f(x,y) =







(x +y) sin(1/x) sin(1/y) if xy ≠ 0;

0 if xy = 0
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continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣(x +y) sin(1/x) sin(1/y)− 0
∣

∣ < ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣(x +y) sin(1/x) sin(1/y)− 0
∣

∣ ≤
∣

∣(x +y) sin(1/x) sin(1/y)
∣

∣

≤
∣

∣x +y
∣

∣

≤ |x| + |y|

≤
√

x2 +y2 +
√

x2 +y2

≤ 2
√

x2 +y2.

So it is sufficient to prove that 2
√

x2 +y2 < ϵ by manipulating the value

of δ in the inequality
√

x2 +y2 < δ. In order to do that it is sufficient

to take δ = ϵ/2. We can find a δ, so we conclude that the function is

continuous.
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Figure 94. We see here a three dimensional figure of the graph of the

function. The continuity is caused by the factor x +y . This flattens out

the graph around (0,0). Remark that this type of functions is notori-

ously difficult to draw due to the high frequency of the oscillations.
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Figure 95. We see here a figure of the contour plot of the function.

Only level curves of level around 0 come close to (0,0). Remark that

when many different colours come close together caused by the wild

oscillations, the end effect is black colour. The continuity is caused by

the factor x +y . This flattens out the graph around (0,0). Remark that

this type of functions is notoriously difficult to draw.

We remark here that this function restricted to vertical lines with equa-

tion x = λ, λ ≠ 0 and sin (1/λ) ≠ 0 will not be continuous. The restric-

tion is again with λ ≠ 0 and sin (1/λ) ≠ 0 is then

f
∣

∣

x=λ(x,y) =



















f(λ,y) = (λ+y) sin

(

1

λ

)

sin

(

1

y

)

if y ≠ 0;

0 if y = 0.
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Figure 96. A typical graph of this restricted function to a line with equa-

tion x = λ. This figure is made with λ = 1/2. Figures of this type are

notoriously difficult to make due to the high frequency of the oscilla-

tions.

But the function restricted to a line with equation y = λx with λ ≠ −1

is evidently continuous. The restriction is

f
∣

∣

y=λx(x,y) =















f(x, λx) = (λx + x) sin

(

1

x

)

sin

(

1

λx

)

if x ≠ 0;

0 if x = 0.
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Figure 97. A typical graph of this restricted function to a line with equa-

tion y = λx. This figure is made with λ = 1/2. Figures of this type

are notoriously difficult to make due to the high frequency of the oscil-

lations.

Exercise 36.
Is the function

f(x,y) =











xy

x2 +y2
+y sin(1/x) if x ≠ 0;

0 if x = 0

continuous in (0,0)?

Solution.
We have in exercise 1 proven that

xy
x2+y2 is not continuous in (0,0). So

if we can prove that y sin(1/x) is continuous in (0,0), then the sum of

these two functions cannot be continuous.

We set out to prove now that y sin(1/x) is continuous.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣y sin(1/x)− 0
∣

∣ < ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣y sin(1/x)− 0
∣

∣ ≤ |y| | sin(1/x)|

≤ |y|

≤
√

x2 +y2.

So it is sufficient to prove that
√

x2 +y2 < ϵ by manipulating the value

of δ in the inequality
√

x2 +y2 < δ. In order to do that It is sufficient

to take δ = ϵ. We can find a δ, so we conclude that the function is

continuous.
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Figure 98. We see here a three dimensional figure of the graph of

the function y sin(1/x). Wild oscillations cause the overall colour to

blacken. This type of functions is notoriously difficult to draw due to

the high frequency of the oscillations.
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Figure 99. We see here a figure of the contour plot of the function

y sin(1/x). Only level curves of level around 0 come close to (0,0).
Many differently coloured regions next to each other cause the overall

colour to blacken. This is what we observe here. This type of functions

is notoriously difficult to draw due to the high frequency of the oscilla-

tions.
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Figure 100. We see here a three dimensional figure of the graph of the

function
xy

x2+y2 +y sin
(

1

x

)

. The vertical line above (0,0) looks very sus-

picious. This does not seem to be a graph of a continuous function.
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Figure 101. We have restricted the function here to y = 1/2x and y =
7/10x and y = x. We see in this figure clearly that the restrictions of

the function to these lines are functions that have different limits in 0.
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Figure 102. This is the level curves plot of
xy

x2+y2+y sin
(

1

x

)

. We see here

a figure of the contour plot of the function. Many level curves of very

different levels approach (0,0). This looks very discontinuous indeed.

Many differently coloured regions next to each other cause the overall

colour to blacken. Figures of this type are notoriously difficult to draw

due to the high frequency of the oscillations.

Let us take a look at the restriction of f(x,y) = y sin
(

1

x

)

on a line with

equation y = λx.

We have then

f
∣

∣

y=λx(x,y) =











f(x, λx) = λx sin
(

1

x

)

if x ≠ 0;

0 if x = 0.

This restricted function must be continuous. Let us take a look at it.
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Figure 103. We have restricted the function here to y = 1/2x. We see

here a typical graph of a continuous function. Figures of this type are

notoriously difficult to draw due to the high frequency of the oscilla-

tions.

Exercise 37.
Is the function

f(x,y) =







x sin(1/y)+y sin(1/x) if xy ≠ 0;

0 if xy = 0

continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣x sin(1/y)+y sin(1/x)− 0
∣

∣ < ϵ.
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We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣x sin(1/y)+y sin(1/x)− 0
∣

∣ ≤
∣

∣x sin(1/y)+y sin(1/x)
∣

∣

≤ |x| | sin(1/y)| + |y| | sin(1/x)|

≤
√

x2 +y2 +
√

x2 +y2

≤ 2
√

x2 +y2.

So it is sufficient to prove that 2
√

x2 +y2 < ϵ by manipulating the value

of δ in the inequality
√

x2 +y2 < δ. In order to do that It is sufficient

to take δ = ϵ/2. We can find a δ, so we conclude that the function is

continuous.

Figure 104. We see here a three dimensional figure of the graph of the

function. This type of pictures is notoriously difficult to draw due to the

high frequency of the oscillations.
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Figure 105. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Let us illustrate the wild behaviour of this function by looking at the

functions restricted on vertical lines with equation x = λ with λ ≠ 0. We

have then the following function

f(x,y) = f(λ,y) = λ sin(1/y)+y sin(1/λ).

Here is a plot of this restricted function.
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Figure 106. We see here a figure of the graph of the function

λ sin(1/y) + y sin(1/λ) with λ = 1/2. The behaviour is highly non-

continuous. This function is a classical one and is in any textbook. It is

a standard example of a non continuous function. We conclude that this

function is not continuous on any vertical line, except on the Y -axis. We

can by symmetry also make the analogue statement for horizontal lines.

But the function f(x,y) is evidently continuous on every line going

through the origin. Let us take such a line with equation y = λx with

λ ≠ 0. The restriction of the function on this line is

f
∣

∣

y=λx(x,y) =















f(x, λx) = λx sin
(

1

x

)

+ x sin
(

1

λx

)

if x ≠ 0;

0 if x = 0.
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Figure 107. We see here a figure of the graph of the function λx sin
(

1

x

)

+
x sin

(

1

λx

)

with λ = 1/2. The behaviour is continuous. This function is

a classical one and can be found in many textbooks. It is a standard

example of a continuous function. We conclude that this function is

continuous on almost any line (λ ≠ 0) through the origin.

Exercise 38.
Is the function

f(x,y) =















x2y2

x3 +y3
if x ≠ −y ;

0 if x = −y .

continuous in (0,0)?

Solution.
Let us restrict this function to the line through the origin with equation

y = −x + λx2 to a small neighbourhood of (0,0).

f
∣

∣

y=−x+λx2(x,y) =



















x2
(

λx2 − x
)2

(

λx2 − x
)3 + x3

= (λx − 1)2

λ
(

λ2x2 − 3λx + 3
) if x ≠ 0;

0 if x = 0.
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So this case the limit

lim
x→0

f(x,y) = 1

3λ
.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 108. We see here a three dimensional figure of the graph of the

function. The unbounded behaviour around (0,0) looks suspicious. This

does not seem to be a graph of a continuous function.



www.mathandphoto.eu. Exercise Notes 130

Figure 109. We have restricted the function here to y = −x+1/3x2 and

y = −x + 1/2x2 and y = −x + x2. We see in this figure clearly that

the restrictions of the function to these lines are functions that have

different limits in 0.
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Figure 110. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 39.
Is the function

f(x,y) =















xy (x2 −y2)

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ holds.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

xy (x2 −y2)

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

xy (x2 −y2)

x2 +y2
− 0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

xy (x2 −y2)

x2 +y2

∣

∣

∣

∣

∣

≤ |x| |y| (x
2 +y2)

x2 +y2

≤ |x| |y|

≤
√

x2 +y2

√

x2 +y2

≤
√

x2 +y2
2

.

So it is sufficient to prove that
√

x2 +y2
2

< ϵ by manipulating the value

of δ in the inequality
√

x2 +y2 < δ. In order to do that it is sufficient

to take δ =
√

ϵ. We can find a δ, so we conclude that the function is

continuous.
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Figure 111. We see here a three dimensional figure of the graph of the

function.
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Figure 112. We see here a figure of the plot of the contour curves of the

function. Only level curves of level around 0 come close to (0,0).

Exercise 40.
Is the function

f(x,y) =















x2 + sin2(y)

2x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)
continuous in (0,0)?

Solution.
We restrict the function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx) = sin2(λx)+ x2

λ2x2 + 2x2
= sin2(λx)+ x2

(

λ2 + 2
)

x2
if x ≠ 0;

0 if x = 0.
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Let us calculate the limits.

lim
x→0

sin2(λx)+ x2

(λ2 + 2) x2
= lim
x→0

sin(λx)
λx

sin(λx)
λx λ2x2 + x2

(λ2 + 2) x2

= lim
x→0

sin(λx)
λx

sin(λx)
λx λ2 + 1

(λ2 + 2)

= λ
2 + 1

λ2 + 2
.

We have used the fact that limα→0 sin(α)/α = 1.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 113. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 114. We have restricted the function here to y = 1/7x and y =
1/2x and y = x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have different limits in 0.
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Figure 115. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 41.
Is the function

f(x,y) =











xy
√

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. We try to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ it follows that

|f(x,y)− f(0,0)| < ϵ holds.



www.mathandphoto.eu. Exercise Notes 138

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∣

xy
√

x2 +y2
− 0

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

xy
√

x2 +y2
− 0

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

xy
√

x2 +y2

∣

∣

∣

∣

∣

∣

≤ |x| |y|
√

x2 +y2

≤

∣

∣

∣

∣

∣

∣

√

x2 +y2
√

x2 +y2

√

x2 +y2

∣

∣

∣

∣

∣

∣

≤
√

x2 +y2.

So it is sufficient to prove that
√

x2 +y2 < ϵ by manipulating the value

of δ in the inequality
√

x2 +y2 < δ. In order to do that It is sufficient

to take δ = ϵ. We can find a δ, so we conclude that the function is

continuous.
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Figure 116. We see here a three dimensional figure of the graph of the

function.
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Figure 117. We see here a figure of the plot of the contour curves of the

function. Only level curves of level around 0 come close to (0,0).

Exercise 42.
Is the function

f(x,y) =















sin(x y)
√

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)

continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ holds.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∣

sin(x y)
√

x2 +y2
− 0

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

sin(x y)
√

x2 +y2
− 0

∣

∣

∣

∣

∣

∣

≤ |x| |y|
√

x2 +y2

≤

√

x2 +y2
√

x2 +y2

√

x2 +y2

≤
√

x2 +y2.

We have used that | sin(x)| ≤ |x|. So it is sufficient to prove that
√

x2 +y2 < ϵ by manipulating the value of δ in the inequality
√

x2 +y2 <
δ. In order to do that it is sufficient to take δ = ϵ. We can find a δ, so we

conclude that the function is continuous.
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Figure 118. We see here a three dimensional figure of the graph of the

function.

Figure 119. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).
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Exercise 43.
Is the function

f(x,y) =















arcsin(x/y)

1+ xy
if xy ≠ −1, y ≠ 0 and −1 ≤ x/y ≤ 1;

0 if xy = −1 or y = 0 or −1 > x/y or x/y > 1

continuous in (0,0)?

Solution.
We restrict the function to the continuous curves with equations x = λy
with |λ| < 1. We observe then that in a small enough neighbourhood of

x

f
∣

∣

x=λy(x,y) =



















f(λy,y) = arcsin(λ)

λy2 + 1
if y ≠ 0;

0 if y = 0.

Let us calculate the limits.

lim
y→0

= arcsin(λ)

λy2 + 1
= arcsin(λ).

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 120. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 121. We have restricted the function here to x = 4/5y and x =
1/5y and x = 1/2y . We see in this figure clearly that the restrictions

of the function to these lines are functions that have different limits in

0.
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Figure 122. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 44.
Is the function

f(x,y) = x +y
x2 +y2 + 1

continuous in (0,0)?

Solution.
This function is by the elementary properties of continuous functions

evidently continuous where it exists. Observe that this function exists

everywhere. All functions that are used in its definition like the power

function, the addition, multiplication and division are continuous.

This exercise looks dull, but in fact this is the so called “general case” in

the context of this type of exercises. Our functions have a very simple
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function definition consisting of very old and classical functions that are

continuous where they exist.

Figure 123. We see here a three dimensional figure of the graph of the

function.
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Figure 124. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 45.
Is the function

f(x,y) =















(x − 1)2 ln(x)

(x − 1)2 +y2
if (x,y) ≠ (1,0) and x > 0;

0 elsewhere.

continuous in (1,0)? We may use ln(1+α) ≤ α for α > −1. Consult the

appendix for a proof that does not use differentiability.

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(1,0)| <
ϵ. The problem is now to find a δ > 0 that if

∥

∥(x,y)− (1,0)
∥

∥ < δ it

follows that |f(x,y)− f(1,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (1,0)
∥

∥ =
√

(x − 1)2 +y2 <
δ, we have that

∣

∣

∣

∣

∣

(x − 1)2 ln(x)

(x − 1)2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

Before attacking the main inequality, let us try to get a grip on the be-

haviour of ln(x) in x = 1. We first recall the basic second inequal-

ity of the logarithmic function. See the appendix for a proof. This is

ln(1+ α) ≤ α for α > −1. By using the substitution x = 1+ α, we have

ln(x) ≤ x − 1 for x > 0. We use this inequality in our main inequality.
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∣

∣

∣

∣

∣

(x − 1)2 ln(x)

(x − 1)2 +y2
− 0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(x − 1)2 ln(x)

(x − 1)2 +y2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(x − 1)2 (x − 1)

(x − 1)2 +y2

∣

∣

∣

∣

∣

≤

√

(x − 1)2 +y2
3

(x − 1)2 +y2

≤
√

(x − 1)2 +y2.

So it is sufficient to prove that
√

(x − 1)2 +y2 < ϵ by manipulating the

value of
√

(x − 1)2 +y2. It is for example sufficient to take δ = ϵ. We

can find a δ so we conclude that the function is continuous.

Figure 125. We see here a three dimensional figure of the graph of the

function.
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Figure 126. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 46.
Is the function

f(x,y) =











x +y
x2 +y2

if (x,y) ≠ (0,0);

0 if (x,y) = (0,0)
continuous in (0,0)?

Solution.
We restrict the function to the continuous curves with equations y =
−x + λx2. We observe then that

f
∣

∣

y=−x+λx2(x,y) =



















λx2

(

λx2 − x
)2 + x2

= λ

λ2x2 − 2λx + 2
if x ≠ 0;

0 if x = 0.
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Let us calculate the limits.

lim
x→0

λ

λ2x2 − 2λx + 2
= λ

2
.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 127. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) and the unboundedness in the

neighbourhood of (0,0) looks suspicious. This does not seem to be a

graph of a continuous function.
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Figure 128. We have restricted the function here to y = −x + 1/7x2,

y = −x + 1/2x2 and y = −x + x2. We see in this figure clearly that

the restrictions of the function to these lines are functions that have

different limits in 0.
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Figure 129. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 47.
Is the function

f(x,y) =















x3 −y3

x3 +y3
if x ≠ −y ;

0 if x = −y

continuous in (0,0)?

Solution.
We restrict the function to the continuous curves with equations y =
λx. We observe then that
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f
∣

∣

y=λx(x,y) =



















f(x, λx) = x
3 − λ3x3

λ3x3 + x3
= 1− λ3

λ3 + 1
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 130. We see here a three dimensional figure of the graph of the

function. The vertical line and the unboundedness above (0,0) looks

suspicious. This does not seem to be a graph of a continuous function.
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Figure 131. We have restricted the function here to y = 1/2x and y =
3/10x and y = 3/5x. We see in this figure clearly that the restrictions

of the function to these lines are functions that have different limits in

0.
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Figure 132. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 48.
Is the function

f(x,y) =















arctan

(

|x| + |y|
x2 +y2

)

if (x,y) ≠ (0,0);

π/2 if (x,y) = (0,0)

continuous in (0,0)? One may assume that we know that limα→∞ arctan(α) =
π/2.

Solution.
Let us prove it with a ϵ-δ approach.

We take an arbitrary ϵ > 0. We know that limα→∞ arctan(α) = π/2. So we

know that there exists a number M so that if α > M , then | arctan(α)−
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π/2| < ϵ. The problem is now to find a δ > 0 such that if (x,y) is in

the neighbourhood
∥

∥(x,y)− (0,0)
∥

∥ < δ punctured in (0,0), so (0,0) is

excluded from this disk, it follows that (|x|+ |y|)/(x2+y2) > M holds.

So we are left to prove that if (x,y) ≠ (0,0) and
√

x2 +y2 < δ

|x| + |y|
x2 +y2

> M or equivalently |x| + |y| > M (x2 +y2).

by manipulating the value of δ in the inequality
√

x2 +y2 < δ.

If we look at the inequality |x| + |y| > M (x2 + y2), we see that it is

enough to have that both |x| > M x2 and |y| > M y2 or that 1 > M |x|
and 1 > M |y|. So we must have both |x| < 1/M and |y| < 1/M . But

if we take δ = 1/M , then |x| ≤
√

x2 +y2 < 1/M and |y| ≤
√

x2 +y2 <
1/M . So we can find a δ = 1/M and the function is continuous.

Figure 133. We see here a three dimensional figure of the graph of the

function.
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Figure 134. We see here a figure of the contour plot of the function. Only

level curves of a larger level around π/2 come close to (0,0).

Exercise 49.
Is the following function continuous in (0,0)?

f(x,y) =















e−x
2−y2 − 1

x2 +y2
+ 1 if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

It is allowed to use the traditional inequality: α + 1 ≤ eα ≤ 1

1−α with

α < 1. See appendix for a proof.

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

e−x
2−y2 − 1

x2 +y2
+ 1− 0

∣

∣

∣

∣

∣

< ϵ.

We try to find something larger than the left side of the inequality and

try then to keep that larger expression smaller than ϵ by manipulating

the value of δ in the inequality
√

x2 +y2 < δ. If we could do that, then

we have proven our inequality.

We will use the classical inequality of the exponential function which

one can prove without using differentiation theory as explained in the

appendix.

α+ 1 ≤ eα ≤ 1

1−α
which is valid for α < 1.

We restrict further and demand that α > 0. We invert the three terms of

the inequality and multiply them with −1. We add 1 to the three terms

and divide by α. We subtract −1 of the three terms and find again with

0 < α < 1

−α
1+α ≤

1− e−α
α

− 1 ≤ 0.

When α = x2 +y2 we have then by using this inequality

∣

∣

∣

∣

∣

e−x
2−y2 − 1

x2 +y2
+ 1− 0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1− e−x2−y2

x2 +y2
− 1

∣

∣

∣

∣

∣

≤ x2 +y2

x2 +y2 + 1

≤ x2 +y2

≤
√

x2 +y2
2

.

It is sufficient to take δ = min{1,√ϵ}. We can find a δ, so we conclude

that the function is continuous.
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Remark. The inequalities are easier if one is allowed to use the theory of

differentiation in one variable. We can use e.g. the theorem of McLaurin.

Figure 135. We see here a three dimensional figure of the graph of the

function.
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Figure 136. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 50.
Is the following function continuous in (0,0)?

f(x,y) =







0 if xy ≠ 0;

1 if xy = 0.

Solution.
Let us restrict this function to the curve y = x. We observe then that

f
∣

∣

y=x(x,y) =











f(x,x) = 0 if x ≠ 0;

1 if x = 0.

We see that this restricted function is discontinuous in x = 0. But if

f(x,y) is continuous, then it should be continuous when restricted to

this continuous curve. We conclude that f(x,y) is discontinuous.
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Exercise 51.
Is the following function continuous in (0,0)?

f(x,y) =











xy

|x| + |y|
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

xy

|x| + |y| − 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

xy

|x| + |y| − 0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

xy

|x| + |y|

∣

∣

∣

∣

∣

≤ |x| |y|
|x| + |y|

≤ (|x| + |y|) (|x| + |y|)|x| + |y|
≤ |x| + |y|

≤ 2
√

x2 +y2.

It is sufficient to take δ = ϵ/2. We can find a δ, so we conclude that the

function is continuous.
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Figure 137. We see here a three dimensional figure of the graph of the

function.
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Figure 138. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 52.
Is the following function continuous in (0,0)?

f(x,y) =















x2 − 2y

y2 + 2x
if y2 + 2x ≠ 0;

0 if y2 + 2x = 0.

Solution.
We restrict the function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx) = x − 2λ

λ2x + 2
if x ≠ 0 and x ≠ −2/λ2;

0 if x = 0 or x = −2/λ2.
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We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 139. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 140. We have restricted the function here to y = 1/2x and y =
3/10x and y = 3/5x. We see in this figure clearly that the restrictions

of the function to these lines are functions that have different limits in

0.
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Figure 141. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 53.
Is the function

f(x,y) =















x2y2

x4 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x2y2

x4 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

x2y2

x4 +y2
− 0

∣

∣

∣

∣

∣

≤ x2y2

x4 +y2

≤

√

x2 +y2
2√

x2 +y2
2

√

x2 +y2
4

+
√

x2 +y2
2

≤

√

x2 +y2
4

√

x2 +y2
2
(

√

x2 +y2
2

+ 1

)

≤

√

x2 +y2
2

√

x2 +y2
2

+ 1

≤
√

x2 +y2
2

.

It is sufficient to take δ = √ϵ. We can find a δ, so we conclude that the

function is continuous.

Figure 142. We see here a three dimensional figure of the graph of the

function.



www.mathandphoto.eu. Exercise Notes 168

Figure 143. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 54.
Is the following function continuous in (0,0)?

f(x,y) =















sin
(

x2 + 4y2
)

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

We assume that we know that limα→0 sin(α)/α = 1.

Solution.
We can rewrite the function definition as

sin
(

x2 + 4y2
)

x2 +y2
= sin

(

x2 + 4y2
)

x2 + 4y2

x2 + 4y2

x2 +y2
.

We know that
sin(x2+4y2)
x2+4y2 is continuous in (0,0), so it is enough to prove
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or disprove that
x2+4y2

x2+y2 is continuous.

We restrict this last function to the continuous curves with equations

y = λx. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx) = 4λ2x2 + x2

λ2x2 + x2
= 4λ2 + 1

λ2 + 1
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 144. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 145. We have restricted the function here to y = 1/10x, y = 2x
and y = 3x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have different limits in 0.
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Figure 146. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 55.
Is the following function continuous in (0,0)?

f(x,y) =







|x|y − 1 if x ≠ 0;

0 if x = 0.

Solution.
We restrict this function to the continuous curves with equations y =
λ

ln |x| . These curve are continuous in x = 0 with limit value y = 0. We do

look to these curves only in a small neighbourhood of (0,0) in order to

avoid difficulties with x = −1 and x = 1. We observe then that

f
∣

∣

y= λ
ln |x|
(x,y) =











f
(

x, λ
ln |x|

)

= eλ − 1. if x ≠ 0;

0 if x = 0.
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We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous in (0,0).

Figure 147. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 148. We have restricted the function here to y = 1/10

ln(|x|) , y =
2/5

ln(|x|)
and y = 7/10

ln(|x|) . We see in this figure clearly that the restrictions of the

function to these curves are functions that have different limits in 0.
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Figure 149. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 56.
Is the following function continuous in (0,0)?

f(x,y) =















e−x/y

y
if y ≠ 0;

0 if y = 0.

Solution.
We restrict this function to the continuous curves with equations y =
λx with λ ≠ 0. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx) = e
−1/λ

λx
if x ≠ 0;

0 if x = 0.
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We see that these restricted functions are unbounded in any neighbour-

hood of x = 0. But if f(x,y) is continuous in (0,0), then it is bounded

in a small enough neighbourhood of (0,0). So this function f(x,y) is

not continuous.

Figure 150. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 151. We have restricted the function here to y = 3/10x and

y = 6/10x and y = 9/10x. We see in this figure clearly that the restric-

tions of the function to these lines are functions that have unbounded

behaviour in any neighbourhood of 0.
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Figure 152. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 57.
Is the following function continuous in (0,0)?

f(x,y) =















sin
(

xy3
)

x2
if x ≠ 0;

0 if x = 0.

Solution.
We can approach this problem by writing the function as follows.

sin
(

xy3
)

x2
= sin

(

xy3
)

xy3

xy3

x2
.

We know that limα→0
sin(α)
α = 1. So we are left with the investigation
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of the discontinuity of the second factor
xy3

x2 = y3

x . We have done this

before elsewhere in this text. Let us try out another strategy.

We restrict this function to the continuous curves with equations y =
3
√

arcsin (λx2)/ 3
√
x. We take care here that we work in a neighbourhood

of x = 0 small enough so that the arcsin function is defined and note

also that these curves are continuous in x = 0. We observe then that

f
∣

∣

y= 3
√

arcsin(λx2)/ 3√x(x,y) =















f(x, 3
√

arcsin (λx2)/ 3
√
x) = λ if x ≠ 0;

0 if y = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 153. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 154. We have restricted the function here to y =
3
√

arcsin(1/2x2)
3√x

and y =
3
√

arcsin(1/3x2)
3√x and y =

3
√

arcsin(x2)
3√x . We see in this figure clearly

that the restrictions of the function to these curves are functions that

have different limits in 0.
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Figure 155. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 58.
Is the following function continuous in (0,0)?

f(x,y) =















x3 +y5

x2 + 2y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

Solution.
Let us prove it with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x3 +y5

x2 + 2y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

We assume that
√

x2 +y2 < 1.

∣

∣

∣

∣

∣

x3 +y5

x2 + 2y2
− 0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

x3 +y5

x2 +y2

∣

∣

∣

∣

∣

≤

√

x2 +y2
3

+
√

x2 +y2
5

x2 +y2

≤

√

x2 +y2
3

+
√

x2 +y2
3

x2 +y2

≤ 2

√

x2 +y2
3

x2 +y2

≤ 2
√

x2 +y2.

It is sufficient to take
√

x2 +y2 < min{ϵ/2,1}. We can find a δ, so we

conclude that the function is continuous.
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Figure 156. We see here a three dimensional figure of the graph of the

function.
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Figure 157. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 59.
Is the following function continuous in (0,0)?

f(x,y) =















x2 + sin2(y)

x2 + 2y2
if (x,y) ≠ (0,0);

0 if (x,y) ≠ (0,0).

Solution.
We restrict this function to the continuous curves with equations x =
λy . We observe then that

f
∣

∣

x=λy(x,y) =



















f(λy,y) = λ
2y2 + sin2(y)

λ2y2 + 2y2
if y ≠ 0;

0 if y = 0.

We have also the following limit by dividing denominator en numerator

by y2.

lim
y→0

λ2y2 + sin2(y)

λ2y2 + 2y2
= lim
y→0

y2 (λ2 + sin2(y)/y2)

y2 (λ2 + 2)
= λ

2 + 1

λ2 + 2
.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 158. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 159. We have restricted the function here to x = 4/5y and x =
1/5y and x = 1/2y . We see in this figure clearly that the restrictions

of the function to these lines are functions that have different limits in

0.
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Figure 160. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 60.
Is the following function continuous in (0,0)?

f(x,y) =



















tan
(

xy
xy+1

)

xy
if xy ≠ 0;

1 if xy = 0.

We assume here also that the function takes its values only in a neigh-

bourhood small enough around (0,0) in order to avoid difficulties with

the tangent function and the hyperbola xy + 1 = 0. It is sufficient to

take the neighbourhood D = {(x,y) | x < 1/2, y < 1/2}. We assume

also that we know that limα→0 tan(α)/α = 1.

Solution.
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We observe that

f(x,y) = 1

xy + 1

tan
(

xy
xy+1

)

xy
xy+1

.

The second factor has a limit going to the value 1. So we are left with

investigating the continuity of
1

xy+1
. This function is obviously continu-

ous in (0,0). So we conclude that the function f(x,y) is continuous in

(0,0).

Figure 161. We see here a three dimensional figure of the graph of the

function.
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Figure 162. We see here a figure of the contour plot of the function.

Exercise 61.
Is the function

f(x,y) =







(x2 +y2)x
2 y2

if (x,y) ≠ (0,0);

1 if (x,y) = (0,0).
continuous in (0,0)? We may use that t/(1 + t) < ln(1 + t) < t with

t > −1.

Solution.
We remark first that

(x2 +y2)x
2 y2 = ex2 y2 ln(x2+y2).

We want to prove now that the function

g(x,y) =











x2y2 ln(x2 +y2) if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).



www.mathandphoto.eu. Exercise Notes 188

is continuous. By the continuity of the exponential function, we have

then immediately our assertion.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |g(x,y)−g(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |g(x,y)− g(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣x2y2 ln(x2 +y2)− 0
∣

∣

∣ < ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

Before we do that, we want to proof the fact that the one variable func-

tion x ln(x) is bounded in a neighbourhood of x = 0. We start from the

inequality

t/(1+ t) ≤ ln(1+ t) ≤ t with t > −1.

We have proven this inequality in the appendix without using deriva-

tives.

By substituting x = t+1 with x where x > 0 we have that this inequality

is equivalent with the following inequality

x − 1

x
≤ ln(x) ≤ x − 1 with x > 0.

By multiplying with the positive x, we have x − 1 ≤ x ln(x) ≤ x (x − 1).
So if 0 < x < 1, then −1 ≤ x ln(x) ≤ 0 and |x ln(x)| ≤ M = 1. In order

to use the inequality |x ln(x)| ≤ 1 for 0 < x < 1,

We will need later that
√

x2 +y2 < 1, and to take care of that we take

δ < 1.
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∣

∣

∣x2y2 ln(x2 +y2)− 0
∣

∣

∣ ≤
∣

∣

∣

∣

∣

x2y2

x2 +y2
(x2 +y2) ln(x2 +y2)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

M
x2y2

x2 +y2

∣

∣

∣

∣

∣

≤ M

√

x2 +y2
2√

x2 +y2
2

x2 +y2

≤ M
√

x2 +y2
2

.

If this last term must be smaller than ϵ, then it is sufficient to take
√

x2 +y2 < δ = min{
√

ϵ/M,1}. Because we can choose a δ, we have

continuity of g(x,y) in (0,0). And this is enough to prove the assertion

that f(x,y) is continuous.

Figure 163. We see here a three dimensional figure of the graph of the

function g(x,y) = x2y2 ln(x2 +y2).
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Figure 164. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0). This plot is drawn for

the function f(x,y) = (x2 +y2)x
2 y2

.

Figure 165. We see here a figure showing the inequality x−1 ≤ x ln(x) ≤
x (x − 1). The graph of x − 1 is in blue, that of x ln(x) is in ochre, and

that of x (x − 1) is in green.
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Exercise 62.
Is the following function continuous in (0,0)?

f(x,y) =















(x + 1) (y − x)
(y + 1) (x +y)

if x ≠ −y and y ≠ −1;

0 if x = −y or y = −1.

Solution.
We restrict this function to the continuous curves with equations y =
λx, where λ ≠ −1. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx) = (λ− 1) (x + 1)

(λ+ 1) (λx + 1)
if x ≠ 0 and x ≠ −1/λ;

0 if y = 0 or x = −1/λ.

We have also the following limit.

lim
x→0

(λ− 1) (x + 1)

(λ+ 1) (λx + 1)
= λ− 1

λ+ 1
.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 166. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 167. We have restricted the function here to y = 1/2x and y =
1/3x and y = x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have different limits in 0.
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Figure 168. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 63.
Is the following function with a > 0 and b > 0 continuous in (0,0)?

f(x,y) =















|y|a |x|b
|x|a + |y|b

if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

Solution.
Let us investigate this with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

|y|a |x|b
|x|a + |y|b − 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

We will make use on the second line of the main inequality the following

inequalities

|x|a/2 ≤
√

(|x|a/2)2 +
(

|y|b/2
)2
,

|y|b/2 ≤
√

(|x|a/2)2 +
(

|y|b/2
)2
.

Here is the main inequality.

|x|b |y|a
|x|a + |y|b ≤

(

|x|a/2
)2b/a (|y|b/2

)2a/b

(|x|a/2)2 +
(

|y|b/2
)2

≤

√

(|x|a/2)2 +
(

|y|b/2
)2

2b/a√

(|x|a/2)2 +
(

|y|b/2
)2

2a/b

√

(|x|a/2)2 +
(

|y|b/2
)2

2

≤
√

(|x|a/2)2 +
(

|y|b/2
)2

2b/a+2a/b−2

≤
√

(|x|a/2)2 +
(

|y|b/2
)2

2 ((a−b)2+ab)
.

We must have

√

(|x|a/2)2 +
(

|y|b/2
)2

2 ((a−b)2+ab)
< ϵ

or
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√

|x|a + |y|b < ϵ
1

2 ((a−b)2+ab) .

Let us define a shorthand for the right hand side of the inequality

ϵ0 = ϵ
1

2 ((a−b)2+ab) .

To satisfy the inequality, it is sufficient to have

|x|a < ϵ2
0/2 and |y|b < ϵ2

0/2.

Or

|x| < a
√

ϵ2
0/2 and |y| < b

√

ϵ2
0/2.

So it is sufficient to take the following δ in
√

x2 +y2 < δ stated at the

start of the solution: δ = min

{

a
√

ϵ2
0/2,

b
√

ϵ2
0/2

}

.

Figure 169. We see here a three dimensional figure of the graph of the

function. The picture is made with parameters a = 2 and b = 3.
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Figure 170. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).
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Figure 171. We see here a three dimensional figure of the graph of the

function. The picture is made with parameters a = 0.01 and b = 0.01.
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Figure 172. We see here a figure of the contour plot of the function.

Only level curves of level around 0 come close to (0,0). We have to

take extreme care when examining this picture. When (x,y) approaches

zero, the function hovers a time at level around 1 and dives extremely

fast to the level zero. The smaller the parameters a and b, the stronger

is this phenomenon.
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Figure 173. We see here a figure of the graph of the function with param-

eters a = 0.3 and b = 0.3. We have to take extreme care when examining

this picture. When (x,y) approaches zero, then the function dives ex-

tremely fast to the level zero. The smaller the parameters a and b, the

stronger is this phenomenon.

Let us examine for example the behaviour above y = x. We have then

the function |x|a+b/(xa + xb). Suppose also that a < b. Then we have

the function |x|a+b/(|x|a (1 + |x|b−a)) ≈ |x|b in a neighbourhood of

x = 0.
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Figure 174. We see here a figure of the graph of the three functions

with function definitions g10(x) = x1/10 pictured in blue and g25(x) =
x1/25 pictured in ochre and g75(x) = x1/75 pictured in green. When x
approaches zero, then the function tends to wait longer at level around

1 before diving extremely fast to the level zero for small exponents.

The smaller the exponents, the stronger is this phenomenon. For the

function depicted in the colour green, the phenomenon of fast diving is

even barely observable because of colour overlapping.

Exercise 64.
Is the following function continuous in (0,0)?

f(x,y) =







arctan
(

y
x

)

if x ≠ 0;

0 if x = 0.

Solution.
We restrict this function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

y=λx(x,y) =











f(x, λx) = arctan(λ) if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
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is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 175. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 176. We have restricted the function here to y = x and y = 1/2x
and y = 1/3x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have different limits in 0.
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Figure 177. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 65.
Is the following function continuous in (0,0)?

f(x,y) =















x3y3

x6 +y6
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

Solution.
We restrict this function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

x,λx(x,y) =



















f(x, λx) = λ3x6

λ6x6 + x6
= λ3

λ6 + 1
if x ≠ 0;

0 if x = 0.
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We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 178. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 179. We have restricted the function here to y = x and y = 1/2x
and y = 1/3x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have different limits in 0.
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Figure 180. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 66.
Is the following function continuous in (0,0)?

f(x,y) =











x3y

x6 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

Solution.
We restrict this function to the continuous curves with equations y =
λx3. We observe then that

f
∣

∣

y=λx3(x,y) =



















f(x, λx3) = λx6

x6 + λ2x6
= λ

λ2 + 1
if x ≠ 0;

0 if x = 0.
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We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 181. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 182. We have restricted the function here to y = x3 and y =
1/2x3 and y = 1/3x3. We see in this figure clearly that the restrictions

of the function to these curves are functions that have different limits in

0.
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Figure 183. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 67.
Is the following function continuous in (0,0)?

f(x,y) =















(x − 1)y2

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

Solution.
We restrict this function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx) = λ
2 (x − 1)x2

λ2x2 + x2
= λ

2 (x − 1)

λ2 + 1
if x ≠ 0;

0 if x = 0.
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We take the limit to 0.

lim
x→0

λ2 (x − 1)

λ2 + 1
= − λ2

λ2 + 1
.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 184. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 185. We have restricted the function here to y = x and y = 1/2x
and y = 1/3x. We see in this figure clearly that the restrictions of the

function to these lines are functions that have different limits in 0.
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Figure 186. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 68.
Is the following function continuous in (0,0)?

f(x,y) =















x2 −y6

xy3
if x ≠ 0 and y ≠ 0;

0 if x = 0 or y = 0.

Solution.
We restrict this function to the continuous curves with equations x =
λy3. We observe then that

f(x,y) = f(λy3, y) = λ
2y6 −y6

λy6
= λ− 1

λ
.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 187. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 188. We have restricted the function here to x = 6/5y3 and x =
3/2y3 and x = 0/5y3. We see in this figure clearly that the restrictions

of the function to these curves are functions that have different limits in

0.
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Figure 189. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 69.
Is the following function continuous in (0,0)?

f(x,y) =















arctan

(

2y

x2 +y2

)

if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

Solution.
We restrict this function to the continuous curves with equations x =
√

2λy −y2. These are parts of circles with centre (0, λ) and radius λ. If

λ > 0, then 0 ≤ y ≤ 2λ and if λ < 0, then 2λ ≤ y ≤ 0. We observe then

that with the same restrictions as mentioned
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f
∣

∣

x=
√

2λy−y2(x,y) =















f
(√

2λy −y2, y
)

= arctan
(

1

λ

)

if y ≠ 0;

0 if y = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 190. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 191. We have restricted the function here to circles with paramet-

ric equation {x = λ cos(θ),y = λ sin(θ)+ λ}, 0 ≤ θ < 2π and λ-values

λ = cot(−3/10), λ = cot(7/10) and λ = cot(12/5). We see in this figure

clearly that the restrictions of the function to these circles are functions

that have different limits in 0.
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Figure 192. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 70.
Is the function

f(x,y) =



















|y| sin





x
√

|y|



 if y ≠ 0;

0 if y = 0.

continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

|y| sin

(

x
√

|y|

)

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

|y| sin

(

x
√

|y|

)

− 0

∣

∣

∣

∣

∣

≤ |y|
∣

∣

∣

∣

∣

sin

(

x
√

|y|

)∣

∣

∣

∣

∣

≤ |y|

≤
√

x2 +y2.

If this last term must be smaller than ϵ, then it is enough to take
√

x2 +y2 <

δ = ϵ. Because we can choose a δ, we have continuity of f(x,y) in (0,0).

Figure 193. We see here a three dimensional figure of the graph of the

function.
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Figure 194. We see here a figure of the contour plot of the function.

Only level curves of level around 0 come close to (0,0). The black area

around the X-axis is caused by high frequency of the oscillations caused

by the sinus function.

Exercise 71.
Is the function

f(x,y) =















x2

(

1− cos

(

y

x

))

if x ≠ 0;

0 if x = 0.

continuous in (0,0)?

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

x2

(

1− cos

(

y

x

))

− 0

∣

∣

∣

∣

< ϵ.

We try to find something larger than the left side of the inequality. Then

we try to keep that larger expression smaller than ϵ by manipulating the

value of δ in the inequality
√

x2 +y2 < δ. If we could do that, then we

have proven our inequality.

∣

∣

∣

∣

x2

(

1− cos

(

y

x

))

− 0

∣

∣

∣

∣

≤
∣

∣

∣

∣

x2

(

1− cos

(

y

x

))∣

∣

∣

∣

≤ 2 |x2|

≤ 2
√

x2 +y2
2

.

If this last term must be smaller than ϵ, then it is enough to take
√

x2 +y2 <

δ =
√

ϵ/2. Because we can choose a δ, we have continuity of f(x,y) in

(0,0).

Figure 195. We see here a three dimensional figure of the graph of the

function.
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Figure 196. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 72.
Is the function

f(x,y) =















sin

(

1

xy

)

if x ≠ 0 and y ≠ 0;

0 if x = 0 or y = 0.

continuous in (0,0)?

Solution.
We will give a proof for discontinuity. When we studied the theory of

continuity in one variable, we surely were acquainted with the topolo-

gist’s sine curve defined by f(x) = sin(1/x) for x ≠ 0. This is a curve

with heavy and frequent oscillations becoming more frequent in a neigh-

bourhood of x = 0. We have an analogue phenomenon here.
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We take ϵ = 1/2 and it is enough to prove that |f(x,y)− f(0,0)| ≥ 1/2
for any δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ there is at least one (x,y)
such that |f(x,y)− f(0,0)| ≥ 1/2 holds.

We see that curves of level sin(µ) are of the form 1/(x y) = µ and

have consequently the equation xy = 1/µ and are hyperbolas. If µ =
1/(π/2 + 2kπ), k ∈ Z, then there will always be infinitely many points

lying on hyperbolas that are closer to (0,0) then any δ mapped onto

level y = 1. So no δ can be chosen.

Because we cannot choose a δ for ϵ = 1/2, we have discontinuity of

f(x,y) in (0,0).

Figure 197. We see here a three dimensional figure of the graph of the

function. This does not seem to be a graph of a continuous function.

We strain the graphics software to the maximum. This function has a

graph that is essentially almost impossible to draw. But the graph gives

an idea about what is going on.
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Figure 198. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed. Remark that when the function starts to oscillate

very heavily, many colours start to mix giving a black colour. We remark

also that the heavy colours and light colours approach (0,0) in a recur-

ring fashion representing the infinitely many oscillations.

Exercise 73.
Is the function

f(x,y) =















sin

(

1

x2 +y2

)

if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

continuous in (0,0)?

Solution.
We will give a proof for discontinuity. When we studied the theory of

continuity in one variable, we surely were acquainted with the topolo-
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gist’s sine curve defined by f(x) = sin(1/x) for x ≠ 0. This is a curve

with heavy and fast oscillations becoming more frequent in a neighbour-

hood of x = 0. We have an analogue phenomenon here.

We take ϵ = 1/2 and it is enough to prove that |f(x,y)− f(0,0)| ≥ 1/2
for any δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ there is at least one (x,y)
such that |f(x,y)− f(0,0)| ≥ 1/2 holds.

We see that curves of level µ are of the form 1/(x2 + y2) = µ and have

consequently the equation x2+y2 = 1/µ and are circles. If µ = 1/(π/2+
2kπ), k ∈ Z, then there will always be infinitely many circles closer to

(0,0) then any δ mapped onto level y = 1. So no δ can be chosen.

Because we cannot choose a δ for ϵ = 1/2, we have discontinuity of

f(x,y) in (0,0).

Figure 199. We see here a three dimensional figure of the graph of the

function. The heavy and frequent oscillations always having the same

amplitude, going from −1 to 1, cause the discontinuity.
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Figure 200. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

We see in this plot a one dimensional analogue of what is going on.

Figure 201. We see here a figure of the graph of sin(1/x2).
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Exercise 74.
Is the following function with µ > 0 continuous in (0,0)?

f(x,y) =















(x2 +y2)µ sin

(

1

x2 +y2

)

if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

Solution.
We saw before in the theory of one variable calculus the function f(x) =
sin(1/x) if x ≠ 0. This function is not continuous in x = 0, but we

saw also that f(x) = xµ sin(1/x) with µ > 0 forces this function to

be continuous in x = 0. This is true because essentially sin(1/x) is

bounded in a neighbourhood of x = 0.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

(x2 +y2)µ sin

(

1

x2 +y2

)

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

(x2 +y2)µ sin

(

1

x2 +y2

)

− 0

∣

∣

∣

∣

∣

≤ (x2 +y2)µ
∣

∣

∣

∣

∣

sin

(

1

x2 +y2

)∣

∣

∣

∣

∣

≤ (x2 +y2)µ

≤
√

x2 +y2
2µ

.

If this last term must be smaller than ϵ, then it is enough to take
√

x2 +y2 <

δ = ϵ1/(2µ). Because we can choose a δ, we have continuity of f(x,y) in

(0,0).
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Figure 202. We see here a three dimensional figure of the graph of the

function. The amplitudes of the sine are dampened by the factor (x2 +
y2)µ in a neighbourhood of (0,0). This causes continuity. The picture

is made with µ = 2.
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Figure 203. We see here a figure of the contour plot of the function.

Only level curves of level around 0 come close to (0,0). The distortion

in the centre is caused by numerical noise due to the high frequency of

the oscillations in a neighbourhood of (0,0). The picture is made with

µ = 2.
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Figure 204. We see here a figure of the of the function
(

x2
)µ

sin
(

1

x2

)

.

The amplitudes of the sine curve are dampened by the factor
(

x2
)µ

. The

picture is made with µ = 2.

Exercise 75.
Is the following function continuous in (0,0)?

f(x,y) =















cos(x y) sin
(

4x
√

|y|
)

√

|xy|
if xy ≠ 0;

0 if xy = 0.

Solution.
Before starting the calculations, we will analyse this situation. We see

that the factor cos(x y) is continuous and takes the value 1 in (0,0).
The continuity depends essentially on the continuity of the other factor.

So we drop this factor and work further with the function

g(x,y) = sin
(

4x
√

|y|
)

√

|xy| .

We rewrite this expression as

sin
(

4x
√

|y|
)

4x
√

|y|
4x

√

|y|
√

|xy| .

By remarking that limα→0
sin(α)
α = 1, we are by reasoning as above, left

with investigating the function

h(x,y) = 4x
√

|y|
√

|xy| =
4x
√

|x|
.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |h(x,y)−h(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |h(x,y)− h(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that
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∣

∣

∣

∣

∣

4x
√

|x|
− 0

∣

∣

∣

∣

∣

< ϵ.

We try to find something larger than the left side of the inequality and

try then to keep that larger expression smaller than ϵ by manipulating

the value of δ in the inequality
√

x2 +y2 < δ. If we could do that, then

we have proven our inequality.

∣

∣

∣

∣

∣

4x
√

|x|
− 0

∣

∣

∣

∣

∣

≤ 4
√

|x|

≤ 4

√

√

x2 +y2

≤ 4
√

x2 +y2
1/2

.

If this last term must be smaller than ϵ, then it is enough to take
√

x2 +y2 <

δ = ϵ2/4. Because we can choose a δ, we have continuity of h(x,y) in

(0,0) and consequently also for f(x,y) in (0,0).

Figure 205. We see here a three dimensional figure of the graph of the

function.
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Figure 206. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 76.
Let m > 0 and n > 0. Prove that f(x,y) defined by

f(x,y) =















xnym sin

(

1

x2 +y2

)

if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

is continuous in (0,0).

Solution.
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

|x|n |y|m sin

(

1

x2 +y2

)

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

|x|n |y|m sin

(

1

x2 +y2

)

− 0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

|x|n |y|m sin

(

1

x2 +y2

)∣

∣

∣

∣

∣

≤ |x|n |y|m

≤
√

x2 +y2
n√

x2 +y2
m

.

≤
√

x2 +y2
n+m

.

If this last term must be smaller than ϵ, then it is enough to take
√

x2 +y2 <

δ = ϵ1/(n+m). Because we can choose a δ, we have continuity of f(x,y)
in (0,0).
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Figure 207. We see here a three dimensional figure of the graph of the

function. We observe the strong dampening of the amplitudes of the

sine at the centre of the picture. We made the picture using m = 2 and

n = 3.
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Figure 208. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0). We made the picture

using m = 2 and n = 3. We can observe numerical noise caused by the

extreme oscillations in the neighbourhood of (0,0).
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Figure 209. We see here a three dimensional figure of the graph of the

function. We observe the strong dampening of the sine at the centre of

the picture. We made the figure using m = 1/2 and n = 1/3.
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Figure 210. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0). The picture is made

with m = 1/2 and n = 1/3. We can observe numerical noise caused by

the extreme oscillations in the neighbourhood of (0,0).

Exercise 77.
Is the following function continuous in (0,0)?

f(x,y) =















1− cos
(

x2y
)

x2 + 2y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

Solution.
Let us first try to write the function differently. We observe that the

numerator can be written as follows.

1− cos
(

x2y
)

= 1−
(

1− 2 sin2

(

x2y

2

))

= 2 sin2

(

x2y

2

)

.
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So the fraction can be written as

1− cos
(

x2y
)

x2 + 2y2
=

2 sin2
(

x2 y
2

)

x2 + 2y2
= 2

(

x2 y
2

)2

(

x2 + 2y2
)

sin2

(

x2y

2

)

(

x2 y
2

)2 .

We apply now the formula limα−>0
sin(α)
α = 1. So we are left with investi-

gating the continuity in (0,0) of the function

x4y2

2 (x2 + 2y2)
.

Let us prove it with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x4y2

2 (x2 + 2y2)
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣
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∣

∣
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∣
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∣

∣

∣

∣
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∣

∣

∣

∣

≤ 1
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∣

∣

∣

∣

∣

x4y2
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∣

∣

∣

∣

∣

≤ 1

2

√

x2 +y2
4√

x2 +y2
2

√

x2 +y2
2

≤ 1

2

√

x2 +y2
4
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It is sufficient to take
√

x2 +y2 < 2 ϵ1/4. We can find a δ, so we conclude

that the function is continuous.

Figure 211. We see here a three dimensional figure of the graph of the

function. It is a standard figure of a continuous function.
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Figure 212. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

Exercise 78.
Is the following function continuous in (0,0)?

f(x,y) =















x2y

x2 −y2
if x2

≠ y2;

0 if x = y or x = −y .

Solution.
We restrict this function to the continuous curves with equations x =
y + λy2.

So

f
∣

∣

x=y+λy2(x,y) =



















(λy + 1)2

λ (λy + 2)
if y ≠ 0 and y ≠ −2/λ;

0 if y = 0 or y = −2/λ.
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We calculate the limit for y → 0.

lim
y→0

(λy + 1)2

λ (λy + 2)
= 1

2λ
.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 213. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 214. We have restricted the function here to x = y + 1/2y2

and x = y + y2 and x = y + 3/2y . We see in this figure clearly that

the restrictions of the function to these curves are functions that have

different limits in 0.
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Figure 215. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

Exercise 79.
Where is the following function continuous?

f(x,y) =











x −y
x +y

if x ≠ −y ;

0 if x = −y .

Solution.
Let us first investigate the function in points satisfying x + y = 0 but

not equal to (0,0). Let us say that this point has coordinates (µ,−µ). If

we restrict the function to the line x = µ, then we have

f(µ,y) = µ −y
µ +y .

This function is unbounded in any neighbourhood of (µ,−µ) because



www.mathandphoto.eu. Exercise Notes 242

the denominator is in that case zero and the numerator is not. So the

function cannot be continuous there.

Let us now investigate the point (0,0).

We restrict this function to the continuous curves with equations y =
−λx, with λ ≠ 1. We observe then that

f
∣

∣

y=−λx(x,y) =



















λx + x
x − λx

= λ+ 1

1− λ
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous in (0,0).

We remark further that the function is continuous for all points (x,y)
that do not satisfy x +y = 0.

Figure 216. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 217. We have restricted the function here to y = 1/4x and y =
1/2x and y = 1/3x. We see in this figure clearly that the restrictions of

the function to these lines are functions that have different limits in 0.
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Figure 218. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.
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3 appendix

We have written this paragraph to remind the reader about essential el-

ementary inequalities of the exponential and logarithmic functions. We

wanted to make also the point that these inequalities can be proved with-

out notions of differentiability. Some of the inequalities are undeniably

very easy to prove with using differentiability techniques. But this would

make our text not topological in nature and that is not necessary.

We repeat here a possible definition of the exponential function f(x) =
ex.

ex = lim
n→+∞

(

1+ x
n

)n

.

We can see this definition for x = 2 in the following figure.

Figure 219. We see here a plot of the values un =
(

1+ x
n

)n
when x = 2.

The figure shows a rapid convergence and an increasing behaviour, but

this gives a false or misleading impression. The convergence is in fact

excruciatingly slow. Even for the value n = 1.000.000 we still do not

have the correct value of the fifth decimal.

Theorem. The Jacob Bernoulli inequality.

Let n ∈ N and x ∈ R. Then

(1+ x)n ≥ 1+nx if x > −1.
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Proof. We give a proof by induction. If n = 1, we have an equality.

Suppose that we assume that the formula is true for n. We have to

prove that it is valid for n + 1. We know that (1 + x)n ≥ 1 + nx, and

we multiply both sides with (1 + x) which is positive by assumption.

(1+x)n (1+x) ≤ (1+nx) (1+x) = 1+x+nx+nx2 ≥ 1+ (n+ 1)x.

So the formula is valid for n+ 1 also.

Let us illustrate this inequality with some interesting figures.

We see here a figure for n = 3.

Figure 220. We see here a plot of the inequality for n = 3. We see the

left hand side of the inequality in blue, the right hand side is in ochre.

The function in the right hand side is in fact the tangent line in x = 0 of

the function defined by the left hand side.

We see here a figure for n = 7.
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Figure 221. We see here a plot of the inequality for n = 7. We see the

left hand side of the inequality in blue, the right hand side is in ochre.

The function in the right hand side is in fact the tangent line in x = 0 of

the function defined by the left hand side.

Remark. This inequality is valid for more values for x then stated in the

theorem. We do not investigate this. The reason is that this inequality is

used for a more general class of exponents then natural numbers and it

is in that case only valid for x > −1. The proof is then a little bit more

complicated. But we will not need this.

Theorem. The first fundamental inequality of the exponential func-

tion.

Let x ∈ R. Then

1+ x ≤ ex.

Proof. We have by definition ex = limn→∞
(

1+ x
n

)n
. But by the Jacob

Bernoulli inequality we have 1 + x ≤
(

1+ x
n

)n
if x/n > −1 which is

always the case for large n. We can take the limit of the two sides of the

inequality and this taking of the limit preserves the inequality.

Remark. The reader will see that this is equivalent with saying that

the tangent line to the graph of f(x) = ex lies below the graph of the

exponential function. See the figure below.

We do not need derivatives for this inequality. The only thing we actually

need is that the limit limn→∞
(

1+ x
n

)n
exists. But for this we do not need
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derivatives either. The proof of this is can also be entirely based on

Bernoulli’s inequality.

Figure 222. We see here a plot of the first fundamental inequality of the

exponential function. We see the left hand side of the inequality in blue,

the right hand side is in ochre. The function in the left hand side is in

fact the tangent line in x = 0 of the function defined by the right hand

side. The point is that we do not need derivatives for the proof of this

inequality.

Theorem. The second fundamental inequality of the exponential func-

tion.

Let x ∈ R. Then

ex ≤ 1

1− x if x < 1.

Proof. We know by the first fundamental inequality that 1+ x ≤ ex. Put

x = −z. Then 1−z ≤ e−z. If 1−z > 0 or z < 1, then we invert both sides

of the inequality to get ez ≤ 1

1−z , which is the inequality we need.

Let us illustrate this second fundamental inequality of the exponential

function.
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Figure 223. We see here a plot of the second fundamental inequality of

the exponential function. We see the left hand side of the inequality, this

is the graph of the exponential function in blue, the right hand side is in

ochre. The point is once again that we do not need derivatives for the

proof of this inequality.

Let us illustrate the two fundamental inequalities of the exponential

function combined.

Figure 224. This is an illustration of 1 + x ≤ ex ≤ 1

1−x for x < 1. We

see the graph of 1+x in blue, the graph of ex in ochre and the graph of

1/(1− x) in green.
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Theorem. The first fundamental inequality of the logarithmic func-

tion.

Let x ∈ R. Then

ln(x + 1) ≥ x

x + 1
if x > −1.

Proof. We know that 1 + x ≤ ex. We restrict 1 + x > 0 or x > −1.

We take then the logarithm of the two sides. This is an operation that

preserves the inequality. We have now that ln(1+x) ≤ x. We substitute

x = −z/(z + 1). This implies that z > −1 because x > −1. Thus

ln(1−z/(z+1)) ≤ (−z/(z+1)) or ln(1/(z+1)) ≤ −z/(z+1). This gives

us − ln(z + 1) ≤ −z/(z + 1) or ln(z + 1) ≥ z/(z + 1) where z > −1.

Let us illustrate this first fundamental inequality of the logarithmic func-

tion.

Figure 225. The graph of x/(x+1) is drawn in blue and that of ln(1+x)
is drawn in ochre.

Theorem. The second fundamental inequality of the logarithmic func-

tion.

Let x ∈ R. Then

ln(1+ x) ≤ x if x > −1.

Proof. We start from the first fundamental inequality of the exponential

function. We have then 1+x ≤ ex. We restrict x to x > −1 and take the

logarithm which preserves inequality. We have then ln(1 + x) ≤ x with

x > −1.
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Let us illustrate this second fundamental inequality of the logarithmic

function.

Figure 226. We see the graph of ln(1+ x) in blue and the graph of x in

ochre.

Let us present a figure of the combined logarithmic inequalities.

Figure 227. This is an illustration of the inequality
x
x+1

≤ ln(x + 1) ≤ x
with x > −1. The graph of

x
x+1

is in blue, the graph of log(x + 1) is in

ochre, the graph of x is in green.
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4 contact the author

Comments are welcome. My email address is:

Dirk.Bollaerts@protonmail.com

mailto:Dirk.Bollaerts@protonmail.com
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