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Introduction

This text is written for first year undergraduates in a course of calculus.

It is not exclusively written for mathematicians. So the main target read-

ing audience is mathematics, physics and science students, engineering

and economics students. The text is also meant for mathematics stu-

dents, although it is to be expected that they will rather work with more

difficult functions and other topologies.

This text is not a linear text. It is to be expected that many students

search for a function of a particular type that is related to the function

they are studying. A consequence is that explanations in the solutions

will overlap each other and are repeated.

All exercises have the same solution structure as explained below. So

if one is only interested in differentiability alone, one can read only the

fifth section of the answer which is the section on differentiability for

each exercise. If one is only interested in the partial derivatives or the

directional derivatives, then one can read section two and three of the

solution of every exercise.

If somebody is looking for a function that satisfies some conditions but

not other conditions, one can look only for the overview of the exercise

which is for every exercise section eight of the solution.

A list of all exercises is given at the start of this text document. This

can be of help for a student who is looking for something that is related

with his problem.

This text is written with care. It has not passed though through the usual

channels of peer review. It was meant originally for personal use. A text

with so many calculations is prone to errors. So take care and ask your

instructor for help in the case of doubt. This text is offered as it is and

no promises are made. Murphy’s law is universally applicable and for

mathematicians it is not only a law, it is a fundamental axiom.

We avoided the big O notation. It is in our opinion not known in general

calculus classes.

We avoided also exercises of the type where the solution uses primarily

the tool of power series expansions. These are very nice exercises but

again, in our opinion, they are not suited for first year undergraduates.

We have used Taylor series but there are not many of them and they are

used very sparingly.



www.mathandphoto.eu. Exercise Notes 2

We have used the ϵ-δ definition in all continuity proofs. Some instruc-

tors do not like this style and prefer limit notation. One can still use

the ϵ-δ proofs. The inequalities that we have used in these proofs can

be translated immediately in limit proofs by using among others the

squeeze theorem.

Many students struggle at the start with the interrelations between the

different calculations they have to make. In order to help with that, we

have given an organigram with the logical interrelations.

We have tried to give some illustrations accompanying the calculations.

The illustrations are only meant to give more meaning to the calculations

and by no means vice versa. It is remarked that there are deficiencies in

the illustrations caused by limited machine precision. We have neverthe-

less included those illustrations also. So in these cases the figures are

more indicative then a complete and accurate picture of the mathemati-

cal reality. A wild example is the function e−1/x2
in a neighbourhood of

x = 0. The text is written so that a reader who hates illustrations will be

able to skip the illustrations all together without loosing any meaning or

reasoning.

There are two sections in every solution that can be skipped at a first

reading. These are the alternative proofs for continuity in section four

of every exercise and for differentiability in section six of every exer-

cise. We thought that it could be interesting for some readers. In sec-

tion seven of every exercise we will discuss an alternative proof for the

differentiability which is the continuity of the partial derivatives. This

alternative proof is so widespread that we did not indicate it with the

label “optional". Note that all alternative proofs are implications and

not equivalences. So a function can be continuous but no alternative

proof following the prescribed lines explained in the text can be given.

The same holds for the other alternative proofs. So in some sense, an

alternative proof is a pure luxury.
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Structure of the solutions

1. Continuity

We start with the continuity. We will either prove continuity or disconti-

nuity.

2. Partial derivatives

There are no logical connections or implications between this topic and

the continuity. So we will discuss partial derivatives in all cases inde-

pendent from the existence of continuity. We will calculate

∂f

∂x
(a, b) = lim

h→0

f(a+ h,b)− f(a, b)
h

and
∂f

∂y
(a,b) = lim

h→0

f(a, b + h)− f(a, b)
h

.

3. Directional derivatives

As is the case for partial derivatives, we will always try to compute the

directional derivatives.

D(u,v)(0,0) = lim
h→0

f(a+ hu,b + hv)− f(a, b)
h

.

Please note that partial derivatives are also directional derivatives. But

there are many exercises in text books that ask for partial derivatives

only, so that it is easier for some students to treat them separately. We

will use the convention that (u,v) must be a normalised vector. We

warn the reader that there are legitimate texts that do not follow this

convention. We work with normalised vectors because that eliminates

the fact that there can be many solutions for a direction dependent on

the factor λ used for the direction λ (u,v).

4. Alternative proof of continuity

This is not suited for a first reading. If that is the case, skip immediately

to the section on “differentiability".

There is a possible alternative proof for continuity in terms of the first

partial derivatives. If the first partial derivatives exist and are bounded
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in a neighbourhood of (a, b), then the function is continuous in (a, b).
Remark that this is a logical implication and by no means an equivalence.

Remark that other alternative proofs do exist. We will use only this crite-

rion. To avoid any misunderstanding: if we say that an alternative proof

is not possible we mean that this alternative criterion is not possible.

5. Differentiability

We prove or disprove the differentiability first by using the definition.

We will skip of course this subsection of the solution if the function does

not satisfy at least one of the necessary properties: if the function is not

continuous or if one of the directional derivatives does not exist, then

we skip this subsection. The function can indeed only be differentiable

if there is continuity and all directional derivatives exist. These two

conditions are absolutely necessary but are evidently not sufficient for

guaranteeing differentiability.

6. Alternative proof of differentiability

This is not suited for a first reading or if the reader is not acquainted

with Lipschitz continuity. If that is the case, skip immediately to the

section on “Continuity of the partial derivatives".

If the function is differentiable, then we try to give an alternative proof

of this differentiability. If the function is not differentiable, then we will

write the word “irrelevant". We have calculated already a lot before writ-

ing the section about an alternative proof, including all the directional

derivatives and a formula for it. Then it turns out that there is not much

work to be done to give an alternative proof. The function f is differen-

tiable if

1. All directional derivatives exist.

2. All directional derivatives can be written in the form D(u,v)(a, b) =
∇f(a, b) · (u,v)
where the dot is the notation for the inner product, (u,v) is a

normal direction vector and (a, b) is the point in which we discuss

the differentiability.

3. The function is Lipschitz continuous in a neighbourhood of (a, b).

It is only the Lipschitz continuity that is left to prove because we have

calculated the rest in the preceding sections. Consult the appendix of
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this document for references. We remember that a function is Lipschitz

continuous in a set S if there exists a number K such that for all elements

(x1, y1) and (x2, y2) in the set S, the inequality |f(x1, y1)−f(x2, y2)| ≤
K
∥

∥(x1, y1)− (x2, y2)
∥

∥ is valid. The number K is called the Lipschitz

constant. Remark that K is independent of (x1, y1) and (x2, y2).

7. Continuity of the partial derivatives.

Almost all texts give the following criterion for differentiability. If the

partial derivatives are continuous, then the function is differentiable.

Remark that this is a logical implication and not an equivalence. It is

essentially a luxury criterion. If the partial derivatives are continuous,

then we have much more then differentiability only. Remark that it fol-

lows that the partial derivatives can be discontinuous while the function

is differentiable.

8. Overview

We summarise all results in a table.

9. Possible further investigations

We have sometimes doubts about the continuity of the second order

partial derivatives if the two first order partial derivatives exist. Then we

give some hints about possible further investigations but we will refrain

of these in this text.
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Organigram of the logical structure of the interre-
lationships

The logical interrelations are a big problem for every starting student.

The confusion arises because of the fact that there are no logical rela-

tions at all when one starts computing some of the main properties of

the function. There are indeed no relations between continuity, partial

derivatives and directional derivatives. But if one has differentiability,

then suddenly we have a lot of structure. Differentiability guarantees

continuity and the existence of partial derivatives and all directional

derivatives. And to make the situation really confusing, the much used

alternative criterion for differentiability, and we mean by this the con-

tinuity of the partial derivatives works only one way. There is only an

implication and not by any means an equivalence. So continuity of the

partial derivatives implies differentiability but it is in fact much stronger

then differentiability alone. It takes care of what one could call the con-

tinuity of the tangential spaces themselves.
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Continuity

          

Partial derivatives exist

Differentiability  All directional

derivatives exist

Partial derivatives

  are continuous

All directional derivatives exist

Partial derivatives

          exist
Differentiability      Continuity Partial derivatives

  are continuous

Continuity

Partial derivatives

          exist
Differentiability  All directional

derivatives exist

Partial derivatives

  are continuous

Figure 1. We see here an organigram of the logical relations. A red

crossed arrow must be read as “does not necessarily imply".
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Partial derivatives

  are continuous

Partial derivatives

          exist
Continuity  All directional

derivatives exist

Differentiability

 

Differentiability

Partial derivatives

          exist
Continuity  All directional

derivatives exist

Partial derivatives

  are continuous

Figure 2. We see here the second part of an organigram of the logical

relations. A red crossed arrow must be read as “does not necessarily

imply".
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List of all exercises

We list all exercises in the following pages. This can help the readers

who are interested in searching for special functions that capture their

current interest. In order to keep the list short and concise, we give only

the main parts of the definitions of the functions.
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Table 1: We give a list of the main part of the definitions of the functions

in the exercises in this table. The exercises that are marked with “see

below” are based on definitions that are too long to put them in the

table and they are placed immediately below the table.

1.
(

x2 +y2
)

sin

(

1

x2 +y2

)

2.
x3y

x4 +y2

3.
3x2y −y3

x2 +y2
4.

y3 − x8y

x6 +y2

5. x3 sin

(

1

x2

)

+y3 sin

(

1

y2

)

6.
x |y|
x2 +y2

7.
y |x|3/2
x3 +y2

8.
sin

(

|xy| + x2
)

x

9.
x2y2

x2 +y2
10.

xy4

x2 +y2

11.
xy2

x2 +y4
12.

y
(

x2 −y
)2

x6

13.
x3y − xy3

x2 +y2
14.

x2y

x6 +y2

15.
x2 |y|5/4
x4 +y2

16.
3

√

x2y

17. x2y sin

(

1

x

)

18.
xy

√

x2 +y2

19.
x2y

x2 +y2
20.

x3 +y3

x2 +y2

21.
x3y

x6 +y2
22.

x5y

x8 +y4

23.
x5 +y4

(

x2 +y2
)2 24.

xy2

√

x2 +y2
(

x2 +y4
)
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25.
xy

(

x2 −y2
)

x2 +y2
26.

y sin(x y)

x2 +y2

27.
y3

x2 +y2
28.

(

x2 +y2
)

log
(

x2 +y2
)

29.
x2 +y2

x2 +y4
31.

x2y2

x2y2 + (x −y)2

32. x2

(

sin

(

1

x +y

)

+ 2

)

33. x sin

(

1

x

)

+y sin

(

1

y

)

34. x2 sin2

(

y

x

)

35.
sin2 (x +y)
|x| + |y|

36. |xy| 37. y sin





x
√

|y|





38. sin(y) sgn(sin(x)) 39.
sin

(

4x
√

|y|
)

√

|xy|

39. max{x,y}. 40. y
√

|x|

41. x sin

(

1

x2 +y2

)

42. max{|x|, |y|}

43.
(

x2 +y2
)

sin

(

1

x +y

)

44.
(

x2 +y2
)

sin

(

1

x4 +y4

)

45.
(

x2 +y2
)

sin

(

1

x2 +y2

)

46. xy2 sin

(

1

y

)

47.
|y|2−

|y|
x2

x2
48.

xy

|x| + x sin

(

1

y

)

49. x3 sin

(

1

x2

)

+y3 sin

(

1

y2

)

50.
y
√

x2 +y2

|y|

51.
x2y

√

|y|
x4 +y2

52.
3

√

x 3

√

y
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53. sin

(

x2 +y2

x4 +y4

)

54.

√

sin2(x)+ sin2(y)

55.
|x| + |y| − |x +y|

(

x2 +y2
)1/5 56.

|x| + |y| − |x +y|
(

x2 +y2
)1/2

57. sin

(

1

x2 +y2

)

58. See below

59. min{x,y} = x +y
2

− |x −y|
2

60. |x| + |y|

61.
xy

x2 +y2
62.

(

3
√

x + 3

√

y

)3

63.

√

sin2(x)+ sin2(y) 64.
(x +y)2
x2 +y2

65.
log

(

x2y2
)

x2 +y2
66. See below

67. x +y 68. x2

(

1− cos

(

y

x

))

69.
sin(x −y)
√

|x| +
√

|y|
70.

xy − sin(x) sin(y)

x2 +y2

71.
log

(

|x| + e|y|
)

√

x2 +y2
72.

(x −y)y e−
1

x2

(x −y)2 + 2 e
− 2

(x)2

73.
√

4− x2 −y2 74. See below

75. See below 76. ⌊x +y⌋

77.
cos(x y)− 1

x2y2
78. See below
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Here are the exercises that could not be fitted in the table and were

marked “See below”.

58.

f(x,y) =































x sin
(

1

x

)

if y = 0 and x ≠ 0,

y sin
(

1

y

)

if x = 0 and y ≠ 0,

0 elsewhere.

66.

f(x,y) =















































x2 sin
(

1

x

)

+y2 sin
(

1

y

)

if xy ≠ 0,

x2 sin
(

1

x

)

if x ≠ 0 and y = 0,

y2 sin
(

1

y

)

if y ≠ 0 and x = 0,

0 if x = 0 and y = 0.

74.

f(x,y) =











1 if x2 = y and x ≠ 0,

0 otherwise.

75.

f(x,y) =











(x + 1)2 + (y + 1)2 − 2 if x < y and y < 2x and x > 0,

0 elsewhere.

78.

f(x,y) =











x2 +y2 if x < y and y < 2x and x > 0,

0 elsewhere.
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Exercise 1.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability,

5. continuity of the partial derivatives

of the following function in (0,0).

f(x,y) =











(

x2 +y2
)

sin
(

x2 +y2
)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

1.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

(

x2 +y2
)

sin

(

1

x2 +y2

)

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

(

x2 +y2
)

sin

(

1

x2 +y2

)∣

∣

∣

∣

∣

≤ x2 +y2

≤
√

x2 +y2
2

.
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It is sufficient to take δ = ϵ1/2. We can find a δ, so we conclude that the

function is continuous.

Figure 3. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.



www.mathandphoto.eu. Exercise Notes 16

Figure 4. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

1.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =



















f(x,0) = x2 sin

(

1

x2

)

if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

h sin

(

1

h2

)

= 0.

This limit is zero because we can squeeze like this: 0 ≤ |h sin
(

1

h2

)

| ≤
|h|. So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =



















f(0, y) = y2 sin

(

1

y2

)

if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

h sin

(

1

h2

)

= 0.

We have reasoned as before. So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.
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Figure 5. We see here a figure of the graph of the function restricted to

the horizontal X-axis through (0,0). We have plotted here the function

f(h,0).

The figure of the function restricted to the vertical Y -axis is completely

analogous.

1.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

h
(

u2 + v2
)

sin

(

1

h2 (u2 + v2)

)

= lim
h→0

h sin

(

1

h2

)

= 0.

One can prove this last fact by using the squeezing theorem. We have

0 ≤ |h sin
(

1

h2

)

| ≤ |h|.

We have used in the calculation that (u,v) is a normal vector so that

u2 + v2 = 1.

So our directional derivatives do always exist.

Figure 6. We see here a figure of the graph of the function restricted to

the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. This result

was to be expected because we have a rotational symmetry around the

Z-axis. We have drawn here the function f(hu,hv).
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1.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y)

=











































2x

















sin

(

1

x2 +y2

)

−
cos





1

x2 +y2





x2 +y2

















if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

The partial derivative to y is:

∂f

∂y
(x,y)

=











































2y

















sin

(

1

x2 +y2

)

−
cos





1

x2 +y2





x2 +y2

















if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.
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Let us try to prove that

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

is unbounded.

We see that the first term

2x sin

(

1

x2 +y2

)

is certainly bounded. So we take a look at the second term.

−
2x cos

(

1

x2+y2

)

x2 +y2
.

We restrict this term to y = x and have then

−
cos

(

1

2x2

)

x
.

We define then the sequence xk = 1

2
√
π
√
k
, k ∈ N0, that converges to

0. But the values of those points in the second term are −2
√
π
√
k and

these values are unbounded. This proves that the partial derivative to x
is certainly unbounded. Every neighbourhood in (0,0) contains infinitely

many points of the line with equation y = x arbitrarily close to (0,0).
In order to illustrate this, look at the figure that follows.
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Figure 7. We see here the function −
2x cos

(

1

x2+y2

)

x2 +y2
restricted to y = x.

We cannot observe the unbounded behaviour, but the figure indicates

that this behaviour is possible. The function is in fact unbounded. We

can create a sequence of points converging to (0,0) where the cosine

equals 1 and observe that the function values of these points go to in-

finity. But we see also that the function has in any neighbourhood an

infinite amount of zeros. So an create a sequence of points converging

to (0,0) where the cosine equals 0. So the limit does obviously not exist.

We conclude that this function is locally unbounded. We do not repeat

this argument for the partial derivative to y by symmetry considera-

tions.

Because the two partial derivatives are unbounded in a neighbourhood

of (0,0), we do not have this particular alternative proof for the conti-

nuity.
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Figure 8. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the unboundedness from this picture.

Because of the symmetry of the graph of this function, it is not necessary

to give the plot of the absolute value of the partial derivative to y .

1.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks purely based upon the cal-

culations we made. Maybe these figures can make us doubtful about

the differentiability. Because we do not rely on purely visual proofs, we

will then continue our reasoning as if we did not perform these visual

checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 9. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function quite nicely but some caution is justified.

We have still the oscillations.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 10. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not,

then there is no tangent plane and the function cannot be differen-

tiable. We cannot see the circle of the unit vectors (u,v) in the X-Y
plane because it is covered by the the blue circle consisting the vectors

(u,v,D(u,v)(0,0)). Four points on the blue circle are indicated by large

red points. We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a

nice ellipse in the candidate tangent plane.

We have now that all our calculations indicated that a tangent plane

is plausible. We have still to be careful because of the rather strong

oscillations.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as
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q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥
where (h, k) ≠ (0,0). Remark that this quotient is the two variable equiv-

alent of the one variable quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient!

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So in

our case we have to prove that the function

q(h, k) =















√

h2 + k2 sin

(

1

h2 + k2

)

if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)
is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

√

h2 + k2 sin

(

1

h2 + k2

)

− 0

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

√

h2 + k2 sin

(

1

h2 + k2

)∣

∣

∣

∣

≤
√

h2 + k2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function q(h, k) is continuous. So the function f(x,y) is differentiable.

Figure 11. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 12. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

1.6 Alternative proof of the differentiability (optional)

This is not suited for a first reading or in the case that the student is not

acquainted with Lipschitz continuity. Skip this section in that case and

continue with the continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-
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tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form in the point

(a, b): D(u,v)(a, b) = ∇f(a, b) · (u,v) = ∂f
∂x (a, b)u+

∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition must

be satisfied. The Lipschitz local continuity is indeed a very demanding

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

Let us try to prove that the Lipschitz condition does not hold. We have

proven in section 1.4 that the first partial derivative is not bounded in

any neighbourhood of (0,0). This implies that the function is not Lips-

chitz continuous.

We conclude that an alternative proof following this criterion cannot

exist.

1.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability. We know

that if both the partial derivatives are continuous, then the function is

differentiable. We have already calculated the partial derivatives, so it is

not a lot of work to see if they are continuous or not.

If both the partial derivative derivatives are continuous, then we have an

alternative proof that the derivative exists. The condition that both of

the partial derivatives are continuous is in fact too strong in the sense

that it is not equivalent with differentiability only. We prove in this case

more then the existence of the derivative. See the appendix for more

information.
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We have seen in section 1.4 that the function
∂f
∂x (x,y) is not bounded

in any neighbourhood of (0,0). We have already proven that in section

1.4. But a continuous function is necessarily bounded in at least one

neighbourhood. So the function
∂f
∂x (x,y) is not continuous.

Figure 13. We see here a three dimensional figure of the graph of the first

partial derivative
∂f
∂x (x,y). This partial derivative is not bounded and

not continuous if one approaches it on the X-axis. One can find another

figure explaining this phenomenon below. Remark that the plot is in this

case almost impossible and certainly not a careful representation.



www.mathandphoto.eu. Exercise Notes 31

Figure 14. We see here a plot of the first partial derivative restricted to

the X-axis. This function is quite pathological and clearly has no limit in

x = 0. The meaning of this all says that the slope of the tangent line is

changing in an incredible fast way and has no tendency to go smoothly

to the tangent line in x = 0. We have drawn the function f(h,0).

1.8 Overview

f(x,y) =















(

x2 +y2
)

sin

(

1

x2 +y2

)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no

••••
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Exercise 2.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability,

5. continuity of the partial derivatives

of the following function in (0,0).

f(x,y) =















x3y

x4 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

2.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x3y

x4 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

x3y

x4 +y2

∣

∣

∣

∣

∣

≤ |x| x
2 |y|

x4 +y2

≤ |x| 1

2

≤ 1

2

√

x2 +y2.

We have used the following reasoning in the inequalities. Because 0 ≤
(a− b)2 we have 2ab ≤ a2 + b2. So ab/(a2 + b2) ≤ 1/2 and by substi-

tuting a = x2 en b = |y|, we have x2 |y|/(x4 +y2) ≤ 1/2.

It is sufficient to take δ = 2 ϵ. We can find a δ, so we conclude that the

function is continuous.

Figure 15. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.



www.mathandphoto.eu. Exercise Notes 34

Figure 16. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

2.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.
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So the partial derivative to x exists.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

2.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the limits of

f(0+ hu,0+ hv)− f(0,0)
h

= hu3 v

h2u4 + v2
.
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

hu3 v

h2u4 + v2

= 0.

This limit is zero if v ≠ 0, but we covered that exceptional case before.

So the directional derivatives do always exist.

Figure 17. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2
)

. We have

drawn here the function f(hu,hv).

2.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we
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have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =



















y
(

3x2y2 − x6
)

(

x4 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
The partial derivative to y is:

∂f

∂y
(x,y) =



















x3
(

x4 −y2
)

(

x4 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂y

∣

∣

∣ is unbounded. We have that if we restrict

the function to y = λx2 the following

∂f

∂y
(x, λx2) = x

3
(

x4 − λ2x4
)

(λ2x4 + x4)2
= 1− λ2

(λ2 + 1)2 x
.

So we do have unbounded behaviour in any neighbourhood of (0,0).
Because the partial derivative to y is unbounded in a neighbourhood of

(0,0), we do not have this alternative proof for the continuity.
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Figure 18. We see here the absolute value of the first partial derivative
∣

∣

∣

∂f
∂x

∣

∣

∣. We can observe the probable boundedness from this picture. We

have to take care however. Pictures can be devious. We did not inves-

tigate this further by calculation because of the unboundedness of the

second partial derivative which we did check by calculation.
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Figure 19. We see here the absolute value of the second partial derivative
∣

∣

∣

∂f
∂y

∣

∣

∣. We can observe a possible unboundedness from this picture.

2.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks. Maybe these figures can make

us doubtful about the differentiability. Because we do not rely on purely

visual proofs, we will then continue our reasoning as if we did not per-

form these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 20. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane does not fit the function very nicely or that at least some

question marks remain. It will be seen by further calculations that there

is no tangent plane.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 21. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see in the blue circle the vectors (u,v,D(u,v)(0,0)). Four points on the

blue circle are indicated by large red points. We see here that the vec-

tors (u,v,D(u,v)(0,0)) sweep out a nice ellipse in the candidate tangent

plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient
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q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient!

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















h3 k
√

h2 + k2
(

h4 + k2
) if (h, k) ≠ (0,0);

0 if (h, k) = (0,0).

is continuous in (0,0).

We restrict the function q(h, k) to the continuous curves with equations

k = λh2. We observe then that

q
∣

∣

k=λh2(h, k) =



















q(h, λh2) = hλ
(

λ2 + 1
)
√

h4λ2 + h2
if h ≠ 0;

0 if h = 0.

We calculate the limit.

lim
h→0

hλ
(

λ2 + 1
)
√

h4 λ2 + h2

= lim
h→0

sgn (h)λ

(1+ λ2)
√

1+ h2 λ2

.

We see that these restricted functions have no limits if λ ≠ 0. But if

q(h, k) is continuous, all these limit values should be q(0,0) = 0. So

this function q(h, k) is not continuous in (0,0). The function f(x,y) is

not differentiable in (0,0).
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Figure 22. We see here a three dimensional figure of the graph of the

function q(h, k). The vertical line above (0,0) looks suspicious. This

does not seem to be a graph of a continuous function.

Figure 23. We have restricted the function q(h, k) here to k = 1/2h
and k = 3/10h and k = 9/10h. We see in this figure clearly that the

restrictions of the function to these lines are functions that have no

limits in 0.
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Figure 24. We see here a figure of the contour plot of the function

q(h, k). Many level curves of very different levels approach (0,0). This

looks discontinuous indeed.

2.6 Alternative proof of differentiability (optional)

This section is irrelevant for this exercise, because the function is not

differentiable

2.7 Continuity of the partial derivatives

Irrelevant.

2.8 Overview

f(x,y) =















x3y

x4 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
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continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

2.9 One step further

We have used in the calculations for differentiability that we had some

magical curves k = λh2 which behaved very strangely when mapped by

q(h, k) to the Z-direction. We want to see what is going on with these

curves. Let us define the 3-dimensional curve in parametric form that

projects in the (h, k)-plane to our curve k = λh2: (x(t),y(t), z(t)) =
(t, λ t2, f (t, λ t2)) =

(

t, λ t2, λ t
λ2+1

)

.

Remark that this curve is differentiable because that is not obvious by

the non differentiability of the function f . This curve lies completely in

the surface defined by the function. It is clear that the tangent vector

lies in the tangent plane if the function is differentiable. Now we have a

candidate tangent plane, we draw that and see what is going on with the

tangent vector (x′(t),y ′(t), z′(t)) =
(

1,2λ t, λ
λ2+1

)

. We also know that

the candidate tangent plane is the only possible tangent plane because

it takes care of a good fit in the X-direction and the Y -direction, which

is the absolute minimum that a tangent plane must do. So if t = 0, then

we have the tangent vector
(

1,0, λ
λ2+1

)

. If λ = 1, this leaves us with

the tangent vector
(

1,0, 1

2

)

. We will see that this vector does not lie in

the candidate tangent plane. So we see that the candidate tangent plane

is not a real tangent plane. The function is not differentiable. Please

consult the figure of this situation.
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Figure 25. The tangent vector is not in the only possible candidate tan-

gent plane.

••••
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Exercise 3.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability,

5. continuity of the partial derivatives

of the following function in (0,0).

f(x,y) =















3x2y −y3

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

3.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

3x2y −y3

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

3x2y −y3

x2 +y2

∣

∣

∣

∣

∣

≤ 3x2 |y| + |y|3
x2 +y2

≤
3
√

x2 +y2
2√

x2 +y2 +
√

x2 +y2
3

√

x2 +y2
2

≤
4
√

x2 +y2
3

√

x2 +y2
2

≤ 4
√

x2 +y2.

It is sufficient to take δ = ϵ/4. We can find a δ, so we conclude that the

function is continuous.

Figure 26. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 27. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

3.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.
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So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = −y if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

−1

= −1.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = −1.

Figure 28. We see here a figure of the graph of the function restricted

to the vertical Y -axis through (0,0). We have drawn here the function

f(0, h).
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3.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate

lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

3h3u2 v − h3 v3

h(h2u2 + h2 v2)

= −v
(

v2 − 3u2
)

u2 + v2
.

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

−v
(

v2 − 3u2
)

= −v
(

v2 − 3u2
)

.

We have used that (u,v) is a normal vector and so u2 + v2 = 1.

So the directional derivatives do always exist.
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Figure 29. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) = (1/
√

2,1/
√

2). We have

drawn here the function f(hu,hv).

3.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =















8xy3

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
The partial derivative to y is:

∂f

∂y
(x,y) =















−−3x4 + 6x2y2 +y4

(

x2 +y2
)2 if (x,y) ≠ (0,0),

−1 if (x,y) = (0,0).
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We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

≤ 8 |x| |y|3
(

x2 +y2
)2

≤
8
√

x2 +y2
√

x2 +y2
3

√

x2 +y2
4

≤ 8.

Let us try to prove that
∣

∣

∣

∂f
∂y

∣

∣

∣ is bounded.

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

−3x4 + 6x2y2 +y4

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤
3
√

x2 +y2
4

+ 6
√

x2 +y2
2√

x2 +y2
2

+
√

x2 +y2
4

(√

x2 +y2
)4

≤
10
√

x2 +y2
4

√

x2 +y2
4

≤ 10.

We have chosen here the restriction
√

x2 +y2 < 1.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.
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Figure 30. We see here the absolute value of the first partial derivative
∣

∣

∣

∂f
∂x

∣

∣

∣. We can observe the boundedness from this picture.

Figure 31. We see here the absolute value of the second partial derivative
∣

∣

∣

∂f
∂y

∣

∣

∣. We can observe the boundedness from this picture.
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3.5 Differentiability

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks. Maybe these figures can make

us doubtful about the differentiability. Because we do not rely on purely

visual proofs, we will then continue our reasoning as if we did not per-

form these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 32. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane does not fit the function very nicely. It is indeed no tan-

gent plane following our future calculations.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if
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the function is differentiable. So let us visually check that these vectors

are coplanar.

Figure 33. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue curve the vectors (u,v,D(u,v)(0,0)). Four points on the

blue circle are indicated by large red points. We see here that the vectors

(u,v,D(u,v)(0,0)) do not sweep out a nice ellipse lying in the candidate

tangent plane! Only four points are in the candidate tangent plane. On

this visual basis, we conclude that the function is not differentiable, but

we stated that we want to give an alphabetical proof following the defi-

nition.

We are going to define the quotient for this function.
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We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient!

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















4h2 k
(

h2 + k2
)3/2 if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We restrict the function q(h, k) to the continuous curves with equations

k = λh. We observe then that

q
∣

∣

k=λh(h, k) =



















4h3 λ
(

h2 λ2 + h2
)3/2 =

4h3 λ
(

λ2 + 1
)3/2

|h|3
if h ≠ 0;

0 if h = 0.

We see that these restricted functions have no limits. But if q(h, k) is

continuous, all these limit values should be q(0,0) = 0. So this function

q(h, k) is not continuous in (0,0). The function f(x,y) is not differen-

tiable in (0,0).
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Figure 34. We see here a three dimensional figure of the graph of the

function q(h, k). The vertical line above (0,0) looks suspicious. This

does not seem to be a graph of a continuous function.

Figure 35. We have restricted the function q(h, k) here to k = 1/2h
and k = 3/10h and k = 9/10h. We see in this figure clearly that the

restrictions of the function to these lines are functions that have no

limits in 0.
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Figure 36. We see here a figure of the contour plot of the function

q(h, k). Many level curves of very different levels approach (0,0). This

looks discontinuous indeed.

Alternative proof for the non differentiability
Suppose that we already met in the course the differentiation rule of the

composition of two differentiable functions. This is also called the chain

rule. Then we have proven the following. If the function is differentiable

in (a, b), then the directional derivative can be calculated is follows.

D(u,v)f(a, b) =
∂f

∂x
(a, b)u+ ∂f

∂y
(a,b)v.

Important remark. This formula is only valid if the function is differ-

entiable. One of the most common mistakes is that one uses this for-

mula in the case of non differentiability. It seems to be easy to calculate

quickly the partial derivatives if they exist and then use this formula.

We have calculated the directional derivatives and we saw that

Du,vf(0,0) = −v
(

v2 − 3u2
)

and this is certainly not the linear function in u and v which we should
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have in the case of differentiability. So we conclude again with this al-

ternative proof that the function is not differentiable.

3.6 Alternative proof of differentiability (optional)

This is irrelevant because the function is not differentiable.

3.7 Continuity of the partial derivatives

This is irrelevant because the function is not differentiable.

3.8 Overview

f(x,y) =















3x2y −y3

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

3.9 One step further

We have used in the calculations for differentiability that we had some

magical curves k = λh which behaved very strangely when mapped by

q(h, k) to the Z-direction. We want to see what is going on with these

curves. Let us define the 3-dimensional curve in parametric form that

projects in the (h, k)-plane to our curve k = λh: (x(t),y(t), z(t)) =
(t, λ t, f (t, λ t)) =

(

t, λt,−λ(λ2−3)t
λ2+1

)

.

This curve lies completely in the surface defined by the function. It is

clear that the tangent vector lies in the tangent plane if the function

is differentiable. Now we had a candidate tangent plane, we draw that
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and see what is going on with the tangent vector (x′(t),y ′(t), z′(t)) =
(

1, λ,−λ(λ2−3)
λ2+1

)

.

We also know that the candidate tangent plane is the only possible tan-

gent plane because it takes care of a good fit in the X-direction and the

Y -direction, which is the absolute minimum that a tangent plane must

do. So if t = 0, then we have the tangent vector

(

1, λ,−λ(λ2−3)
λ2+1

)

.

If λ = 1, this leaves us with the tangent vector (1,1,1). We will see that

this vector does not lie in the tangent plane. So we see once again that

the candidate tangent plane is not a real tangent plane. Please consult

the figure of this situation.

Figure 37. The tangent vector is not in the only possible candidate tan-

gent plane. Because the curve is in this example a line, we have that this

tangent vector is on the line itself. This tangent vector intersects the

plane transversally.

It can maybe be worthwhile to take a look at the gradient vector field.

We see that this gradient vector field exists in this case. But it is not

continuous because in the case that the gradient vector field is continu-

ous, then the function is differentiable. So we wonder if we can find an

indication for this fact.
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Figure 38. We made here the following sketch. We have drawn the graph-

ics of y = x in pink and y = 0.62x in cyan. We have sketched the gra-

dient vector field
(

∂f
∂x (x,y),

∂f
∂y (x,y)

)

which is not continuous as can

be seen as follows. Observe the gradient vector field on the pink curve,

these are the red vectors. Observe the gradient vector field on the cyan

curve, these are the green vectors. The purple vector is the gradient

vector in (0,0). The red vectors converge to a vector with a non zero

x-component. This component is equal to 2. The green vectors con-

verge to a vector that has a x-component that is two times smaller then

the x-component of the vector to which the red vector field converges if

x → 0. This is clearly impossible if the vector field is continuous. More-

over, the x-component of the limit vector should in both cases be zero

if the gradient vector field is continuous. We conclude that this gradient

vector field is not continuous. The function is differentiable in that case,

which it is not. Please note however that a sketch of the gradient vector

field is inherently a sketch of discrete data. So the utmost care must be

taken in order to make it a little bit trustworthy.

••••
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Exercise 4.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















y3 − x8y

x6 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

4.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

y3 − x8y

x6 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

y3 − x8y

x6 +y2

∣

∣

∣

∣

∣

≤ |y|
3 + x8 |y|
x6 +y2

≤ |y|
3 + (|x|3)8/3 |y|
(x3)2 +y2

≤

√

(|x|3)2 +y2
3

+
√

(|x|3)2 +y2
8/3√

(|x|3)2 +y2

(x3)2 +y2

≤
√

(|x|3)2 +y2 +
√

(|x|3)2 +y2
5/3

≤
√

(|x|3)2 +y2

(

1+
√

(|x|3)2 +y2
2/3
)

≤ 2
√

(|x|3)2 +y2.

We have that |x|3 ≤
√

(|x|3)2 +y2 or |x| ≤
√

(|x|3)2 +y2
1/3

and that

|y| ≤
√

(|x|3)2 +y2. We have applied these inequalities in the second

inequality. Then we have chosen the restriction that
√

(|x|3)2 +y2 < 1

so that the last step is justified. In order to do that, we take (|x|3)2 <
1/
√

2 and y2 < 1/
√

2. This is satisfied if we keep |x| < 6

√

1/
√

2 and

|y| < 2

√

1/
√

2.

Then we choose (|x|3)2 < ϵ2/8 and y2 < ϵ2/8. This means that we have

now the open square defined by

{

(x,y) such that |x|, |y| < min

{

6

√

1/
√

2,
2

√

1/
√

2,
6
√

ϵ2/8,
2
√

ϵ2/8

}}

.

We have now found an open square. In order to have an open disk, we

can take as radius δ half the length of an edge of the square. We can

find a δ, so we conclude that the function is continuous.



www.mathandphoto.eu. Exercise Notes 65

Figure 39. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 40. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

4.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.
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So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = y if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

h

h

= 1.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 1.

4.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

v3 − h6u8 v

h4u6 + v2

= v.

The calculation is only valid for v ≠ 0 but we covered that case before.

So the directional derivatives do always exist.

Figure 41. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2
)

. We have

drawn the graph of the function f(hu,hv).

4.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.
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Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =



















−2
x5y

(

x8 + 4y2x2 + 3y2
)

(

x6 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
The partial derivative to y is:

∂f

∂y
(x,y) =















−x14 + x8y2 + 3x6y2 +y4

(

x6 +y2
)2 if (x,y) ≠ (0,0),

1 if (x,y) = (0,0).
We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded. From the third inequality on,

we will write for space reasons A =
√

(|x|3)2 +y2.

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

−2x5y
(

x8 + 4x2y2 + 3y2
)

(

x6 +y2
)2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

2x2
(

x8 + 4x2y2 + 3y2
)

2
(

x6 +y2
)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

A2/3
(

A8/3 + 4A2/3A2 + 3A2
)

A2

∣

∣

∣

∣

∣

≤
(

5A2/3 + 3
)

A2/3

≤ 8.

We have used the fact that 0 ≤ (a − b)2 or that 2ab ≤ a2 + b2. So we

have that 2ab ≤ (a2 + b2) or that ab/(a2 + b2) ≤ 1/2. We applied this

in the first inequality by substituting a = |x|3 and b = |y|. We have thus

that |x|3 |y|/(x6 +y2) ≤ 1/2 and applied it in the first step.
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We have also that |x|3 ≤
√

(|x|3)2 +y2 or |x| ≤
√

(|x|3)2 +y2
1/3

and

that |y| ≤
√

(|x|3)2 +y2. We have applied these inequalities in the sec-

ond step. From the third line on we use the abbreviation

A =
√

(|x|3)2 +y2. We choose then A =
√

(|x|3)2 +y2 < 1. This is cer-

tainly the case if (|x|3)2 < 1/
√

2 and y2 < 1/
√

2. So we have that we

can take |x| < 6

√

1/
√

2 and |y| < 2

√

1/
√

2. So in this rectangular open

neighbourhood of (0,0) we have the bound 8.

Let us try to prove that
∣

∣

∣

∂f
∂y

∣

∣

∣ is bounded. Consult the previous inequali-

ties for definitions and explanations.

∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

−x14 + x8y2 + 3x6y2 +y4

(

x6 +y2
)2

∣

∣

∣

∣

∣

≤ A
14/3 +A8/3A2 + 3A6/3A2 +A4

A4

≤ 2
(

A2/3 + 2
)

≤ 6.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.



www.mathandphoto.eu. Exercise Notes 71

Figure 42. We see here the absolute value of the first partial derivative
∣

∣

∣

∂f
∂x

∣

∣

∣. We can observe the boundedness from this picture.

Figure 43. We see here the absolute value of the second partial derivative
∣

∣

∣

∂f
∂y

∣

∣

∣. We can observe the boundedness from this picture.
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4.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks. Maybe these figures can make

us doubtful about the differentiability. Because we do not rely on purely

visual proofs, we will then continue our reasoning as if we did not per-

form these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 44. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function quite nicely. We are going to try to give a

continuity proof.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we
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know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.

Figure 45. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.
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We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f

∂x
(0,0)h+ ∂f

∂y
(0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)− f(0)

h
, which is commonly

called the differential quotient!

If we have

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =



















−
h6

(

h2 + 1
)

k
√

h2 + k2
(

h6 + k2
) if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)
is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

∣

− h6
(

h2 + 1
)

k
√

h2 + k2 (h6 + k2)
− 0

∣

∣

∣

∣

∣

∣

< ϵ.
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We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

∣

−
h6

(

h2 + 1
)

k
√

h2 + k2
(

h6 + k2
)

∣

∣

∣

∣

∣

∣

∣

≤
|h|3

(

h2 + 1
)

2
√

h2 + k2

≤
2 |h|3

2
√

h2 + k2

≤

√

h2 + k2
3

√

h2 + k2

≤
√

h2 + k2
2

.

We have used the fact that 0 ≤ (a − b)2 or that 2ab ≤ a2 + b2. So we

have that 2ab ≤ (a2 + b2) or that ab/(a2 + b2) ≤ 1/2. We applied this

in the first inequality by substituting a = h3 and b = k. We have also

chosen |h| < 1 so that h2 + 1 < 2.

It is sufficient to take δ = min{
√

ϵ,1}. We can find a δ, so we conclude

that the function q(h, k) is continuous. And the consequence is that the

function f(x,y) is differentiable.
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Figure 46. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.

Figure 47. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).
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4.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

Discussion of an alternative proof for the differentiability

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-

tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be locally flat and thus locally linear which is partly expressed

by this Lipschitz continuity condition.

Let us try to prove the Lipschitz condition. We are going to use a well

known method.



www.mathandphoto.eu. Exercise Notes 78

|f(x1, y1)− f(x2, y2)|

= |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|.

We focus now on the first term |f(x1, y1)−f(x1, y2)|. We fix now x1 and

look upon f(x1, y) as a function in one variable. So it springs to mind

that we can estimate by using Lagrange’s intermediate value theorem.

So we have

|f(x1, y1)− f(x1, y2)| =
∣

∣

∣

∣

∣

∂f

∂y
(x1, ξ)

∣

∣

∣

∣

∣

|y1 −y2|

where ξ is a number lying in the open interval (y1, y2) if e.g. y1 ≤
y2. Remark that we already have proven that the partial derivatives are

bounded in a neighbourhood, we can take that bound, say M2 and that

neighbourhood in this case also. So
∣

∣

∣

∂f
∂y (x1, ξ)

∣

∣

∣ ≤ M2. We work in a

completely analogous way for the second term |f(x1, y2) − f(x2, y2)|.
We have in that case

∣

∣

∣

∂f
∂x (ξ,y2)

∣

∣

∣ ≤ M1.

We take up our inequality again

|f(x1, y1)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|

≤ M2 |(y1 −y2)| +M1 |(x1 − x2)|

≤ M2

√

(x1 − x2)2 + (y1 −y2)2 +M1

√

(x1 − x2)2 + (y1 −y2)2

≤ (M1 +M2)
√

(x1 − x2)2 + (y1 −y2)2.

So this function is locally Lipschitz continuous. We have an alternative

proof for the differentiability.
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4.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof that the derivative exists. The condition that both of

the partial derivatives are continuous is in fact too strong in the sense

that it is not equivalent with differentiability only. We prove in this case

more then the existence of the derivative. But this criterion is in fact

used by many instructors and textbooks, so it is interesting to take a

look at it.

We calculated the two partial derivatives

∂f

∂x
(x,y) =



















−2
x5y

(

x8 + 4y2x2 + 3y2
)

(

x6 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

∂f

∂y
(x,y) =















−x14 + x8y2 + 3x6y2 +y4

(

x6 +y2
)2 if (x,y) ≠ (0,0),

1 if (x,y) = (0,0).
We investigate the continuity of the partial derivatives.

Discussion of the continuity of the first partial derivative.

We are only going to show the visual results for the first partial deriva-

tive to x. All indications are in favour of the continuity. But we do not

investigate it further. We have serious doubts about the partial deriva-

tive to y and investigate that first.
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Figure 48. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂x (x,y). This looks like a continuous function.
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Figure 49. We see here a figure of the contour plot of
∂f
∂x (x,y). Only

level curves of level around 0 come close to (0,0).

Discussion of the continuity of the second partial derivative.

We restrict the function
∂f
∂y to the continuous curves with equations y =

λx3. We observe then that

∂f

∂y

∣

∣

∣

∣

∣

y=λx3

(x,y) =























λ4 + λ2
(

x2 + 3
)

− x2

(

λ2 + 1
)2 if x ≠ 0;

0 if x = 0.

So the limit for x → 0 is

lim
x→0

λ4 + λ2
(

x2 + 3
)

− x2

(λ2 + 1)2
= λ4 + 3λ2

(λ2 + 1)2
.

We see that these restricted functions have many different limits. But if
∂f
∂y (x,y) is continuous, all these limit values should be the same. So this

function
∂f
∂y (x,y) is not continuous.
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Figure 50. We see here a three dimensional figure of the graph of the

function
∂f
∂y (x,y). The vertical line above (0,0) looks suspicious. This

does not seem to be a graph of a continuous function.

Figure 51. We have restricted the function
∂f
∂y (x,y) here to y = 1/2x3

and y = 3/10x3 and y = 9/10x3. We see in this figure clearly that

the restrictions of the function
∂f
∂y (x,y) to these lines are functions that

have different limits in 0.
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Figure 52. We see here a figure of the contour plot of the partial deriva-

tive
∂f
∂y (x,y). Many level curves of very different levels approach (0,0).

This looks discontinuous indeed.
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4.8 Overview

f(x,y) =















y3 − x8y

x6 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).



www.mathandphoto.eu. Exercise Notes 85

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no

4.9 One step further

It can maybe be worthwhile to take a look at the gradient vector field.

We see that this gradient vector field exists in this case. But the gradient

vector field cannot be continuous because it implies that the function is

differentiable. So we wonder if we can find an indication for this fact.
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Figure 53. We made here the following sketch. We have drawn the graph-

ics of y = x3 in pink and y = 0.37x3 in cyan. We have sketched the

gradient vector field
(

∂f
∂x (x,y),

∂f
∂y (x,y)

)

which is not continuous as can

be seen as follows. Observe the gradient vector field on the pink curve,

these are the red vectors. Observe the gradient vector field on the cyan

curve, these are the green vectors. The purple vector is the gradient

vector in (0,0). The red vectors converge to a vector with a non zero y-

component. This component is equal to 1. The green vectors converge

to a vector that has a y-component that is two times smaller then the

y-component of the vector to which the red vectors converge if x → 0.

This is clearly impossible if the vector field is continuous. Moreover, the

y-component of the limit vector should in both cases be 1 if the gra-

dient vector field is continuous. We conclude that this gradient vector

field is not continuous. The function is differentiable in that case, which

it is not. Please note however that a sketch of the gradient vector field is

inherently a sketch of discrete data. So the utmost care must be taken

in order to make it a little bit trustworthy.

••••
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Exercise 5.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x3 sin

(

1

x2

)

+y3 sin

(

1

y2

)

if xy ≠ 0,

0 if xy = 0.

5.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x3 sin

(

1

x2

)

+y3 sin

(

1

y2

)

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

x3 sin

(

1

x2

)

+y3 sin

(

1

y2

)∣

∣

∣

∣

∣

≤ |x|3
∣

∣

∣

∣

sin

(

1

x2

)∣

∣

∣

∣

+ |y|3
∣

∣

∣

∣

∣

sin

(

1

y2

)∣

∣

∣

∣

∣

≤ |x|3 + |y|3

≤
√

x2 +y2
3

+
√

x2 +y2
3

≤ 2
√

x2 +y2
3

.

It is sufficient to take δ = (ϵ/2)1/3. We can find a δ, so we conclude that

the function is continuous.

Figure 54. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 55. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

5.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y)















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= 0.

So the partial derivative to x does exist.
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Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

5.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

h2

(

u3 sin

(

1

h2u2

)

+ v3 sin

(

1

h2 v2

))

= 0.
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We can assume that u ≠ 0 and v ≠ 0 because we computed the partial

derivatives in the preceding section.

So the directional derivatives do always exist.

Figure 56. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). It shows that the direc-

tional derivatives are 0.

5.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Looking for a definition of the partial derivatives. We have to be able

to define the partial derivatives in at least one neighbourhood around

(0,0). We have no problems with points that are in the interior of the

definition domains of the classical functions. We have there the classical

calculation rules for defining those functions and the partial derivatives

always exist there and are even continuous.
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But in our case, we have to investigate the points that are in exceptional

subsets in the definition of the function.

In this case these are the points (a,0) and (0, b).

Let us look at a point (a,0) with a ≠ 0. We are going to investigate the

function in (a,0) in the Y -direction. This function is defined by

f(a,h) =











a3 sin
(

1

a2

)

+ h3 sin
(

1

h2

)

if h ≠ 0,

0 if h = 0.

We see that in almost all cases of a, the function is not continuous and

consequently not differentiable. So in the cases where a3 sin
(

1

a2

)

≠ 0

the function is not differentiable. The points a where these happens,

are countable. The conclusion is that the partial derivative
∂f
∂y (a,0) does

not exist for almost all a with a ≠ 0.

We consult a figure for this observation.

-0.5 0.5
H

-0.6

-0.4

-0.2

0.2

Z

Figure 57. We see here a figure of the graph of the function restricted

to the line through (a,0) with direction (0,1), this is the Y -direction.

We see that this function is not continuous in h = 0. We have drawn

this figure with the value a = 1/2. This is a figure of the function with

function definition f(a,h).

The partial derivatives do not all exist in any neighbourhood of (0,0). So

the partial derivatives cannot be defined in any neighbourhood of (0,0).
The conclusion is that an alternative proof following the lines described
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at the start of this section cannot be given. Other alternative proofs can

of course exist.

We note that this observation is also relevant for section 7 if we get as

far as section 7 because this can be irrelevant depending on previous

sections. In section 7 we have to prove that the partial derivatives are

continuous. But if there are no partial derivatives in any neighbourhood

of (0,0), then we cannot prove also anything in that section.

We note also that a function can be perfectly differentiable, even as the

partial derivatives are not defined in any neighbourhood of (0,0). It

is though necessary that the partial derivative in the point (0,0) itself

does exist in order that the function is differentiable in (0,0). From this

viewpoint, the existence of the partial derivatives in a neighbourhood of

(0,0) is pure luxury.

5.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 58. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very nicely. But we have to careful due to

the heavy oscillations.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 59. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k)

=































h3 sin





1

h2



+ k3 sin





1

k2





√

h2 + k2
if (h, k) ≠ (0,0) and h ≠ 0 and k ≠ 0;

0 if (h, k) = (0,0) of k = 0 or h = 0

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h3 sin





1

h2



+ k3 sin





1

k2





√

h2 + k2

− 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h3 sin





1

h2



+ k3 sin





1

k2





√

h2 + k2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
|h|3

∣

∣

∣

∣

∣

∣

sin





1

h2





∣

∣

∣

∣

∣

∣

+ |k|3
∣

∣

∣

∣

∣

∣

sin





1

k2





∣

∣

∣

∣

∣

∣

√

h2 + k2

≤
|h|3 + |k|3
√

h2 + k2

≤

√

h2 + k2
3

+
√

h2 + k2
3

√

h2 + k2

≤ 2

√

h2 + k2
3

√

h2 + k2

≤ 2
√

h2 + k2
2

.

It is sufficient to take δ =
√

ϵ/2. We can find a δ, so we conclude that the

function q(h, k) is continuous. The function f is differentiable.
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Figure 60. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.

Figure 61. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).
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5.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

The function is not continuous in any neighbourhood of (0,0). So it

cannot be Lipschitz continuous. An alternative proof following these

lines is thus not possible.

5.7 Continuity of the partial derivatives

The partial derivatives do not all exist in any neighbourhood of (0,0).
See section 4 for an explanation.

5.8 Overview

f(x,y) =















x3 sin

(

1

x2

)

+y3 sin

(

1

y2

)

if xy ≠ 0,

0 if xy = 0.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no

••••



www.mathandphoto.eu. Exercise Notes 100

Exercise 6.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x |y|
x2 +y2

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

6.1 Continuity

We restrict the function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx) = x|λx|
λ2x2 + x2

= |λx|
x (λ2 + 1)

if x ≠ 0;

0 if x = 0.

We see that these restricted functions have no limits if λ ≠ 0. But if

f(x,y) is continuous, all these limit values should exist. So this func-

tion f(x,y) is not continuous.
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Figure 62. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 63. We have restricted the function here to y = 1/10x and y =
5/10x and y = x. We see in this figure clearly that the restrictions of

the function to these lines are functions that have no limits in 0.
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Figure 64. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

6.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

6.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

But the functions f(hu,hv) = u |hv|
h(u2+v2)

are not even continuous if

uv ≠ 0. So they are not differentiable.

These limits do not exist if u ≠ 0 and v ≠ 0.

So the directional derivatives do not always exist.

Figure 65. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

6.4 Alternative proof of continuity (optional)

This is irrelevant. The function is not continuous.

6.5 Differentiability

The function is not continuous. So the function is not differentiable.

6.6 Alternative proof of differentiability (optional)

Irrelevant.
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6.7 Continuity of the partial derivatives

Irrelevant.

6.8 Overview

f(x,y) =















x |y|
x2 +y2

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous no

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 7.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















y |x|3/2

x3 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

7.1 Continuity

We restrict the function to the continuous curves with equations y =
λ |x|3/2. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λ |x|3/2) = λ |x|3

λ2 |x|3 + x3
= λ sgn(x)

1+ λ2 sgnx
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have no limits. But if f(x,y) is

continuous, all these limit values should be f(0,0) = 0. So this function

f(x,y) is not continuous.
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Figure 66. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 67. We have restricted the function here to y = 1/10x3/2 and

y = 3/10x3/2 and y = 1/2x3/2. We see in this figure clearly that the

restrictions of the function to these lines are functions that have no

limits in 0.
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Figure 68. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

7.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

7.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

v |hu|3/2
h2 (hu3 + v2)

.

We see that the limit is not finite if uv ≠ 0. So the directional deriva-

tives, excluding the partial derivatives, do not exist.

Figure 69. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). We see the vertical tangent

in 0. This causes the infinite behaviour of the slopes.

7.4 Alternative proof of continuity (optional)

Irrelevant. The function is not continuous.
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7.5 Differentiability

There is no differentiability. The function is even not continuous.

7.6 Alternative proof for the differentiability

Irrelevant. The function is not differentiable.

7.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

7.8 Overview

f(x,y) =















y |x|3/2

x3 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

continuous no

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 8.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =



















sin
(

|xy| + x2
)

x
if x ≠ 0,

0 if x = 0.

8.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

sin
(

|xy| + x2
)

x
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

sin
(

|xy| + x2
)

x

∣

∣

∣

∣

∣

≤ |xy| + x
2

|x|

≤ |y| + |x|

≤
√

x2 +y2 +
√

x2 +y2

≤ 2
√

x2 +y2.

We have made use of the fact that | sin(x)| ≤ |x|.

It is sufficient to take δ = ϵ/2. We can find a δ, so we conclude that the

function is continuous.

Figure 70. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function. This is a more global

view. In the following picture, we have a more local view.
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Figure 71. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function. Let us however not

forget that we defined the function on the line with equation x = 0 as

being 0. The drawing does not represent that part of the function and

it could give the visual impression that the partial derivative to y is not

defined in x = 0!
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Figure 72. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

8.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =























f(x,0) =
sin

(

x2
)

x
if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

sin
(

h2
)

h2

= 1.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 1 and

∂f

∂y
(0,0) = 0.
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Figure 73. We see here a figure of the graph of the function
sin(x2)

x re-

stricted to the horizontal X-axis through (0,0). We have plotted here

the function f(h,0).

8.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

sin
(∣

∣h2uv
∣

∣+ h2u2
)

h2u

= lim
h→0

sin
(∣

∣h2uv
∣

∣+ h2u2
)

|h2uv| + h2u2

∣

∣h2uv
∣

∣+ h2u2

h2u

= u+ |v| sgn(u).

The calculation is only valid if u ≠ 0. But we covered that case before.

So the directional derivatives do always exist.

Figure 74. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

8.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.
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If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Functions containing absolute values in their definition are essentially

piecewise defined functions.

Our function is

f(x,y) =











































sin
(

x2 + xy
)

x
if xy ≥ 0 and x ≠ 0,

sin
(

x2 − xy
)

x
if xy < 0 and x ≠ 0.

0 if x = 0,

Let us investigate the existence of the partial derivative to x in a point

(0, b) with b > 0. Let us now consider the function f(h, b) in a point

(h, b) and consider b fixed and h the variable. Then we calculate the left

limit and the right limit in h = 0. The function in h is now

f(h, b) =











































−
sin

(

hb − h2
)

h
if h < 0,

sin
(

h2 + hb
)

h
if h > 0,

0 if h = 0.

We calculate now the left limit and the right limit in h = 0.
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lim
h→
<

0
−sin

(

bh− h2
)

h
= lim
h→
<

0
−sin (h (b − h))

h

= lim
h→
<

0
−sin (h (b − h))

h(b − h)
h(b − h)

h

= lim
h→
<

0
−h(b − h)

h

= lim
h→
<

0
−(b − h)

= −b.

lim
h→
>

0

sin
(

bh+ h2
)

h
= lim
h→
>

0

sin (h(b + h))
h

= lim
h→
>

0

sin (h(b + h))
h(b + h)

h(b + h)
h

= lim
h→
>

0

h(b + h)
h

= lim
h→
>

0
(b + h)

= b.

So if b ≠ 0, then the function is not continuous, and the function is not

differentiable. So the partial derivative to x does not exist.

We conclude that the alternative criterion that we propose, cannot be

applied. Not all derivatives exist in every neighbourhood of (0,0).
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Figure 75. We see here a two dimensional figure of the graph of the

function f(h, b). We have drawn the function here for the value b = 1/2
which is exemplary for the values of b close to 0. This is not a continuous

function. So it is not a differentiable function.

8.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 76. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane does not fit the function very nicely. It is in fact a very

bad fit. It is indeed no tangent plane following our calculations later on.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 77. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) do not sweep out a nice

ellipse lying in one plane! Because it is not very clear to which planes

the vectors really belong, we have made an additional figure.
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Figure 78. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)). We have

made this picture to show more clearly the planes to which the vectors

belong. These planes are clearly distinct from the candidate tangent

plane. This is bad news for differentiability.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If
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lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =







































sin(h (h+ k))− h2

h
√

h2 + k2
if hk > 0 and h ≠ 0,

sin(h (h− k))− h2

h
√

h2 + k2
hk < 0,

0 if h = 0

is continuous in (0,0).

We restrict the function q(h, k) to the continuous curves with equations

k = λh with λ > 0. In that case we can focus on the definition part where

hk > 0 which says that we are working in the first and third quadrant.

This part of the function is

q(h, k) = h
2 + sin(h (h+ k))
h
√

h2 + k2
.

We observe then that

q
∣

∣

k=λh(h, k) =



















q(h, λh) =
sin

(

h2 (λ+ 1)
)

+ h2

h |h|
√

(λ2 + 1)
if h ≠ 0;

0 if h = 0.

Let us try to simplify this part of this definition of f(h, λh). We have
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sin
(

h2 (λ+ 1)
)

+ h2

h
√

λ2 + 1 |h|
= h
√

λ2 + 1|h|
+

sin
(

h2 (λ+ 1)
)

h
√

λ2 + 1 |h|

= sgn(h)
√

λ2 + 1
+ sin

(

h2 (λ+ 1)
)

h2 (λ+ 1)

h2 (λ+ 1)

h
√

λ2 + 1 |h|

= sgn(h)
√

λ2 + 1
+ sin

(

h2 (λ+ 1)
)

h2 (λ+ 1)

sgn(h)(λ+ 1)
√

λ2 + 1

= sgn(h)





1
√

λ2 + 1
+ sin

(

h2 (λ+ 1)
)

h2 (λ+ 1)

λ+ 1
√

λ2 + 1



 .

Let us know calculate the limit.

lim
h→0

sgn(h)





1
√

λ2 + 1
+ sin

(

h2 (λ+ 1)
)

h2 (λ+ 1)

λ+ 1
√

λ2 + 1





= lim
h→0

sgn(h)





1
√

λ2 + 1
+ λ+ 1
√

λ2 + 1





= lim
h→0

sgn(h)





λ+ 2
√

λ2 + 1





So these limits do not exist.

We see that these restricted functions have no limits. But if q(h, k) is

continuous, all these limit values should be q(0,0) = 0. So this function

q(h, k) is not continuous in (0,0). The function f(x,y) is not differen-

tiable in (0,0).
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Figure 79. We see here a three dimensional figure of the graph of the

function q(h, k). The vertical line above (0,0) looks suspicious. This

does not seem to be a graph of a continuous function.

Figure 80. We have restricted the function q(h, k) here to k = 1/2h and

k = 3/10h and k = 9/10h. We see in this figure clearly that the re-

strictions of the function to these lines are functions that have different

limits in 0.
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Figure 81. We see here a figure of the contour plot of the function

q(h, k). Many level curves of very different levels approach (0,0). This

looks discontinuous indeed.

8.6 Alternative proof of differentiability (optional)

This is irrelevant. The function is not differentiable.

8.7 Continuity of the partial derivatives

This is irrelevant. The function is not differentiable.

8.8 Overview

f(x,y) =



















sin
(

|xy| + x2
)

x
if x ≠ 0,

0 if x = 0.
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continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

8.9 One step further

We take a look at the magical curves k = λh that we used in the proof

of non differentiability. We take λ = 1 and then we take the following

curve in the plane: β(t) = (t, t). This differentiable curve goes through

(0,0).

We define now the curve

α(t) = (t, t, f (t)) = (t, λ t, f (t, λ t)) .
This curve lies completely on the surface defined by z = f(x,y). Let us

take a look at this curve.

α(t) =















(

t, t,
sin(t2+|t|2)

t

)

=
(

t, t,
sin(2 t2)

t

)

if t ≠ 0,

(0,0,0) if t = 0.

Let us check that this curve is differentiable in t = 0. This is necessary.

By the non differentiability of f(x,y), we are not guaranteed to have the

differentiability of the curve. We take a look at the z-component of the

curve. We have z(t) = sin(2 t2)
t for t ≠ 0 and z(0) = 0. We calculate the

derivative z′(0).

z′(0) = lim
t→0

z(t)− z(0)
t − 0

= lim
t→0

sin
(

2t2
)

t2
= 2 lim

t→0

sin
(

2t2
)

2t2
= 2.

We have now a tangent line of the curve in t = 0. Let us put all this

information together in the following figure.
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Figure 82. We see here a figure of the candidate tangent plane. The

curve α(t) is drawn in blue. The tangent line is drawn in red. We see

that the tangent line is not in the candidate tangent plane. It intersects

the tangent plane transversally and not tangentially. So the candidate

tangent plane is not a tangent plane.

••••
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Exercise 9.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x2y2

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

9.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x2y2

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

x2y2

x2 +y2

∣

∣

∣

∣

∣

≤ x2y2

x2 +y2

≤

√

x2 +y2
2√

x2 +y2
2

√

x2 +y2
2

≤
√

x2 +y2
2

.

It is sufficient to take δ =
√

ϵ. We can find a δ, so we conclude that the

function is continuous.

Figure 83. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.



www.mathandphoto.eu. Exercise Notes 133

Figure 84. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

9.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.
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So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

9.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

hu2 v2

u2 + v2

= 0.

So the directional derivatives do always exist.

Figure 85. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). The value of the directional

derivative is 0, which is confirmed by this drawing.

9.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we
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have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =















2xy4

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
The partial derivative to y is:

∂f

∂y
(x,y) =















2x4y
(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.

∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

2xy4

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ 2 |x|y4

(

x2 +y2
)2

≤
2
√

x2 +y2
√

x2 +y2
4

√

x2 +y2
4

≤
√

x2 +y2

≤ 1.

If we choose the neighbourhood
√

x2 +y2 < 1, then we have that the

partial derivative is bounded by 1.

We do not calculate this again for
∣

∣

∣

∂f
∂y

∣

∣

∣ by symmetry reasons.
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Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.

Figure 86. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.
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Figure 87. We see here the absolute value of the second partial derivative
∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture.

9.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 88. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function quite nicely but some doubts remain.

This certainly asks for more calculation al confirmation.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 89. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)− f(0)

h
, which is commonly

called the differential quotient! To avoid any misunderstandings we call

our q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















h2 k2

(

h2 + k2
)3/2 if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)
is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

h2 k2

(h2 + k2)3/2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

h2 k2

(h2 + k2)3/2

∣

∣

∣

∣

∣

≤ h2 k2

(h2 + k2)3/2

≤

√

h2 + k2
2√

h2 + k2
2

(h2 + k2)3/2

≤
√

h2 + k2
5/2

.

It is sufficient to take δ = ϵ2/5. We can find a δ, so we conclude that the

function q(h, k) is continuous. The function f is differentiable.

Figure 90. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 91. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

9.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-



www.mathandphoto.eu. Exercise Notes 144

tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

Let us try to prove the Lipschitz condition. We are going to use a well

known method.

|f(x1, y1)− f(x2, y2)|

= |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|.

We focus now on the first term |f(x1, y1) − f(x1, y2)|. We fix now x1

and look upon f(x1, y) as a function in one variable. So it springs to

mind that we can estimate this by using Lagrange’s intermediate value

theorem. So we have

|f(x1, y1)− f(x1, y2)| =
∣

∣

∣

∣

∣

∂f

∂y
(x1, ξ)

∣

∣

∣

∣

∣

|y1 −y2|
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where ξ is a number lying in the open interval (y1, y2) if e.g. y1 ≤
y2. Remark that we already have proven that the partial derivatives are

bounded in a neighbourhood, we can take that bound, say M2 and that

neighbourhood in this case also. So
∣

∣

∣

∂f
∂y (x1, ξ)

∣

∣

∣ ≤ M2. We work in a

completely analogous way for the second term |f(x1, y2) − f(x2, y2)|.
We have in that case

∣

∣

∣

∂f
∂x (ξ,y2)

∣

∣

∣ ≤ M1 where ξ is now a number in the

open interval (x1, x2) if e.g. x1 ≤ x2.

We take up our inequality again

|f(x1, y1)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|

≤ M2 |(y1 −y2)| +M1 |(x1 − x2)|

≤ M2

√

(x1 − x2)2 + (y1 −y2)2 +M1

√

(x1 − x2)2 + (y1 −y2)2

≤ (M1 +M2)
√

(x1 − x2)2 + (y1 −y2)2.

So this function is locally Lipschitz continuous. We have an alternative

proof for the differentiability.

9.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

We know that the partial derivative to x exists and is equal to
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∂f

∂x
(x,y) =















2xy4

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We want to see if it is continuous or not.

Discussion of the continuity of the first partial derivative in (0,0).
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove the inequality | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ. The problem is now to find a δ > 0 such that if the inequal-

ity
∥

∥(x,y)− (0,0)
∥

∥ < δ holds, it follows that | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ is

valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∂f

∂x
(x,y)− ∂f

∂x
(0,0)

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

2xy4

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤
2
√

x2 +y2
√

x2 +y2
4

√

x2 +y2
4

≤
√

x2 +y2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function
∂f
∂x is continuous.
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Figure 92. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂x (x,y). This looks like a continuous function.
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Figure 93. We see here a figure of the contour plot of the
∂f
∂x (x,y). Only

level curves of level around 0 come close to (0,0).

Discussion of the continuity of the second partial derivative in (0,0).

We will not calculate this because by symmetry reasons, we would have

an analogue calculation.

9.8 Overview














x2y2

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).



www.mathandphoto.eu. Exercise Notes 149

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous yes

9.9 One step further

We want to know if this function is further uneventful from the point of

view of differentiability. Let us take a look at the second order partial

derivative

∂2f

∂x2
= 2y4

(

y2 − 3x2
)

(

x2 +y2
)3 .

Let us take a look of a three dimensional plot of this second order partial

derivative of the function.
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Figure 94. We see here a figure of the second order partial derivative
∂2f

∂x2
(x,y). It seems quite improbable that this second order partial

derivative is continuous. We stop however our investigations here and

leave this to the initiative of the interested reader.

••••
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Exercise 10.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















xy4

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

10.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

xy4

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

xy4

x2 +y2

∣

∣

∣

∣

∣

≤

√

x2 +y2
√

x2 +y2
4

√

x2 +y2
2

≤
√

x2 +y2
3

.

It is sufficient to take δ = ϵ1/3. We can find a δ, so we conclude that the

function is continuous.

Figure 95. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 96. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

10.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.
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So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

10.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

h2uv4

u2 + v2

= 0.

So the directional derivatives do always exist.

Figure 97. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). The slope is evidently 0

and confirms the calculation.

10.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.
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Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =



















y4
(

y2 − x2
)

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
The partial derivative to y is:

∂f

∂y
(x,y) =



















2x
(

2x2y3 +y5
)

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.
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∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

y4
(

y2 − x2
)

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ y
4
(

y2 + x2
)

(

x2 +y2
)2

≤

√

x2 +y2
4
(

√

x2 +y2
2

+
√

x2 +y2
2
)

√

x2 +y2
4

≤

√

x2 +y2
4

2
√

x2 +y2
2

√

x2 +y2
4

≤ 2

√

x2 +y2
6

√

x2 +y2
4

≤ 2
√

x2 +y2
2

≤ 2.

We have chosen here the restriction to the neighbourhood defined by
√

x2 +y2 < 1.

Let us try to prove that
∣

∣

∣

∂f
∂y

∣

∣

∣ is bounded.
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∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

2x
(

2x2y3 +y5
)

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ 2 |x|
(

2x2 |y|3 + |y|5
)

(

x2 +y2
)2

≤
2
√

x2 +y2

(

2
√

x2 +y2
2√

x2 +y2
3

+
√

x2 +y2
5
)

√

x2 +y2
4

≤
6
√

x2 +y2
6

√

x2 +y2
4

≤ 6
√

x2 +y2
2

≤ 6.

We have chosen here again the restriction to the neighbourhood defined

by
√

x2 +y2 < 1.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.
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Figure 98. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.

Figure 99. We see here the absolute value of the second partial derivative
∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture.



www.mathandphoto.eu. Exercise Notes 160

10.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 100. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very nicely.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we
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know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.

Figure 101. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.
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We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















hk4

(

h2 + k2
)3/2 if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

hk4

(h2 + k2)3/2
− 0

∣

∣

∣

∣

∣

< ϵ.
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We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

hk4

(h2 + k2)3/2

∣

∣

∣

∣

∣

≤ |h|k4

(h2 + k2)3/2

≤

√

h2 + k2
√

h2 + k2
4

√

h2 + k2
3

≤
√

h2 + k2
2

.

It is sufficient to take δ = ϵ1/2. We can find a δ, so we conclude that the

function q(h, k) is continuous. So the function f is differentiable.

Figure 102. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 103. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

10.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-
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tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

Let us try to prove the Lipschitz condition. We are going to use a well

known method.

|f(x1, y1)− f(x2, y2)|

= |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|.

We focus now on the first term |f(x1, y1) − f(x1, y2)|. We fix now x1

and look upon f(x1, y) as a function in one variable y . So it springs to

mind that we can estimate this by using Lagrange’s intermediate value

theorem in one variable. So we have

|f(x1, y1)− f(x1, y2)| =
∣

∣

∣

∣

∣

∂f

∂y
(x1, ξ)

∣

∣

∣

∣

∣

|y1 −y2|
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where ξ is a number lying in the open interval (y1, y2) if e.g. y1 ≤
y2. Remark that we already have proven that the partial derivatives are

bounded in a neighbourhood, we can take that bound found for
∂f
∂y , say

M2 and that neighbourhood in this case also. So
∣

∣

∣

∂f
∂y (x1, ξ)

∣

∣

∣ ≤ M2. We

work in a completely analogous way for the second term |f(x1, y2) −
f(x2, y2)|. We have in that case | ∂f∂x (ξ,y2)| ≤ M1| where ξ is now a

number in the open interval (x1, x2) if e.g. x1 ≤ x2.

We take up our inequality again

|f(x1, y1)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|

≤ M2 |(y1 −y2)| +M1 |(x1 − x2)|

≤ M2

√

(x1 − x2)2 + (y1 −y2)2 +M1

√

(x1 − x2)2 + (y1 −y2)2

≤ (M1 +M2)
√

(x1 − x2)2 + (y1 −y2)2.

So this function is locally Lipschitz continuous. We have an alternative

proof for the differentiability.

10.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

We know that the partial derivative to x exists and is equal to
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∂f

∂x
(x,y) =



















y4
(

y2 − x2
)

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We want to see if it is continuous or not.

Discussion of the continuity of the first partial derivative in (0,0).
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove the inequality | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ. The problem is now to find a δ > 0 such that if the inequal-

ity
∥

∥(x,y)− (0,0)
∥

∥ < δ holds it follows that | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ is

valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∂f

∂x
(x,y)− ∂f

∂x
(0,0)

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof. We repeat what

we have calculated before.
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∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

y4
(

y2 − x2
)

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ y
4
(

y2 + x2
)

(

x2 +y2
)2

≤

√

x2 +y2
4
(

√

x2 +y2
2

+
√

x2 +y2
2
)

√

x2 +y2
4

≤

√

x2 +y2
4

2
√

x2 +y2
2

√

x2 +y2
4

≤ 2

√

x2 +y2
6

√

x2 +y2
4

≤ 2
√

x2 +y2
2

.

It is sufficient to take δ = (ϵ/2)1/2. We can find a δ, so we conclude that

the function is continuous.
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Figure 104. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂x (x,y). This looks like a continuous function.
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Figure 105. We see here a figure of the contour plot of the
∂f
∂x (x,y). Only

level curves of level around 0 come close to (0,0).

Discussion of the continuity of the second partial derivative in (0,0).

We know that the partial derivative to y exists and is equal to

∂f

∂y
(x,y) =



















2x
(

2x2y3 +y5
)

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

We want to see if
∂f
∂y is continuous or not.

Discussion of the continuity in (0,0).
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove the inequality | ∂f∂y (x,y)−
∂f
∂y (0,0)| < ϵ. The problem is now to find a δ > 0 such that if the inequal-

ity
∥

∥(x,y)− (0,0)
∥

∥ < δ holds it follows that | ∂f∂y (x,y)−
∂f
∂y (0,0)| < ϵ is

valid.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∂f

∂y
(x,y)− ∂f

∂y
(0,0)

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

2x
(

2x2y3 +y5
)

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ 2 |x|
(

2x2 |y|3 + |y|5
)

(

x2 +y2
)2

≤
2
√

x2 +y2

(

2
√

x2 +y2
2√

x2 +y2
3

+
√

x2 +y2
5
)

√

x2 +y2
4

≤
6
√

x2 +y2
6

√

x2 +y2
4

≤ 6
√

x2 +y2
2

.

It is sufficient to take δ = (ϵ/6)1/2. We can find a δ, so we conclude that

the function is continuous.
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Figure 106. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂y (x,y). This looks like a continuous function.
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Figure 107. We see here a figure of the contour plot of the graph of

the function
∂f
∂y (x,y). Only level curves of level around 0 come close to

(0,0).

10.8 Overview

f(x,y) =















xy4

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous yes
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10.9 One step further

We want to know if this function is further uneventful from the point

of view of differentiability. Let us take a look at the third order partial

derivative

∂3f

∂y3
= 24x5y

(

x2 −y2
)

(

x2 +y2
)4 .

Let us take a look of a three dimensional plot of this third order partial

derivative of the function.

Figure 108. We see here a figure of the third order partial derivative
∂3f
∂y3 (x,y). It seems quite improbable that this third order partial deriva-

tive is continuous. We stop however our investigations here and leave

this to the initiative of the interested reader.

••••
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Exercise 11.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















xy2

x2 +y4
if (x,y) ≠ (0,0)

0 if (x,y) = (0,0).

11.1 Continuity

We restrict the function to the continuous curves with equations x =
λy2. We observe then that

f
∣

∣

y=λx(x,y) =



















f(λx2, x) = λ

λ2 + 1
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 109. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 110. We have restricted the function here to x = 3/10y2 and

x = 1/2y2 and x = 9/10y2. We see in this figure clearly that the

restrictions of the function to these continuous curves are functions that

have different limits in 0.
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Figure 111. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

11.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0.

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

11.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

uv2

h2 v4 +u2

= uv
2

u2

= v
2

u
.

This calculation is only valid if u ≠ 0. Remember that we already calcu-

lated the case u = 0. So the directional derivatives do always exist.

Figure 112. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).
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11.4 Alternative proof of continuity (optional)

Irrelevant. The function is not continuous.

11.5 Differentiability

Irrelevant. The function is not differentiable because it is not continu-

ous.

11.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

11.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

11.8 Overview

f(x,y) =















xy2

x2 +y4
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous no

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

••••
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Exercise 12.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =



















y
(

x2 −y
)2

x6
if x ≠ 0;

0 if x = 0.

12.1 Continuity

We restrict the function to the continuous curves with equations y =
λx2. We observe then that

f
∣

∣

y=λx2(x,y) =























f(x, λx2) =
λ
(

x2 − λx2
)2

x4
= (λ− 1)2 λ if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 113. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 114. We have restricted the function here to y = 1/10x2 and

y = 3/10x2 and y = 5/10x2. We see in this figure clearly that the

restrictions of the function to these continuous curves are functions that

have different limits in 0.
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Figure 115. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

12.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

12.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following function

definition if u ≠ 0

f(0+ hu,0+ hv) =



















v
(

v − hu2
)2

h4u6
if h ≠ 0,

0 if h = 0.

We covered the case u = 0 before. We see that this function is not

continuous. So it is not differentiable. And the directional derivatives

do not exist if u ≠ 0.

So the directional derivatives do not all exist.

-1 1
H

-30

-20

-10

10

20

Z

Figure 116. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). We see the unbounded

behaviour of the function. The limit is not finite.

12.4 Alternative proof of continuity (optional)
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This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Looking for a definition of the partial derivatives.

We have to be able to define the partial derivatives in at least one neigh-

bourhood around (0,0). We have no problems with points that are in

the interior of the definition domains of the classical functions. We have

there the classical calculation rules for defining those functions and the

partial derivatives always exist there and are even continuous.

But in our case, we have to investigate the points that are in exceptional

subsets in the definition of the function.

In this case these are the points (0, b).

Let us look at a point (0, b) with b ≠ 0. We are going to investigate the

function in (0, b) in the X-direction. This function is defined by

f(h, b) =



















b
(

b − h2
)2

h6
if h ≠ 0,

0 if h = 0.

We see that this function is not continuous in h = 0, so the derivative

does not exist. The conclusion is that the partial derivative
∂f
∂x (0, b) does

not exist for all b with b ≠ 0.

We consult a figure for this observation.

The partial derivatives do not all exist in any neighbourhood of (0,0). So

the partial derivatives cannot be defined in any neighbourhood of (0,0).
The conclusion is that an alternative proof following the lines described

at the start of this section cannot be given. Other alternative proofs can

of course exist.
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Figure 117. We see here a figure of the graph of the function restricted

to the line through (0, b) with direction (1,0), this is the X-direction.

We have drawn the function f(h, b). We see that this function is not

continuous in h = 0. We have drawn this figure with the value b = 1/2.

12.5 Differentiability

This function is not differentiable because it is not continuous.

12.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

12.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

12.8 Overview

f(x,y) =



















y
(

x2 −y
)2

x6
if x ≠ 0;

0 if x = 0.
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continuous no

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 13.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x3y − xy3

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

13.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x3y − xy3

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

x3y − xy3

x2 +y2

∣

∣

∣

∣

∣

≤ |x|
3 |y| + |x| |y|3
x2 +y2

≤

√

x2 +y2
3√

x2 +y2 +
√

x2 +y2
√

x2 +y2
3

x2 +y2

≤
2
√

x2 +y2
4

√

x2 +y2
2

≤ 2
√

x2 +y2
2

.

It is sufficient to take δ = (ϵ/2)1/2. We can find a δ, so we conclude that

the function is continuous.

Figure 118. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 119. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

13.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.
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So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

13.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

h4u3 v − h4uv3

h(h2u2 + h2 v2)

= lim
h→0

huv
(

u2 − v2
)

u2 + v2

= 0.

So the directional derivatives do always exist.

Figure 120. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) = (
√

3/2,1/2). The slope

in 0 is 0. We have plotted here the function f(hu,hv).

13.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we



www.mathandphoto.eu. Exercise Notes 195

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =



















y
(

x4 + 4x2y2 −y4
)

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
The partial derivative to y is:

∂f

∂y
(x,y) =















x5 − 4x3y2 − xy4

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.
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∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

y
(

x4 + 4x2y2 −y4
)

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤

√

x2 +y2

(

√

x2 +y2
4

+ 4
√

x2 +y2
2√

x2 +y2
2

+
√

x2 +y2
4
)

√

x2 +y2
4

≤

√

x2 +y2 6
√

x2 +y2
4

√

x2 +y2
4

≤
6
√

x2 +y2
5

√

x2 +y2
4

≤ 6
√

x2 +y2

≤ 6.

We have chosen here the restriction to the neighbourhood defined by
√

x2 +y2 < 1.

Let us try to prove that
∣

∣

∣

∂f
∂y

∣

∣

∣ is bounded.
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∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

x5 − 4x3y2 − xy4

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ |x|
5 + 4 |x|3y2 + |x|y4

(

x2 +y2
)2

≤

√

x2 +y2
5

+ 4
√

x2 +y2
3√

x2 +y2
2

+
√

x2 +y2
√

x2 +y2
4

√

x2 +y2
4

≤
6
√

x2 +y2
5

√

x2 +y2
4

≤ 6
√

x2 +y2

≤ 6.

We have chosen the restriction to the neighbourhood
√

x2 +y2 < 1.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.
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Figure 121. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.

Figure 122. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture.
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13.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 123. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very nicely.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we
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know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.

Figure 124. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.
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We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =



















hk
(

h2 − k2
)

(

h2 + k2
)3/2 if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)
is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

hk
(

h2 − k2
)

(h2 + k2)3/2
− 0

∣

∣

∣

∣

∣

< ϵ.



www.mathandphoto.eu. Exercise Notes 202

We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

hk
(

h2 − k2
)

(h2 + k2)3/2

∣

∣

∣

∣

∣

≤

√

h2 + k2
√

h2 + k2

(

√

h2 + k2
2

+
√

h2 + k2
2
)

(h2 + k2)3/2

≤
2
√

h2 + k2
4

(h2 + k2)3/2

≤ 2
√

h2 + k2
5/2

.

It is sufficient to take δ = (ϵ/2)2/5. We can find a δ, so we conclude that

the function q(h, k) is continuous. So f is differentiable.

Figure 125. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 126. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

13.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-
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tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

Let us try to prove the Lipschitz condition. We are going to use a well

known method.

|f(x1, y1)− f(x2, y2)|

= |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|.

We focus now on the first term |f(x1, y1) − f(x1, y2)|. We fix now x1

and look upon f(x1, y) as a function in one variable y . So it springs to

mind that we can estimate this by using Lagrange’s intermediate value

theorem. So we have

|f(x1, y1)− f(x1, y2)| =
∣

∣

∣

∣

∣

∂f

∂y
(x1, ξ)

∣

∣

∣

∣

∣

|y1 −y2|
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where ξ is a number lying in the open interval (y1, y2) if e.g. y1 ≤
y2. Remark that we already have proven that the partial derivatives are

bounded in a neighbourhood, we can take that bound found for
∂f
∂y , say

M2 and that neighbourhood in this case also. So
∣

∣

∣

∂f
∂y (x1, ξ)

∣

∣

∣ ≤ M2. We

work in a completely analogous way for the second term |f(x1, y2) −
f(x2, y2)|. We have in that case

∣

∣

∣

∂f
∂x (ξ,y2)

∣

∣

∣ ≤ M1 where ξ is now a

number in the open interval (x1, x2) if e.g. x1 ≤ x2.

We take up our inequality again

|f(x1, y1)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|

≤ M2 |(y1 −y2)| +M1 |(x1 − x2)|

≤ M2

√

(x1 − x2)2 + (y1 −y2)2 +M1

√

(x1 − x2)2 + (y1 −y2)2

≤ (M1 +M2)
√

(x1 − x2)2 + (y1 −y2)2.

So this function is locally Lipschitz continuous. We have an alternative

proof for the differentiability.

13.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

We know that the first partial derivative exists and is equal to
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∂f

∂x
(x,y) =



















y
(

x4 + 4x2y2 −y4
)

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We want to see if this partial derivative to x is continuous or not.

Discussion of the continuity of the first partial derivative in (0,0).
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove the inequality | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ. The problem is now to find a δ > 0 such that if the inequal-

ity
∥

∥(x,y)− (0,0)
∥

∥ < δ holds, it follows that | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ is

valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∂f

∂x
(x,y)− ∂f

∂x
(0,0)

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

We calculate
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∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

y
(

x4 + 4x2y2 −y4
)

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ |y|
(

x4 + 4x2y2 +y4
)

(

x2 +y2
)2

≤

√

x2 +y2

(

√

x2 +y2
4

+ 4
√

x2 +y2
2√

x2 +y2
2

+
√

x2 +y2
4
)

√

x2 +y2
4

≤

√

x2 +y2 6
√

x2 +y2
4

√

x2 +y2
4

≤
6
√

x2 +y2
5

√

x2 +y2
4

≤ 6
√

x2 +y2.

It is sufficient to take δ = ϵ/6. We can find a δ, so we conclude that the

function is continuous.
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Figure 127. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂x (x,y). This looks like a continuous function.



www.mathandphoto.eu. Exercise Notes 209

Figure 128. We see here a figure of the contour plot of the
∂f
∂x (x,y). Only

level curves of level around 0 come close to (0,0).

Discussion of the continuity of the second partial derivative in (0,0).

We know that the second first order partial derivative exists and is equal

to

∂f

∂y
(x,y) =















x5 − 4x3y2 − xy4

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We want to see if it is continuous or not.

Discussion of the continuity in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove the inequality | ∂f∂y (x,y)−
∂f
∂y (0,0)| < ϵ. The problem is now to find a δ > 0 such that if the inequal-

ity
∥

∥(x,y)− (0,0)
∥

∥ < δ holds, it follows that | ∂f∂y (x,y)−
∂f
∂y (0,0)| < ϵ is

valid.
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When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∂f

∂y
(x,y)− ∂f

∂y
(0,0)

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

x5 − 4x3y2 − xy4

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ |x|
5 + 4 |x|3y2 + |x|y4

(

x2 +y2
)2

≤

√

x2 +y2
5

+ 4
√

x2 +y2
3√

x2 +y2
2

+
√

x2 +y2
√

x2 +y2
4

√

x2 +y2
4

≤
6
√

x2 +y2
5

√

x2 +y2
4

≤ 6
√

x2 +y2.

It is sufficient to take δ = ϵ/6. We can find a δ, so we conclude that the

function is continuous.
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Figure 129. We see here a three dimensional figure of the graph of the

second partial derivative
∂f
∂y (x,y). This looks like a continuous function.
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Figure 130. We see here a figure of the contour plot of the partial deriva-

tive
∂f
∂y (x,y). Only level curves of level around 0 come close to (0,0).

13.8 Overview

f(x,y) =















x3y − xy3

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous yes
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13.9 One step further

We want to know if this function is further uneventful from the point of

view of differentiability. Let us take a look at the second partial deriva-

tive

∂2f

∂x2
= −4xy3

(

x2 − 3y2
)

(

x2 +y2
)3 .

Let us take a look of a three dimensional plot of this partial derivative

to y of the function.

Figure 131. We see here a figure of the second order partial deriva-

tive
∂2f
∂x2 (x,y). It seems quite improbable that this second order partial

derivative is continuous. We stop however our investigations here and

leave this to the initiative of the interested reader.

••••
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Exercise 14.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x2y

x6 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

14.1 Continuity

We restrict the function to the continuous curves with equations y =
λx2. We observe then that

f
∣

∣

y=λx2(x,y) =



















f(x, λx2) = λ

λ2 + x2
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 132. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 133. We have restricted the function here to y = 21/10x2 and

y = 13/10x2 and y = 39/10x2. We see in this figure clearly that the re-

strictions of the function to these lines are functions that have different

limits in 0.
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Figure 134. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

14.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

14.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit for

v ≠ 0

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

u2 v

h4u6 + v2

= u
2

v
.

This calculation is valid if v ≠ 0. Remember that we already did the

v = 0 case. So the directional derivatives do always exist.

Figure 135. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).
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14.4 Alternative proof of continuity (optional)

This is irrelevant. The function is not continuous.

14.5 Differentiability

Irrelevant. The function is not differentiable because it is not continu-

ous.

14.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

14.7 Continuity of the partial derivatives

The function is not differentiable. This is irrelevant.

14.8 Overview














x2y

x6 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous no

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

••••
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Exercise 15.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x2 |y|5/4

x4 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

15.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x2 |y|5/4
x4 +y2

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

x2 |y|5/4
x4 +y2

∣

∣

∣

∣

∣

≤ 1

2
|y|1/4

≤ 1

2

√

x2 +y2
1/4

.
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Because x2 |y|/(x4 +y2) ≤ 1/2, we have the first step.

It is sufficient to take δ = (2 ϵ)4. We can find a δ, so we conclude that

the function is continuous.

Figure 136. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 137. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

15.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

15.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

u2 |hv|5/4
h3u4 + hv2

= lim
h→0

u2 |h|5/4 |v|5/4
h(h2u4 + v2)

= lim
h→0

sgn(h)u2 |h|1/4 |v|5/4
(h2u4 + v2)

= 0.

This calculation is only valid if v ≠ 0. But we covered that case before.

So the directional derivatives do always exist.
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Figure 138. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

15.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

In order to be able to calculate the partial derivatives we first rewrite the

function f .

f(x,y) =







































x2 (−y)5/4

x4 +y2
y < 0;

x2y5/4

x4 +y2
y ≥ 0 and (x,y) ≠ (0,0);

0 (x,y) = (0,0).

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:
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∂f

∂x
(x,y) =



















































2 (−y)5/4
(

xy2 − x5
)

(

x4 +y2
)2 y < 0;

−
2y5/4

(

x5 − xy2
)

(

x4 +y2
)2 y ≥ 0 and (x,y) ≠ (0,0);

0 (x,y) = (0,0).

The partial derivative to y is:

∂f

∂y
(x,y) =



















































x2 4

√

−y
(

3y2 − 5x4
)

4
(

x4 +y2
)2 y < 0;

x2 4

√

y
(

5x4 − 3y2
)

4
(

x4 +y2
)2 y ≥ 0. and (x,y) ≠ (0,0);

0 (x,y) = (0,0).

We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

We do not investigate the partial derivative to x any further and concen-

trate us on the unboundedness of the partial derivative to y . Let us try

to prove that
∣

∣

∣

∂f
∂y

∣

∣

∣ is unbounded.

We are going to substitute y = x2 in the following defining part of
∂f
∂y if

y > 0.

∂f

∂y
(x,y) =

x2 4

√

y
(

5x4 − 3y2
)

4
(

x4 +y2
)2 with y > 0.

So by substituting y = x2:

∂f

∂y
(x,x2) = 1

8 (x2)3/4
.

We see now the unbounded behaviour of
∂f
∂y .

It is clear that the partial derivative
∂f
∂y is not bounded in any neighbour-

hood of (0,0). So we do not have an alternative proof for the continuity.
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Figure 139. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe possible boundedness from this picture. There

remains some doubts though. We can never be sure relying upon a vi-

sual basis alone. This asks for a proof, but we are not going to do this

calculation. We turn our attention to the partial derivative to y because

there is something wrong there.
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Figure 140. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture.

15.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.



www.mathandphoto.eu. Exercise Notes 230

Figure 141. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane does not fit the function very nicely. It is indeed no tan-

gent plane following our calculations. It is difficult to imagine a worse

situation then this. But remark anyway that the candidate tangent plane

sticks very well to the X-axis direction and the Y -axis direction. This

is caused by the term ( ∂f∂x (0,0),
∂f
∂y (0,0)) · (h, k) in the definition of the

quotient. This minimal good behaviour will be always the case.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 142. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















h2 |k|5/4
√

h2 + k2
(

h4 + k2
) if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We restrict the function q(h, k) to the continuous curves with equations

k = λh2 with λ = 1. We observe then that

q
∣

∣

k=h2(h, k) =



















q(h,h2) = |h|5/2

2h2
√

h4 + h2
= h2 |h|1/2

2h2 |h|
√

h2 + 1
if h ≠ 0;

0 if h = 0.

We see that this function is unbounded in any neighbourhood of (0,0).
So the limit does not exist. The function f(x,y) is not differentiable in

(0,0).
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Figure 143. We see here a three dimensional figure of the graph of

the function q(h, k). The unboundedness above (0,0) looks suspicious.

This does not seem to be a graph of a continuous function.

Figure 144. We have restricted the function q(h, k) here to k = 1/2h2

and k = 3/10h2 and k = 9/10h2. We see in this figure clearly that

the restrictions of the function to these curves are functions that have

different limits in 0.
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Figure 145. We see here a figure of the contour plot of the function

q(h, k). Many level curves of very different levels approach (0,0). This

looks discontinuous indeed.

15.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

15.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

15.8 Overview

f(x,y) =















x2 |y|5/4

x4 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).



www.mathandphoto.eu. Exercise Notes 235

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

15.9 One step further

We have used in the calculations for differentiability that we had some

magical curves k = λh2 which behaved very strangely when mapped by

q(h, k). We want to see what is going on with these curves. Let us define

the 3-dimensional curve in parametric form that projects in the (h, k)-
plane to our curve k = λh2 where we use λ = 1: (x(t),y(t), z(t)) =
(t, λ t2, f (t, λ t2)) =

(

t, λ t2, |λ t
2|5/4

(λ2+1) t2

)

.

This curve lies completely in the surface defined by the function. It is

clear that the tangent vector lies in the tangent plane if the function is

differentiable. Now we have a candidate tangent plane, we draw that and

draw also the curve.

We remark that the composition f(x(t),y(t)) must be differentiable if

f itself is differentiable because x(t) and y(t) are differentiable. We

want to draw this curve to see if it is differentiable. So we must have

that the curve

(x(t),y(t), z(t)) =


t, λ t2,
λ 4

√

λ t2

λ2 + 1





is differentiable. We take a look at the following figure.
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Figure 146. The curve is not even differentiable in t = 0. So we cannot

even talk about tangency. There is no tangent line to draw. We have

used λ = 1 in this figure.

••••
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Exercise 16.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) = 3

√

x2y.

16.1 Continuity

We investigate continuity. This function is composed from classical

functions that are already proven in the theory of being continuous. So

we do not have to prove anything more. The function is continuous.

Figure 147. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 148. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

16.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.
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Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

16.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

3

√

h2u2 3

√

hv

h

= 3

√

u2 3

√

v.

So the directional derivatives do always exist.

Figure 149. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) = (1/
√

2,1/
√

2). We have

plotted here the function f(hu,hv).

16.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.
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Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =



















2
3

√

y

3
3

√

x
x ≠ 0

0 x = 0.

The partial derivative to y is:

∂f

∂y
(x,y) =















x2/3

3y2/3
y ≠ 0

0 y = 0.

We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

It is clear that the partial derivatives | ∂f∂x | and | ∂f∂y | are not bounded in

any neighbourhood of (0,0).

Because at least one and actually in this case two partial derivatives are

unbounded in any neighbourhood of (0,0), we do not have an alternative

proof for the continuity.

Figure 150. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the unboundedness from this picture.
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Figure 151. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the unboundedness from this picture.

16.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 152. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane does not fit the function very nicely. It is indeed no tan-

gent plane following our calculations. It fits nicely the coordinate axes

but that is always the case. But on these axes, the function behaviour is

vertical to the tangent plane. We will have to rely on the further calcula-

tions.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 153. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) do not sweep out a nice

ellipse lying in one plane! This is really bad news for differentiability.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =



















3

√

h2 3

√

k
√

h2 + k2
if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We restrict the function q(h, k) to the continuous curves with equations

k = λh. We observe then that

q
∣

∣

k=λh(h, k) =























q(h, λh) =
3

√

h2 3

√

hλ
√

h2λ2 + h2
=

sgn(h) 3

√

λ
√

λ2 + 1
if h ≠ 0;

0 if h = 0.

We see that these restricted functions have no limits. But if q(h, k) is

continuous, all these limit values should be q(0,0) = 0. So this function

q(h, k) is not continuous in (0,0). The function f(x,y) is not differen-

tiable in (0,0).
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Figure 154. We see here a three dimensional figure of the graph of the

function q(h, k). The vertical line above (0,0) looks suspicious. This

does not seem to be a graph of a continuous function.

Figure 155. We have restricted the function q(h, k) here to k = 1/2h
and k = 3/10h and k = 9/10h. We see in this figure clearly that the re-

strictions of the function to these lines are functions that have different

limits in 0.
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Figure 156. We see here a figure of the contour plot of the function

q(h, k). Many level curves of very different levels approach (0,0). This

looks discontinuous indeed.

16.6 Alternative proof of differentiability (optional)

The function is not differentiable, so this is irrelevant. We have an alter-

native proof of the non differentiability.

Suppose that we already met in the course the differentiation rule of the

composition of two differentiable functions. This is also called the chain

rule. Then we have proven the following. If the function is differentiable

in (a, b), then the directional derivative can be calculated is follows.

D(u,v)f(a, b) =
∂f

∂x
(a, b)u+ ∂f

∂y
(a,b)v.

Important remark. This formula is only valid if the function is differen-

tiable. One of the most common mistakes is that one uses this formula

in the case of non differentiability. It seems to be very easy to calculate

quickly the partial derivatives if they exist and then use this formula

without checking differentiability but it is alas wrong.



www.mathandphoto.eu. Exercise Notes 248

We have calculated the directional derivatives and we saw that

Du,vf(0,0) = u2/3 v1/3.

and this is certainly not the linear function in u and v which we should

have in the case of differentiability. So we conclude that the function is

not differentiable.

16.7 Continuity of the partial derivatives

This is irrelevant. The function is not differentiable.

16.8 Overview

f(x,y) = 3

√

x2y.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

16.9 One step further

We have met the magical curves k = λh when investigating the differen-

tiability. We want to see what is really going on there. Let us take a look

at the curve

(x(t),y(t), z(t)) = (t, λt, f (t, λt)) =
(

t, λ t, t
3
√

λ
)

.

This curve projects to the curve k = λh on the (h, k)-plane. Let us

calculate the tangent vector in t = 0 of this curve. This is
(

1, λ, 3

√

λ
)

.

We will draw this situation. The tangent vector will be a vector in the

tangent plane if the function is differentiable.
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Figure 157. We see here a figure of the candidate tangent plane and the

curve with equation (x(t),y(t), z(t)) = (t, λ t, f (t, λ t)). The tangent

vector is on this line. We see that this line intersects the candidate tan-

gent plane transversally and not tangentially.

••••
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Exercise 17.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x2y sin

(

1

x

)

if x ≠ 0,

0 if x = 0.

17.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

x2y sin

(

1

x

)

− 0

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

x2y sin

(

1

x

)∣

∣

∣

∣

≤ x2 |y|
∣

∣

∣

∣

sin

(

1

x

)∣

∣

∣

∣

≤
√

x2 +y2
2√

x2 +y2

≤
√

x2 +y2
3

.

It is sufficient to take δ = ϵ1/3. We can find a δ, so we conclude that the

function is continuous.

Figure 158. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 159. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

17.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.
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So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

17.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

h2u2 v sin

(

1

hu

)

= 0.

We have supposed in the last limit that u ≠ 0. We have already calcu-

lated that case in the previous section on partial derivatives.

So the directional derivatives do always exist.

Figure 160. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

17.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we
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have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

We are going to take a look at the partial derivative to x. We investigate

first the existence of the partial derivatives in a point (0, b) where b is

close to 0. We consider the following function in (0, b).

f(h, b) =











bh2 sin
(

1

h

)

if h ≠ 0,

0 if h = 0.

Because limh→0 bh2 sin
(

1

h

)

= 0 = f(0, b), we have that the function is

continuous. We have

∂f

∂x
(0, b) = lim

h→0

f(h, b)− f(0, b)
h

= lim
h→0

bh sin

(

1

h

)

= 0.

We see that the derivative to x exists in (0, b). The derivative in the

Y -direction is immediately calculated because of the definition of this

function. It is 0.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =











y
(

2x sin
(

1

x

)

− cos
(

1

x

))

if x ≠ 0,

0 if x = 0.

The partial derivative to y is:

∂f

∂y
(x,y) =











x2 sin
(

1

x

)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.
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∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

y

(

2x sin

(

1

x

)

− cos

(

1

x

))∣

∣

∣

∣

≤ |y|
(

2 |x|
∣

∣

∣

∣

sin

(

1

x

)∣

∣

∣

∣

+
∣

∣

∣

∣

cos

(

1

x

)∣

∣

∣

∣

)

≤ |y| (2 |x| + 1)

≤
√

x2 +y2

(

2
√

x2 +y2 + 1

)

≤ 3
√

x2 +y2

≤ 3.

We have chosen the restriction to the neighbourhood
√

x2 +y2 < 1 and

that justifies the last step in the inequalities.

Let us try to prove that
∣

∣

∣

∂f
∂y (x,y)

∣

∣

∣ is bounded.

∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

x2 sin

(

1

x

)∣

∣

∣

∣

≤ x2

∣

∣

∣

∣

sin

(

1

x

)∣

∣

∣

∣

≤ x2

≤
√

x2 +y2
2

≤ 1.

We have chosen here the restriction to the neighbourhood defined by
√

x2 +y2 < 1 and that justifies the last step in the inequalities.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.
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Figure 161. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.

Figure 162. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture.
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17.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 163. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very nicely.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we
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know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.

Figure 164. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.
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We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =























h2 k sin

(

1

h

)

√

h2 + k2
if (h, k) ≠ (0,0) and h ≠ 0;

0 if (h, k) = (0,0) or h = 0

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

∣

h2 k sin
(

1

h

)

√

h2 + k2
− 0

∣

∣

∣

∣

∣

∣

< ϵ.
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We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h2 k sin

(

1

h

)

√

h2 + k2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
h2 |k|

∣

∣

∣

∣

∣

sin

(

1

h

)∣

∣

∣

∣

∣

√

h2 + k2

≤ h2 |k|
√

h2 + k2

≤

√

h2 + k2
2√

h2 + k2

√

h2 + k2

≤
√

h2 + k2
2

.

It is sufficient to take δ = ϵ1/2. We can find a δ, so we conclude that the

function q(h, k) is continuous.

Figure 165. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 166. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

17.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-
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tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

Let us try to prove the Lipschitz condition. We are going to use a well

known method.

|f(x1, y1)− f(x2, y2)|

= |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|.

We focus now on the first term |f(x1, y1) − f(x1, y2)|. We fix now x1

and look upon f(x1, y) as a function in one variable y . So it springs to

mind that we can estimate this by using Lagrange’s intermediate value

theorem. So we have

|f(x1, y1)− f(x1, y2)| =
∣

∣

∣

∣

∣

∂f

∂y
(x1, ξ)

∣

∣

∣

∣

∣

|y1 −y2|
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where ξ is a number in the open interval (y1, y2) if e.g. y1 ≤ y2. Remark

that we already have proven that the partial derivatives are bounded in

a neighbourhood, we can take that bound found for
∂f
∂y , say M2 and that

neighbourhood in this case also. So
∣

∣

∣

∂f
∂y (x1, ξ)

∣

∣

∣ ≤ M2. We work in a

completely analogous way for the second term |f(x1, y2) − f(x2, y2)|.
We have in that case

∣

∣

∣

∂f
∂x (ξ,y2)

∣

∣

∣ ≤ M1 where ξ is now a number in the

open interval (x1, x2) if e.g. x1 ≤ x2.

We take up our inequality again

|f(x1, y1)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|

≤ M2 |(y1 −y2)| +M1 |(x1 − x2)|

≤ M2

√

(x1 − x2)2 + (y1 −y2)2 +M1

√

(x1 − x2)2 + (y1 −y2)2

≤ (M1 +M2)
√

(x1 − x2)2 + (y1 −y2)2.

So this function is locally Lipschitz continuous. We have an alternative

proof for the differentiability.

17.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

We know that the first partial derivative exists and is equal to
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∂f

∂x
(x,y) =











y
(

2x sin
(

1

x

)

− cos
(

1

x

))

if x ≠ 0,

0 if x = 0.

We want to see if it is continuous or not.

We observe three cases. The first case is x ≠ 0. The second one is the

point (0,0). The last one is the points (0, b) where b ≠ 0.

For the first case x ≠ 0 we remark that we work there with classical

functions that are infinitely differentiable. There is no problem in that

case.

Let us start investigating the second case.

Discussion of the continuity of the first partial derivative in (0,0).
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove the inequality | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ. The problem is now to find a δ > 0 such that if the inequal-

ity
∥

∥(x,y)− (0,0)
∥

∥ < δ holds, it follows that | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ is

valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∂f

∂x
(x,y)− ∂f

∂x
(0,0)

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

y

(

2x sin

(

1

x

)

− cos

(

1

x

))∣

∣

∣

∣

≤ |y|
(

2 |x|
∣

∣

∣

∣

sin

(

1

x

)∣

∣

∣

∣

+
∣

∣

∣

∣

cos

(

1

x

)∣

∣

∣

∣

)

≤ |y| (2 |x| + 1)

≤
√

x2 +y2

(

2
√

x2 +y2 + 1

)

≤ 3
√

x2 +y2.

We have chosen here the restriction to the neighbourhood defined by
√

x2 +y2 < 1.

It is sufficient to take δ = ϵ/3. We can find a δ, so we conclude that the

function is continuous in (0,0).

We investigate now the third case. Let us define the following function

in (0, b), b ≠ 0 in the X-direction. This function equals

∂f

∂x
(h,b) =











2bh sin
(

1

h

)

− b cos
(

1

h

)

if h ≠ 0,

0 if h = 0.

We see that the first term in the main definition is certainly continuous

in h = 0. We doubt however the continuity of the second term. This

term equals

−b cos

(

1

h

)

.

We drop the non zero constant coefficient of the term and give it a name

g(h) = cos

(

1

h

)

.

This is a standard example of a non continuous function. We can be

more explicit though. Let us define a sequence hn = 1

2π n , n ∈ N0, that

converges to zero. We see that g(hn) = 1 and limn→∞ g(hn) = 1. We

define also another sequence hn = 2

π (4n+1) , n ∈ N0, that converges to
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zero. We see that g(hn) = 0 and limn→∞ g(hn) = 0. This is impossible if

g is continuous.

We conclude that the partial derivative to x is not continuous in any

neighbourhood of (0,0). We cannot apply this criterion for proving dif-

ferentiability.

Figure 167. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂x (x,y). This looks like a continuous function in

(0,0). There are grave doubts about the continuity in the points (0, b).
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Figure 168. We see here a figure of the contour plot of the
∂f
∂x (x,y). Only

level curves of level around 0 come close to (0,0). This is an indication

of continuity in (0,0) for this partial derivative. There are grave doubts

about the continuity in the points (0, b).

17.8 Overview

f(x,y) =















x2y sin

(

1

x

)

if x ≠ 0,

0 if x = 0.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no
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17.9 One step further

We want to know if this function is further uneventful from the point of

view of differentiability. Let us take a look at the second order partial

derivative

∂2f

∂x2
(x,y) =

y

(

(

2x2 − 1
)

sin

(

1

x

)

− 2x cos

(

1

x

))

x2
.

Let us take a look of a three dimensional plot of this second order partial

derivative of the function.

Figure 169. We see here a figure of the second order partial deriva-

tive
∂2f
∂x2 (x,y). It seems quite improbable that this second order partial

derivative is continuous. We stop however our investigations here and

leave this to the initiative of the interested reader.

••••
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Exercise 18.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =











xy
√

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

18.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∣

xy
√

x2 +y2
− 0

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

∣

xy
√

x2 +y2

∣

∣

∣

∣

∣

∣

≤ |x| |y|
√

x2 +y2

≤

√

x2 +y2
√

x2 +y2

√

x2 +y2

≤
√

x2 +y2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function is continuous.

Figure 170. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 171. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

18.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.
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So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

18.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

huv
√

h2 (u2 + v2)

= lim
h→0

sgn(h)
uv

√

u2 + v2
.

So the directional derivatives do not exist if uv ≠ 0. They only exist in

the X-direction and the Y -direction.

Figure 172. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). We see that there is no

tangent line in 0.

18.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.



www.mathandphoto.eu. Exercise Notes 275

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =















y3

(

x2 +y2
)3/2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
The partial derivative to y is:

∂f

∂y
(x,y) =















x3

(

x2 +y2
)3/2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.

∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

y3

(

x2 +y2
)3/2

∣

∣

∣

∣

∣

≤ |y|3
(

x2 +y2
)3/2

≤

√

x2 +y2
3

√

x2 +y2
3

≤ 1.

We can prove that
∣

∣

∣

∂f
∂y

∣

∣

∣ is bounded in an analogous way due to the

symmetry of the function definition.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.
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Figure 173. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.
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Figure 174. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture. We can

observe the high symmetry with the first partial derivative.

18.5 Differentiability

We have that some of the directional derivatives do not exist. Thus the

function is not differentiable. So it is futile to continue.

18.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

18.7 Continuity of the partial derivatives

This is irrelevant. The function is not differentiable.

18.8 Overview

f(x,y) =











xy
√

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).
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continuous yes

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 19.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x2y

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

19.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x2y

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

x2y

x2 +y2

∣

∣

∣

∣

∣

≤ x2 |y|
x2 +y2

≤

√

x2 +y2
2√

x2 +y2

√

x2 +y2
2

≤
√

x2 +y2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function is continuous.

Figure 175. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 176. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

19.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

19.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

u2 v

u2 + v2

= lim
h→0

u2 v.

We have in the last step made use of the normality of the vector (u,v).
So the directional derivatives do always exist.

Figure 177. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

19.4 Alternative proof of continuity (optional)
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This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =















2xy3

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
The partial derivative to y is:

∂f

∂y
(x,y) =



















x2
(

x2 −y2
)

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.

∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

2xy3

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ 2 |x| |y|3
(

x2 +y2
)2

≤
2
√

x2 +y2
√

x2 +y2
3

√

x2 +y2
4

≤ 2.
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Let us try to prove that
∣

∣

∣

∂f
∂y

∣

∣

∣ is bounded.

∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

x2
(

x2 −y2
)

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ x
2 |
(

x2 −y2
)

|
(

x2 +y2
)2

≤

√

x2 +y2
2
(

√

x2 +y2
2

+
√

x2 +y2
2
)

√

x2 +y2
4

≤ 2.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.

Figure 178. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.
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Figure 179. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture.

19.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 180. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very close on the axes. But there are seri-

ous doubts about the other directions. We are certainly worried.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 181. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) do not sweep out a nice

ellipse in the candidate tangent plane. The blue curve does not lie in a

plane. This is very bad news for the differentiability.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















h2 k
(

h2 + k2
)3/2 if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We restrict the function q(h, k) to the continuous curves with equations

k = λh. We observe then that

q
∣

∣

k=λh(h, k) =



















q(h, λh) = h3 λ
(

h2 λ2 + h2
)3/2 =

sgn(h)λ
(

λ2 + 1
)3/2 if h ≠ 0;

0 if h = 0.

We see that these restricted functions have no limits if λ ≠ 0. But if

q(h, k) is continuous, all these limit values should be q(0,0) = 0. So

this function q(h, k) is not continuous in (0,0). The function f(x,y) is

not differentiable in (0,0).
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Figure 182. We see here a three dimensional figure of the graph of the

function q(h, k). The vertical line above (0,0) looks suspicious. This

does not seem to be a graph of a continuous function.

Figure 183. We have restricted the function q(h, k) here to k = 1/2h
and k = 3/10h and k = 9/10h. We see in this figure clearly that the

restrictions of the function q(h, k) to these lines are functions that have

different limits in 0.
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Figure 184. We see here a figure of the contour plot of the function

q(h, k). Many level curves of very different levels approach (0,0). This

looks discontinuous indeed.

19.6 Alternative proof of differentiability (optional)

This section is irrelevant for this exercise, because the function is not

differentiable.

19.7 Continuity of the partial derivatives

This section is irrelevant for this exercise, because the function is not

differentiable.

19.8 Overview

f(x,y) =















x2y

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
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continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

19.9 One step further

We have met the magical curves k = λh when investigating the differen-

tiability. We want to see what is really going on there. Let us take a look

at the curve

(x(t),y(t), z(t)) = (t, λ t, f (t, λ t)) =
(

t, λ t,
λ t

λ2 + 1

)

.

This curve projects to the curve k = λh on the (h, k)-plane. Let us calcu-

late the tangent vector in t = 0 of this curve. This is a straight line and

the tangent vector
(

1, λ, λ
λ2+1

)

is on this line. But if f is differentiable,

then this tangent vector
(

1,1, 1

2

)

lies in the tangent plane. But we see

that this vector is not in the candidate tangent plane. So f cannot be

differentiable.
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Figure 185. We see here a figure of the candidate tangent plane and the

curve with equation (x(t),y(t), z(t)) = (t, λ t, f (t, λ t)). The tangent

vector is right upon on this line. We see that this line intersects the

candidate tangent plane transversally and not tangentially.

It can maybe be worthwhile to take a look at the gradient vector field.

We see that this gradient vector field exists in this case. But the gradient

vector field cannot be continuous because it implies that the function is

differentiable. So we wonder if we can find an indication for this fact.
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Figure 186. We made here the following sketch. We have drawn the

graphics of y = x in pink and y = 0.62x in cyan. We have sketched

the gradient vector field
(

∂f
∂x (x,y),

∂f
∂y (x,y)

)

which is not continuous as

can be seen as follows. Observe the gradient vector field on the pink

curve, these are the red vectors. The purple vector is the gradient vec-

tor in (0,0), which is (0,0). Observe the gradient vector field on the

cyan curve, these are the green vectors. The red vectors converge to a

vector with a non zero x-component. This component is equal to 1/2.

The green vectors converge to a vector that has an x-component that is

two times smaller then the x-component of the vector to which the red

vectors converge if x → 0. This is clearly impossible if the vector field

is continuous. Moreover, the x-component of the limit vector should in

both cases be 0 if the gradient vector field is continuous. We conclude

that this gradient vector field is not continuous. If it is continuous, then

the function is differentiable and that is not the case. Please note how-

ever that a sketch of the gradient vector field is inherently a sketch of

discrete data. So the utmost care must be taken in order to make it a

little bit trustworthy.

••••
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Exercise 20.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x3 +y3

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

20.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∣

x3 +y3

x2 +y2
− 0

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

∣

x3 +y3

x2 +y2
− 0

∣

∣

∣

∣

∣

∣

≤
|x|3 + |y|3

x2 +y2

≤

√

x2 +y2
3

+
√

x2 +y2
3

√

x2 +y2
2

≤
2
√

x2 +y2
3

√

x2 +y2
2

≤ 2
√

x2 +y2.

It is sufficient to take δ = ϵ/2. We can find a δ, so we conclude that the

function is continuous.

Figure 187. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 188. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

20.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = x if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

1

= 1.
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So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = y if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

1

= 1.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 1 and

∂f

∂y
(0,0) = 1.

20.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

u3 + v3

u2 + v2

= u3 + v3.

We remember for the last step that (u,v) is a normalised vector.

Figure 189. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

20.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.
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Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =



















x
(

x3 + 3xy2 − 2y3
)

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
The partial derivative to y is:

∂f

∂y
(x,y) =



















y
(

−2x3 + 3x2y +y3
)

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.

∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

x
(

x3 + 3xy2 − 2y3
)

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ |x|
(

|x|3 + 3 |x|y2 + 2 |y|3
)

(

x2 +y2
)2

≤

√

x2 +y2 6
√

x2 +y2
3

(

x2 +y2
)2

≤ 6
√

x2 +y2
2

≤ 6.

We have chosen here the restriction to the neighbourhood defined by
√

x2 +y2 < 1.

We are not going to prove that
∣

∣

∣

∂f
∂y

∣

∣

∣ is bounded. The proof can be given

in a similar way because of symmetry considerations.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.
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Figure 190. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.

Figure 191. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture.
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20.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 192. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function quite nicely at first sight.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we
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know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.

Figure 193. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) do not sweep out a nice

ellipse lying in one plane! The blue curve should be a nice ellipse lying in

the candidate tangent plane in the case of differentiability. This is very

bad news for differentiability.

We are going to define the quotient for this function.
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We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















− hk(h+ k)
(

h2 + k2
)3/2 if (h, k) ≠ (0,0);

0 if (h, k) = (0,0).

is continuous in (0,0).

We restrict the function q(h, k) to the continuous curves with equations

k = λh. We observe then that

q
∣

∣

k=λh(h, k) =



























































q(h, λh)

= −
h3 λ (λ+ 1)

(

h2
(

λ2 + 1
))3/2

= −
sgn(h)λ (λ+ 1)
((

λ2 + 1
))3/2

if h ≠ 0;

0 if h = 0.
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We see that these restricted functions have different limits. But if q(h, k)
is continuous, all these limit values should be q(0,0) = 0. So this func-

tion q(h, k) is not continuous in (0,0). The function f(x,y) is not dif-

ferentiable in (0,0).

Figure 194. We see here a three dimensional figure of the graph of the

function q(h, k). The vertical line above (0,0) looks suspicious. This

does not seem to be a graph of a continuous function.
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Figure 195. We have restricted the function q(h, k) here to k = 1/2h
and k = 3/10h and k = 9/10h. We see in this figure clearly that the

restrictions of the function to these lines are functions that have no

limits in 0.
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Figure 196. We see here a figure of the contour plot of the function

q(h, k). Many level curves of very different levels approach (0,0). This

looks discontinuous indeed.

Alternative proof for the non differentiability
Suppose that we already met in the course the differentiation rule of the

composition of two differentiable functions. This is also called the chain

rule. Then we have proven the following. If the function is differentiable

in (a, b), then the directional derivative can be calculated is follows.

D(u,v)f(a, b) =
∂f

∂x
(a, b)u+ ∂f

∂y
(a,b)v.

Important remark. This formula is only valid if the function is differ-

entiable. One of the most common mistakes is that one uses this for-

mula in the case of non differentiability. It seems to be easy to calculate

quickly the partial derivatives if they exist and then use this formula.

We have calculated the directional derivatives and we saw that

D(u,v)f(a, b) = u3 + v3

and this is certainly not the linear function in u and v which we should
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have in the case of differentiability. So we conclude that the function is

not differentiable.

20.6 Alternative proof of differentiability (optional)

This section is irrelevant for this exercise, because the function is not

differentiable.

20.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

20.8 Overview

f(x,y) =















x3 +y3

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

20.9 One step further

We are interested in the magical curves k = λh which we used in the

proof of non differentiability.

Let us define a plane curve β(t) = (t, λ t). This curve goes through (0,0)
and is differentiable. Now we take the space curve that projects to β(t):

α(t) = (t, λt, f (t, λt)) =
(

t, λ t, (
λ3+1) t
λ2+1

)

. This curve lies on the surface

defined by the function f . We see that this curve is differentiable, but

remark that this is not guaranteed because f is not differentiable!

We calculate the derivative in t = 0.
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α′(0) =
(

1, λ,
λ3 + 1

λ2 + 1

)

.

We draw the curve, the tangent line and the candidate tangent plane.

Figure 197. We see here a figure of the candidate tangent plane. The

tangent line is drawn in red and completely covers the curve which is

also a line in this case. We see that the tangent line is not in the can-

didate tangent plane. It intersects the tangent plane transversally and

not tangentially. So the candidate tangent plane is not a tangent plane.

The yellow point lies on the candidate tangent plane. We have drawn

that yellow point in order to see more clearly that the tangent line is not

on the candidate tangent plane. We conclude that the candidate tangent

plane is not a tangent plane. The function is not differentiable. The fig-

ure is made with λ = 1/2.

It can maybe be worthwhile to take a look at the gradient vector field.

We see that this gradient vector field exists in this case. But the gradient
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vector field cannot be continuous because it implies that the function is

differentiable. So we wonder if we can find an indication for this fact.

Figure 198. We made here the following sketch. We have drawn the

graphics of y = −2x in pink and y = 1.16x in cyan. We have sketched

the gradient vector field
(

∂f
∂x (x,y),

∂f
∂y (x,y)

)

which is not continuous as

can be seen as follows. Observe the gradient vector field on the pink

curve, these are the red vectors. The purple vector is the gradient vector

in (0,0). Observe the gradient vector field on the cyan curve, these are

the green vectors. The red vectors converge to a vector with a non zero

x-component. This component is 32/25. The green vectors converge

to a vector that has an x-component that is two times smaller then the

x-component of the vector to which the red vectors converge if x → 0.

This is clearly impossible if the vector field is continuous. Moreover, the

x-component of the limit vector should in both cases be 1 if the gradient

vector field is continuous. We conclude that this gradient vector field is

not continuous. The function is differentiable in that case, which it is

not. Please note however that a sketch of the gradient vector field is

inherently a sketch of discrete data. So the utmost care must be taken

in order to make it a little bit trustworthy.

••••
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Exercise 21.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x3y

x6 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

21.1 Continuity

We restrict the function to the continuous curves with equations y =
λx3. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx) = λx6

λ2x6 + x6
= λ

λ2 + 1
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 199. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. Please note

that the graphical computing machine was not able to close the gap suf-

ficiently. This does not seem to be a graph of a continuous function.



www.mathandphoto.eu. Exercise Notes 313

Figure 200. We have restricted the function here to y = 1/2x3 and

y = 3/10x3 and y = 9/10x3. We see in this figure clearly that the re-

strictions of the function to these lines are functions that have different

limits in 0.
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Figure 201. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

21.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

21.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

hu3 v

h4u6 + v2

= 0.

This limit calculation is valid if v ≠ 0 but we have covered that case

before.

So the directional derivatives do always exist.

Figure 202. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). The slope of the tangent in

0 is indeed 0.
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21.4 Alternative proof of continuity (optional)

Irrelevant. The function is not continuous.

21.5 Differentiability

Irrelevant. The function is not continuous.

21.6 Alternative proof of differentiability (optional)

No. The function is not continuous and not differentiable.

21.7 Continuity of the partial derivatives

Irrelevant. The function is not continuous and not differentiable.

21.8 Overview

f(x,y) =















x3y

x6 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous no

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

••••
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Exercise 22.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x5y

x8 +y4
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

22.1 Continuity

We restrict the function to the continuous curves with equations y =
λx3. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx3) = λx8

λ4x12 + x8
= λ

λ4x4 + 1
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.



www.mathandphoto.eu. Exercise Notes 319

Figure 203. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 204. We have restricted the function here to y = 1/2x3 and

y = 3/10x3 and y = 9/10x3. We see in this figure clearly that the re-

strictions of the function to these lines are functions that have different

limits in 0.
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Figure 205. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

22.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =











f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

22.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

hu5 v

h4u8 + v4

= 0.

This calculation is only valid if v ≠ 0. But we covered that case before.

So the directional derivatives do always exist.

Figure 206. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). The slope of the tangent

line in 0 is horizontal.

22.4 Alternative proof of continuity (optional)

Irrelevant. The function is not continuous.
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22.5 Differentiability

The function is not differentiable because it is not continuous.

22.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

22.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

22.8 Overview

f(x,y) =















x5y

x8 +y4
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous no

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

••••
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Exercise 23.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x5 +y4

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

23.1 Continuity

We restrict the function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx) = λ4x4 + x5

(

λ2x2 + x2
)2 =

λ4 + x
(

λ2 + 1
)2 if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 207. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 208. We have restricted the function here to y = 1/2x and y =
13/10x and y = 2x. We see in this figure clearly that the restrictions

of the function to these lines are functions that have different limits in

0.



www.mathandphoto.eu. Exercise Notes 326

Figure 209. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

23.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = x if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

1

= 1.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 1 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

1

h

So the partial derivative to y does not exist.

We conclude that

∂f

∂x
(0,0) = 1

and the partial derivative to y does not exist.

23.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

Let us take a look at f(hu,hv).

f(hu,hv) =















hu5 + v4

(

u2 + v2
)2 if h ≠ 0,

0 if h = 0.

We see that this function is not continuous if v ≠ 0. But we covered that

case before.

So the directional derivatives not in the X-direction do not exist.

Figure 210. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). This function is not con-

tinuous in 0, thus it is not differentiable.

23.4 Alternative proof of continuity (optional)

Irrelevant. The function is not continuous.



www.mathandphoto.eu. Exercise Notes 329

23.5 Differentiability

The function is not differentiable because it is not continuous.

23.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

23.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

23.8 Overview

f(x,y) =















x5 +y4

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous no

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 24.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















xy2

√

x2 +y2
(

x2 +y4
) if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

24.1 Continuity

We restrict the function to the continuous curves with equations x =
λy3. We observe then that

f
∣

∣

x=λy3(x,y) =



















f(λy3, y) = λ sgn(y)
(

λ2y2 + 1
)
√

λ2y4 + 1
. if y ≠ 0;

0 if y = 0.

We see that these restricted functions have no limits. But if f(x,y) is

continuous, all these limit values should be f(0,0) = 0. So this function

f(x,y) is not continuous.
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Figure 211. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 212. We have restricted the function here to x = 1/2y3 and

x = y3 and x = 3/4y3. We see in this figure clearly that the restrictions

of the function to these lines are functions that have no limits in 0.
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Figure 213. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

24.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

24.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

We observe however that the function f(0+ hu,0+ hv) is not continu-

ous. Indeed

f(0+hu,0+hv) = huv2

√

h2 (u2 + v2) (h2v4 +u2)
= sgn(h)uv2

√

(u2 + v2) (h2 v4 +u2)
.

This function is not continuous if u ≠ 0 or v ≠ 0. But we covered these

cases before.

The consequence is that the function f(0+ hu,0+ hv) is not differen-

tiable.

So the directional derivatives do not always exist.

-0.5 0.5
H

-0.5

0.5

Z

Figure 214. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). This function is not con-

tinuous and thus not differentiable.

24.4 Alternative proof of continuity (optional)

The function is not continuous. So this is irrelevant.
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24.5 Differentiability

The function is not differentiable because it is not continuous.

24.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

24.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

24.8 Overview

continuous no

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 25.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =



















xy
(

x2 −y2
)

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

25.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

xy
(

x2 −y2
)

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

xy
(

x2 −y2
)

x2 +y2

∣

∣

∣

∣

∣

≤ |x| |y|
(

|x|2 + |y|2
)

x2 +y2

≤

√

x2 +y2
√

x2 +y2

(

√

x2 +y2
2

+
√

x2 +y2
2
)

√

x2 +y2
2

≤
2
√

x2 +y2
4

√

x2 +y2
2

≤ 2
√

x2 +y2
2

.

It is sufficient to take δ = (ϵ/2)1/2. We can find a δ, so we conclude that

the function is continuous.

Figure 215. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 216. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

25.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

25.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

huv
(

h2u2 − h2 v2
)

h2u2 + h2 v2

= lim
h→0

huv
(

u2 − v2
)

u2 + v2

= 0.

So the directional derivatives do always exist.

Figure 217. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) = (
√

3/2,1/2). The slope

is 0 in 0. We have plotted here the function f(hu,hv).
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25.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =



















y
(

x4 + 4x2y2 −y4
)

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
The partial derivative to y is:

∂f

∂y
(x,y) =















x5 − 4x3y2 − xy4

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.



www.mathandphoto.eu. Exercise Notes 342

∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

y
(

x4 + 4x2y2 −y4
)

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤

√

x2 +y2

(

√

x2 +y2
4

+ 4
√

x2 +y2
2√

x2 +y2
2

+
√

x2 +y2
4
)

√

x2 +y2
4

≤
6
√

x2 +y2
5

√

x2 +y2
4

≤ 6
√

x2 +y2

≤ 6.

We have chosen here the restriction to the neighbourhood defined by
√

x2 +y2 < 1.

Let us try to prove that
∣

∣

∣

∂f
∂y (x,y)

∣

∣

∣ is bounded.
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∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

x5 − 4x3y2 − xy4

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ |x|
5 + 4|x|3y2 + |x|y4

(

x2 +y2
)2

≤

√

x2 +y2
5

+ 4
√

x2 +y2
3√

x2 +y2
2

+
√

x2 +y2
√

x2 +y2
4

√

x2 +y2
4

≤
6
√

x2 +y2
5

√

x2 +y2
4

≤ 6
√

x2 +y2

≤ 6.

For the last step in the equalities we have chosen here the restriction to

the neighbourhood defined by
√

x2 +y2 < 1.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.
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Figure 218. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.

Figure 219. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture.
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25.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 220. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We have doubts about the differ-

entiability. We will have to follow our calculations.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we
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know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.

Figure 221. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not,

then there is no tangent plane and the function cannot be differentiable.

We see the red circle of the unit vectors (u,v) in the X-Y plane. We

see also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible

that the red circle is completely covered by the blue circle and then it is

made invisible. Four points on the blue circle are indicated by large red

points. We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice

ellipse in the candidate tangent plane. This is good news in favour of

differentiability.

We are going to define the quotient for this function.
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We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =



















hk
(

h2 − k2
)

(

h2 + k2
)3/2 if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)
is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

hk
(

h2 − k2
)

(h2 + k2)3/2
− 0

∣

∣

∣

∣

∣

< ϵ.
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We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

hk
(

h2 − k2
)

(h2 + k2)3/2

∣

∣

∣

∣

∣

≤

√

h2 + k2
√

h2 + k2

(

√

h2 + k2
2

+
√

h2 + k2
2
)

√

h2 + k2
3

≤
2
√

h2 + k2
4

√

h2 + k2
3

≤ 2
√

h2 + k2.

It is sufficient to take δ = ϵ/2. We can find a δ, so we conclude that the

function q(h, k) is continuous. The function f is differentiable.

Figure 222. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 223. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

25.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-
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tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

Let us try to prove the Lipschitz condition. We are going to use a well

known method.

|f(x1, y1)− f(x2, y2)|

= |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|.

We focus now on the first term |f(x1, y1) − f(x1, y2)|. We fix now x1

and look upon f(x1, y) as a function in one variable y . So it springs to

mind that we can estimate this by using Lagrange’s intermediate value

theorem. So we have

|f(x1, y1)− f(x1, y2)| =
∣

∣

∣

∣

∣

∂f

∂y
(x1, ξ)

∣

∣

∣

∣

∣

|y1 −y2|
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where ξ is a number lying in the open interval (y1, y2) if e.g. y1 ≤
y2. Remark that we already have proven that the partial derivatives are

bounded in a neighbourhood, we can take that bound found for
∂f
∂y , say

M2 and that neighbourhood in this case also. So
∣

∣

∣

∂f
∂y (x1, ξ)

∣

∣

∣ ≤ M2. We

work in a completely analogous way for the second term |f(x1, y2) −
f(x2, y2)|. We have in that case

∣

∣

∣

∂f
∂x (ξ,y2)

∣

∣

∣ ≤ M1 where ξ is now a

number in the open interval (x1, x2) if e.g. x1 ≤ x2.

We take up our inequality again

|f(x1, y1)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|

≤ M2 |(y1 −y2)| +M1 |(x1 − x2)|

≤ M2

√

(x1 − x2)2 + (y1 −y2)2 +M1

√

(x1 − x2)2 + (y1 −y2)2

≤ (M1 +M2)
√

(x1 − x2)2 + (y1 −y2)2.

So this function is locally Lipschitz continuous. We have an alternative

proof for the differentiability.

25.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

We know that the partial derivative to x exists and is equal to
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∂f

∂x
(x,y) =



















y
(

x4 + 4x2y2 −y4
)

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We want to see if it is continuous or not.

Discussion of the continuity of the first partial derivative in (0,0).
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that the inequality

| ∂f∂x (x,y) −
∂f
∂x (0,0)| < ϵ holds under certain conditions. The problem

is now to find a δ > 0 such that if
∥

∥(x,y)− (0,0)
∥

∥ < δ it follows that

| ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∂f

∂x
(x,y)− ∂f

∂x
(0,0)

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

y
(

x4 + 4x2y2 −y4
)

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ |y| (x
4 + 4x2y2 +y4)

(x2 +y2)2

≤

√

x2 +y2

(

√

x2 +y2
4

+ 4
√

x2 +y2
2√

x2 +y2
2

+
√

x2 +y2
4
)

√

x2 +y2
4

≤
6
√

x2 +y2
5

√

x2 +y2
4

≤ 6
√

x2 +y2.
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It is sufficient to take δ = ϵ/6. We can find a δ, so we conclude that the

function is continuous.

Figure 224. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂x (x,y). This looks like a continuous function.
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Figure 225. We see here a figure of the contour plot of the
∂f
∂x (x,y). Only

level curves of level around 0 come close to (0,0).

Discussion of the continuity of the second partial derivative in (0,0).

We know that the partial derivative to y exists and is equal to

∂f

∂y
(x,y) =















x5 − 4x3y2 − xy4

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We want to see if it is continuous or not.

Discussion of the continuity in (0,0).
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove the inequality | ∂f∂y (x,y)−
∂f
∂y (0,0)| < ϵ. The problem is now to find a δ > 0 such that if the inequal-

ity
∥

∥(x,y)− (0,0)
∥

∥ < δ holds, then it follows that | ∂f∂y (x,y)−
∂f
∂y (0,0)| <

ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we
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have that

∣

∣

∣

∣

∣

∂f

∂y
(x,y)− ∂f

∂y
(0,0)

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

x5 − 4x3y2 − xy4

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ |x|
5 + 4 |x|3y2 + |x|y4

(

x2 +y2
)2

≤

√

x2 +y2
5

+ 4
√

x2 +y2
3√

x2 +y2
2

+
√

x2 +y2
√

x2 +y2
4

√

x2 +y2
4

≤
6
√

x2 +y2
5

√

x2 +y2
4

≤ 6
√

x2 +y2.

It is sufficient to take δ = ϵ/6. We can find a δ, so we conclude that the

function is continuous.
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Figure 226. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂y (x,y). This looks like a continuous function.
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Figure 227. We see here a figure of the contour plot of the
∂f
∂y (x,y).

Only level curves of level around 0 come close to (0,0).

25.8 Overview

f(x,y) =



















xy
(

x2 −y2
)

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous yes
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25.9 One step further

We want to know if this function is further uneventful from the point of

view of differentiability. Let us take a look at the second partial deriva-

tive

∂2f

∂x2
(x,y) = −4xy3

(

x2 − 3y2
)

(

x2 +y2
)3 .

Let us take a look of a three dimensional plot of this partial derivative

to y of the function.

Figure 228. We see here a figure of the second order partial deriva-

tive
∂2f
∂x2 (x,y). It seems quite improbable that this second order partial

derivative is continuous. We stop however our investigations here and

leave this to the initiative of the interested reader.

••••
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Exercise 26.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















y sin(x y)

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

26.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

y sin(x y)

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

y sin(x y)

x2 +y2

∣

∣

∣

∣

∣

≤ |y| | sin(x y)|
x2 +y2

≤ |y| |xy|
x2 +y2

≤ |y| |x| |y|
x2 +y2

≤

√

x2 +y2
√

x2 +y2
√

x2 +y2

√

x2 +y2
2

≤
√

x2 +y2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function is continuous.

Figure 229. We see here a three dimensional figure of the graph of the

function on a larger scale. This looks like a continuous function.
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Figure 230. We see here a three dimensional figure of the graph of the

function on a more local scale. This looks like a continuous function.
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Figure 231. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

26.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

26.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

v sin
(

h2uv
)

h2u2 + h2 v2

= lim
h→0

v sin
(

h2uv
)

h2uv

h2uv

h2u2 + h2 v2

= lim
h→0

uv2

u2 + v2

= uv2

u2 + v2

= uv2.

So the directional derivatives do always exist.
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Figure 232. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

26.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y)

=















x2y2 cos(x y)+y4 cos(x y)− 2xy sin(xy)
(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

The partial derivative to y is:
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∂f

∂y
(x,y)

=



























x3y cos(x y)+ x2 sin(x y)

+ xy3 cos(x y)−y2 sin(x y)
(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.

∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

x2y2 cos(x y)+y4 cos(x y)− 2xy sin(xy)
(

x2 +y2
)2

∣

∣

∣

∣

∣

≤

x2y2 | cos(x y)| +y4| cos(x y)|
+ 2 |x||y|| sin(xy)|

(

x2 +y2
)2

≤

√

x2 +y2
2√

x2 +y2
2

+
√

x2 +y2
4

+ 2
√

x2 +y2
√

x2 +y2
√

x2 +y2
√

x2 +y2

√

x2 +y2
4

≤
4
√

x2 +y2
4

√

x2 +y2
4

≤ 4.

Let us try to prove that
∣

∣

∣

∂f
∂y

∣

∣

∣ is bounded.
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∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

x3y cos(x y)+ x2 sin(x y)+ xy3 cos(x y)−y2 sin(x y)
(

x2 +y2
)2

∣

∣

∣

∣

∣

≤

|x|3 |y| | cos(x y)| + x2 | sin(x y)| + |x| |y|3| cos(x y)|
+y2 | sin(x y)|

(

x2 +y2
)2

≤

√

x2 +y2
3√

x2 +y2 +
√

x2 +y2
2√

x2 +y2
√

x2 +y2

+
√

x2 +y2
√

x2 +y2
3

+
√

x2 +y2
2

|
√

x2 +y2
√

x2 +y2

√

x2 +y2
4

≤
4
√

x2 +y2
4

√

x2 +y2
4

≤ 4.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.
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Figure 233. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.

Figure 234. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture.
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26.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 235. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane does not fit the function very nicely. There is not enough

flatness in a neighbourhood of (0,0). It is indeed no tangent plane fol-

lowing our calculations.

We perform now our second visual check. We can take a look at it in
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another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.

Figure 236. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not,

then there is no tangent plane and the function cannot be differentiable.

We see the red circle of the unit vectors (u,v) in the X-Y plane. We

see also the blue curve containing the vectors (u,v,D(u,v)(0,0)). It is

possible that the red circle is completely covered by the blue circle and

then it is made invisible. Four points on the blue circle are indicated by

large red points. We see here that the vectors (u,v,D(u,v)(0,0)) do not

sweep out a nice ellipse lying in one plane! This is very bad news for

differentiability.

We are going to define the quotient for this function.
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We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0).

We restrict the function q(h, k) to the continuous curves with equations

k = λh. We observe then that

q
∣

∣

k=λh(h, k) =























q(h, λh) =
hλ sin

(

h2λ
)

|h|3
(

λ2 + 1
)3/2 if h ≠ 0;

0 if h = 0.

Let us calculate the limit

lim
h→0

q(h, λh) = lim
h→0

hλ sin
(

h2 λ
)

|h|3 (h2λ)

(

h2 λ
)

(λ2 + 1)3/2

= lim
h→0

hλ

|h|3

(

h2 λ
)

(λ2 + 1)3/2

= lim
h→0

sgn(h)λ2

(λ2 + 1)3/2
.
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This limit does not exist if λ ≠ 0. But if q(h, k) is continuous, all these

limit values should be q(0,0) = 0. So this function q(h, k) is not contin-

uous in (0,0). The function f(x,y) is not differentiable in (0,0).

Figure 237. We see here a three dimensional figure of the graph of the

function q(h, k). The vertical line above (0,0) looks suspicious. This

does not seem to be a graph of a continuous function.
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Figure 238. We have restricted the function q(h, k) here to k = 1/2h
and k = 3/10h and k = 9/10h. We see in this figure clearly that the re-

strictions of the function to these lines are functions that have different

limits in 0.



www.mathandphoto.eu. Exercise Notes 374

Figure 239. We see here a figure of the contour plot of the function

q(h, k). Many level curves of very different levels approach (0,0). This

looks discontinuous indeed.

Alternative proof for the non differentiability
Suppose that we already met in the course the differentiation rule of the

composition of two differentiable functions. This is also called the chain

rule. Then we have proven the following. If the function is differentiable

in (a, b), then the directional derivative can be calculated is follows.

D(u,v)f(a, b) =
∂f

∂x
(a, b)u+ ∂f

∂y
(a,b)v.

Important remark. This formula is only valid if the function is differ-

entiable. One of the most common mistakes is that one uses this for-

mula in the case of non differentiability. It seems to be easy to calculate

quickly the partial derivatives if they exist and then use this formula.

We have calculated the directional derivatives and we saw that

D(u,v)f(a, b) = uv2
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and this is certainly not the linear function in u and v which we should

have in the case of differentiability. So we conclude that the function is

not differentiable.

26.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

26.8 Overview

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

26.9 One step further

We have met the magical curves k = λh when investigating the differen-

tiability. We want to see what is really going on there. Let us take a look

at the curve

(x(t),y(t), z(t)) =















(t, λ t, f (t, λ t)) =
(

t, λ t,
λ sin(λ t2)
λ2t+t

)

if t ≠ 0,

(0,0,0) if t = 0.

This curve is certainly continuous because f is continuous. But it is not

unconditionally guaranteed that this curve is differentiable because f is

not differentiable. So we will check differentiability first. There can only

be a problem in the third component of the definition of the curve. We

check the derivative.
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z′(0) = lim
t→0

z(t)− z(0)
t − 0

= lim
t→0

λ sin
(

λ t2
)

t (λ2t + t)

= lim
t→0

λ sin
(

λ t2
)

λ t2

λ t2

t (λ2t + t)

= λ2

λ2 + 1
.

We see that the curve is differentiable and we have

(x′(t),y ′(t), z′(t)) =





























1, λ,
λ
(

2λ t2 cos
(

λt2
)

− sin
(

λt2
))

(

λ2 + 1
)

t2



 if t ≠ 0,

(

1, λ,
λ2

λ2 + 1

)

if t = 0.

We have for t = 0

(x′(0),y ′(0), z′(0)) =
(

1, λ,
λ2

λ2 + 1

)

.

The tangent vector is in the case λ = 1 equal to
(

1,1, 1

2

)

. But we see

that this vector is not in the candidate tangent plane. So f cannot be

differentiable.
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Figure 240. We see here a figure of the candidate tangent plane and

the curve with equation (x(t),y(t), z(t)) = (t, λ t, f (t, λ t)). It is not a

line, but it almost looks line a line. We see that this curve intersects the

candidate tangent plane transversally and not tangentially. This is not

possible if the function f is differentiable.

It can maybe be worthwhile to take a look at the gradient vector field.

We see that this gradient vector field exists in this case. But the gradient

vector field cannot be continuous because it implies that the function is

differentiable. So we wonder if we can find an indication for this fact.
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Figure 241. We made here the following sketch. We have drawn the

graphics of y = 1.5x in pink and y = −1.24x in cyan. We have sketched

the gradient vector field
(

∂f
∂x (x,y),

∂f
∂y (x,y)

)

which is not continuous as

can be seen as follows. Observe the gradient vector field on the pink

curve, these are the red vectors. Observe the gradient vector field on the

cyan curve, these are the green vectors. The purple vector is the gradient

vector in (0,0), which is (0,0). The red vectors converge to a vector with

a non zero x-component. This component is approximately equal to

0.27. The green vectors converge to a vector that have an x-component

that is two times smaller then the x-component of the vector to which

the red vectors converge if x → 0. This is clearly impossible if the vec-

tor field is continuous. Moreover, the x-component of the limit vector

should in both cases be zero if the gradient vector field is continuous.

We conclude that this gradient vector field is not continuous. The func-

tion is differentiable in that case, which it is not. Please note however

that a sketch of the gradient vector field is inherently a sketch of dis-

crete data. So the utmost care must be taken in order to make it a little

bit trustworthy.

••••
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Exercise 27.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















y3

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

27.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

y3

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

y3

x2 +y2

∣

∣

∣

∣

∣

≤ |y|3
x2 +y2

≤

√

x2 +y2
3

√

x2 +y2
2

≤
√

x2 +y2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function is continuous.

Figure 242. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 243. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

27.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = y if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

1

= 1.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 1.

27.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

v3

u2 + v2

= v3.

We remember that u2 + v2 = 1 because (u,v) is a unit vector.

So the directional derivatives do always exist.

Figure 244. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

27.4 Alternative proof of continuity (optional)
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This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =















− 2xy3

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
The partial derivative to y is:

∂f

∂y
(x,y) =















3x2y2 +y4

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.

∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

− 2xy3

(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ 2 |x| |y|3
(

x2 +y2
)2

≤
2
√

x2 +y2
√

x2 +y2
3

√

x2 +y2
4

≤ 2.

Let us try to prove that
∣

∣

∣

∂f
∂y

∣

∣

∣ is bounded.
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∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

≤ 3x2y2 +y4

(

x2 +y2
)2

≤
3
√

x2 +y2
2√

x2 +y2
2

+
√

x2 +y2
4

√

x2 +y2
4

≤
4
√

x2 +y2
4

√

x2 +y2
4

≤ 4.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.

Figure 245. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.
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Figure 246. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture.

27.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 247. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function quite nicely. But there are directions that

cause a little bit of doubt.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 248. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) do not sweep out a nice

ellipse lying in one plane! The blue curve is not in the candidate tangent

plane. This is almost a sure sign of non differentiability.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















− h2 k
(

h2 + k2
)3/2 if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We restrict the function q(h, k) to the continuous curves with equations

k = λh. We observe then that

q
∣

∣

k=λh(h, k)

=















q(h, λh) = − h3 λ
(

h2
(

λ2 + 1
))3/2 = −

sgn(h)λ
((

λ2 + 1
))3/2 if h ≠ 0;

0 if h = 0.

We see that these restricted functions have no limits. But if q(h, k) is

continuous, all these limit values should be q(0,0) = 0. So this function

q(h, k) is not continuous in (0,0). The function f(x,y) is not differen-

tiable in (0,0).
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Figure 249. We see here a three dimensional figure of the graph of the

function q(h, k). The vertical line above (0,0) looks suspicious. This

does not seem to be a graph of a continuous function.

Figure 250. We have restricted the function q(h, k) here to k = 1/2h
and k = 3/10h and k = 9/10h. We see in this figure clearly that the

restrictions of the function to these lines are functions that have no

limits in 0.
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Figure 251. We see here a figure of the contour plot of the function

q(h, k). Many level curves of very different levels approach (0,0). This

looks discontinuous indeed.

Alternative proof for the non differentiability
Suppose that we already met in the course the differentiation rule of the

composition of two differentiable functions. This is also called the chain

rule. Then we have proven the following. If the function is differentiable

in (a, b), then the directional derivative can be calculated is follows.

D(u,v)f(a, b) =
∂f

∂x
(a, b)u+ ∂f

∂y
(a,b)v.

Important remark. This formula is only valid if the function is differ-

entiable. One of the most common mistakes is that one uses this for-

mula in the case of non differentiability. It seems to be easy to calculate

quickly the partial derivatives if they exist and then use this formula.

But this is only a correct procedure if one is certain that the function is

differentiable.

We have calculated the directional derivatives and we saw that

D(u,v)f(a, b) = v3.
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and this is certainly not the linear function in u and v which we should

have in the case of differentiability. So we conclude that the function is

not differentiable.

27.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

27.8 Overview

f(x,y) =















y3

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

27.9 One step further

It can maybe be worthwhile to take a look at the gradient vector field.

We see that this gradient vector field exists in this case. But the gradient

vector field cannot be continuous because it implies that the function is

differentiable. So we wonder if we can find an indication for this fact.
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Figure 252. We made here the following sketch. We have drawn the

graphics of y = 1.5x in pink and y = 0.74x in cyan. We have sketched

the gradient vector field
(

∂f
∂x (x,y),

∂f
∂y (x,y)

)

which is not continuous as

can be seen as follows. Observe the gradient vector field on the pink

curve, these are the red vectors. Observe the gradient vector field on the

cyan curve, these are the green vectors. The purple vector is the gradi-

ent vector in (0,0). The red vectors converge to a vector with a non zero

x-component. This component is equal to −0.64. The green vectors

converge to a vector that has a x-component that is two times smaller

then the x-component of the vector to which the red vectors converge if

x → 0. This is clearly impossible if the vector field is continuous. More-

over, the x-component of the limit vector should in both cases be zero

if the gradient vector field is continuous. We conclude that this gradient

vector field is not continuous. The function is differentiable in that case,

which it is not. Please note however that a sketch of the gradient vector

field is inherently a sketch of discrete data. So the utmost care must be

taken in order to make it a little bit trustworthy.

••••
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Exercise 28.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =











(

x2 +y2
)

log
(

x2 +y2
)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

28.1 Continuity

We know from one variable calculus that limα→0α log(α) = 0. We can

use for this the theorem of de l’Hospital. The composition of continuous

functions is also continuous and this proves the continuity.

Figure 253. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 254. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

28.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = x2 log
(

x2
)

if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

h log
(

h2
)

= 0.

We can use the theorem of de l’Hospital for this. So the partial derivative

to x does exist.

Discussion of the partial derivative to y in (0,0).

We see that by rotational symmetry the partial derivatives are the same.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

28.3 Directional derivatives

By rotational symmetry, the directional derivatives are the same as in

the X-direction.

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= 0.

So the directional derivatives do always exist.



www.mathandphoto.eu. Exercise Notes 397

Figure 255. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). We see that the slope in 0

is indeed zero.

28.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

The partial derivative to x is

∂f

∂x
(x,y) =











2x
(

log
(

x2 +y2
)

+ 1
)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We have

2x
(

log
(

x2 +y2
)

+ 1
)

= 2x log
(

x2 +y2
)

+ 2x.
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Now 2x is certainly continuous and thus bounded. So we are left with

showing that 2x log
(

x2 +y2
)

is bounded. Now log(x2) ≤ log(x2 +y2)
and if x2 + y2 < 1 and x > 0, we have x log(x2) ≤ x log(x2 + y2) and

consequently we have

|x log(x2)| ≥ |x log(x2 +y2)|.
Now by the theorem of de l’Hospital, we have that |x log(x2)| has a finite

limit in x = 0, so |x log(x2 + y2)| is bounded. By symmetry consider-

ations, this bound is valid for all directions. So the partial derivative

to x is bounded and again by symmetry considerations, all directional

derivatives are bounded by the same bound.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.

Figure 256. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.

We have by symmetry the same figure for the partial derivative to y .

28.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.
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Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 257. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). It is impossible to say if the candi-

date tangent plane is a good fit. It is indeed no tangent plane following

our calculations.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 258. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =











√

h2 + k2 log
(

h2 + k2
)

if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate the continuity. We see that we have essentially the func-

tion in one variable
√

α log(α) composed with the two variable function

α = h2+k2. Now the function with function definition
√

α log(α) is by de

l’Hospital continuous with value 0, we have by symmetry the continuity

of the quotient q(h, k). We give a plot of this situation.
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Figure 259. We see here a figure of the graph of the function
√

α log(α).

Figure 260. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 261. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

28.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-
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tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

Let us try to prove the Lipschitz condition. We are going to use a well

known method.

|f(x1, y1)− f(x2, y2)|

= |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|.

We focus now on the first term |f(x1, y1) − f(x1, y2)|. We fix now x1

and look upon f(x1, y) as a function in one variable y . So it springs to

mind that we can estimate this by using Lagrange’s intermediate value

theorem. So we have

|f(x1, y1)− f(x1, y2)| =
∣

∣

∣

∣

∣

∂f

∂y
(x1, ξ)

∣

∣

∣

∣

∣

|y1 −y2|
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where ξ is a number lying in the open interval (y1, y2) if e.g. y1 ≤
y2. Remark that we already have proven that the partial derivatives are

bounded in a neighbourhood, we can take that bound found for
∂f
∂y , say

M2 and that neighbourhood in this case also. So
∣

∣

∣

∂f
∂y (x1, ξ)

∣

∣

∣ ≤ M2. We

work in a completely analogous way for the second term |f(x1, y2) −
f(x2, y2)|. We have in that case

∣

∣

∣

∂f
∂x (ξ,y2)

∣

∣

∣ ≤ M1 where ξ is now a

number in the open interval (x1, x2) if e.g. x1 ≤ x2.

We take up our inequality again

|f(x1, y1)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|

≤ M2 |(y1 −y2)| +M1 |(x1 − x2)|

≤ M2

√

(x1 − x2)2 + (y1 −y2)2 +M1

√

(x1 − x2)2 + (y1 −y2)2

≤ (M1 +M2)
√

(x1 − x2)2 + (y1 −y2)2.

So this function is locally Lipschitz continuous. We have an alternative

proof for the differentiability.

28.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

∂f

∂x
(x,y) =











2x
(

log
(

x2 +y2
)

+ 1
)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
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We want to see if it is continuous or not.

Discussion of the continuity of the first partial derivative in (0,0).

Because

2x
(

log
(

x2 +y2
)

+ 1
)

= 2x log
(

x2 +y2
)

+ 2x

it is enough to prove the continuity of 2x log
(

x2 +y2
)

. The function

2x is indeed continuous.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove the inequality | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ. The problem is now to find a δ > 0 such that if the inequal-

ity
∥

∥(x,y)− (0,0)
∥

∥ < δ holds, it follows that | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ is

valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∂f

∂x
(x,y)− ∂f

∂x
(0,0)

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣2x log
(

x2 +y2
)∣

∣

∣ ≤ 2 |x|
∣

∣

∣log
(

x2 +y2
)∣

∣

∣

≤ 2 (x2 +y2)
∣

∣

∣log
(

x2 +y2
)∣

∣

∣ .

The last function in our inequalities is the composition of 2α log(α) with

α = (x2 +y2) and these are continuous functions in 0 with value 0. We

can for example use de l’Hospital to prove it.

We can find a δ, so we conclude that the partial derivative to x is con-

tinuous.

We can similarly prove that the partial derivative to y is continuous. So

we have an alternative proof for the differentiability.
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Figure 262. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂x (x,y). This looks like a continuous function.
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Figure 263. We see here a figure of the contour plot of
∂f
∂x (x,y). Only

level curves of level around 0 come close to (0,0).

28.8 Overview

f(x,y) =











(

x2 +y2
)

log
(

x2 +y2
)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous yes
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28.9 One step further

We want to know if this function is further uneventful from the point of

view of differentiability. Let us take a look at the second partial deriva-

tive

∂2f

∂x2
(x,y) = 2

((

x2 +y2
)

log
(

x2 +y2
)

+ 3x2 +y2
)

x2 +y2
.

Let us take a look of a three dimensional plot of this partial derivative

to y of the function.

Figure 264. We see here a figure of the second order partial derivative
∂2f
∂x2 (x,y). It seems quite improbable that this partial derivative to y is

continuous. It seems to be unbounded. We stop however our investiga-

tions here and leave this to the initiative of the interested reader.

••••



www.mathandphoto.eu. Exercise Notes 410

Exercise 29.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x2 +y2

x2 +y4
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

29.1 Continuity

We restrict the function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx) = λ2 + 1

λ4x2 + 1
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 265. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 266. We have restricted the function here to y = 1/2x and y =
3/10x and y = 9/10x. We see in this figure clearly that the restrictions

of the function to these lines are functions that have different limits in

0.
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Figure 267. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

29.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 1 if x ≠ 0;

0 if x = 0.

We take a look at this function and see that it is not continuous.

So the partial derivative to x does not exists

Discussion of the partial derivative to y in (0,0).

We observe that
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f
∣

∣

x=0(x,y) =















f(0, y) = 1

y2
if y ≠ 0;

0 if y = 0.

This function is not bounded in any neighbourhood of y = 0 and is not

continuous.

So the partial derivative to y does not exist.

We conclude that the partial derivative to x does not exist. and that the

partial derivative to y does not exist.

29.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

We observe that

f(0+ hu,0+ hv) =



















u2 + v2

h2v4 +u2
if h ≠ 0;

0 if h = 0.

The function is not continuous if u ≠ 0. We have covered the exceptional

case u = 0 before.

So the directional derivatives do not always exist.



www.mathandphoto.eu. Exercise Notes 414

-0.5 0.5
V

0.5

1.0

1.5

2.0

Z

Figure 268. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

29.4 Alternative proof of continuity (optional)

Irrelevant. The function is not continuous.

29.5 Differentiability

The function is not continuous, so it cannot be differentiable.

29.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

29.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability. Irrele-

vant. The function is not differentiable.
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29.8 Overview

f(x,y) =















x2 +y2

x2 +y4
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous no

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 30.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x2y2

x2y2 + (x −y)2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

30.1 Continuity

We restrict the function to the continuous curves with equations y =
x + λx2. We observe then that

f
∣

∣

y=x+λx2(x,y)

=























x2
(

λx2 + x
)2

λ2x4 + x2
(

λx2 + x
)2 =

(λx + 1)2

λ2
(

x2 + 1
)

+ 2λx + 1
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 269. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 270. We have restricted the function here to y = x + 1/2x2 and

y = x + 3/10x2 and y = x + 9/10x2. We see in this figure clearly that

the restrictions of the function to these continuous curves are functions

that have different limits in 0.
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Figure 271. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

30.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

30.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

hu2 v2

u2 (h2 v2 + 1)− 2uv + v2

= 0.

This calculation is only valid if u ≠ v .

If u = v , then we have

f(0+ hu,0+ hu) =











1 if u ≠ 0,

0 if u = 0.

This function is not continuous and the directional derivative does not

exist.

So the directional derivatives do not always exist.
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Figure 272. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

√

3/2,1/2

)

. The slope

is 0 in 0. We have plotted here the function f(hu,hv)

30.4 Alternative proof of continuity (optional)

Irrelevant. The function is not continuous.

30.5 Differentiability

The function is not continuous. So it is not differentiable.

30.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

30.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

30.8 Overview

f(x,y) =















x2y2

x2y2 + (x −y)2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
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continuous no

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 31.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x2

(

sin

(

1

x +y

)

+ 2

)

if x +y ≠ 0,

0 if x +y = 0.

31.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x2

(

sin

(

1

x +y

)

+ 2

)

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

x2

(

sin

(

1

x +y

)

+ 2

)∣

∣

∣

∣

∣

≤ x2

∣

∣

∣

∣

∣

(

sin

(

1

x +y

)

+ 2

)∣

∣

∣

∣

∣

≤ x2

(∣

∣

∣

∣

∣

sin

(

1

x +y

)∣

∣

∣

∣

∣

+ 2

)

≤ 3x2

≤ 3
√

x2 +y2
2

.

It is sufficient to take δ = (ϵ/3)1/2. We can find a δ, so we conclude that

the function is continuous.

Figure 273. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 274. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

31.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =



















f(x,0) = x2

(

sin

(

1

x

)

+ 2

)

if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

h

(

sin

(

1

h

)

+ 2

)

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.
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Figure 275. We see here a figure of the graph of the function restricted to

the horizontal X-axis through (0,0). We can imagine that this function

has a tangent line in 0. We have plotted here the function f(h,0).

31.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

hu2

(

sin

(

1

hu+ hv

)

+ 2

)

= 0.
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So the directional derivatives do always exist.

Figure 276. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). One can imagine the exis-

tence of a tangent line in 0.

31.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Looking for a function definition of the partial derivatives.

We have to be able to define the partial derivatives in at least one neigh-

bourhood around (0,0). We have no problems with points that are in

the interior of the definition domains of the classical functions. We have

there the classical calculation rules for defining those functions and the

partial derivatives always exist there and are even continuous.

But in our case, we have to investigate the points that are in exceptional

subsets in the definition of the function.
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In this case these are the points (a,−a).

Let us look at a point (a,−a) with a ≠ 0. We are going to investigate the

function in (a,−a) in the X-direction. This function is defined by

f(a+ h,−a) =











(a+ h)2
(

sin
(

1

h

)

+ 2
)

if h ≠ 0,

0 if h = 0.

We see that this function is not continuous in h = 0, so the partial

derivative to x does not exist if a ≠ 0. Whatever the position of the

green isolated point, see the graph on the following figure, would be on

the Y -axis, it could never be a limit because there is an infinite set of

accumulation points on the Y -axis. The conclusion is that the partial

derivative
∂f
∂x (a,−a) does not exist for all a with a ≠ 0. The graph

of the function has on the Y -axis no unique accumulation point unless

of course a = 0 and in that case the function is suddenly dramatically

squeezed by the factor h2. But we covered this exceptional case before

because if a is 0, then this calculation is that of a partial derivative.

We conclude that there is no alternative proof possible following these

lines explained at the start. There is no neighbourhood of (0,0) having

all partial derivatives defined.

We consult a figure for this observation.
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Figure 277. We see here a figure of the graph of the function restricted

to the line through (a,−a) with direction (1,0), this is the X-direction.

We have drawn this figure with the value a = 2. This is a figure of

the function with function definition f(a + h,−a). There is no unique

accumulation point possible on the Y -axis.

The partial derivatives do not all exist in any neighbourhood of (0,0). So

the partial derivatives cannot be defined in any neighbourhood of (0,0).
The conclusion is that an alternative proof following the lines described

at the start of this section cannot be given. Other alternative proofs can

of course exist.
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Figure 278. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

.

31.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 279. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function quite nicely.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 280. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =























h2

(

sin

(

1

h+ k

)

+ 2

)

√

h2 + k2
if (h, k) ≠ (0,0) and h+ k ≠ 0;

0 if (h, k) = (0,0) or h+ k = 0

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h2

(

sin

(

1

h+ k

)

+ 2

)

√

h2 + k2
− 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< ϵ.
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We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

h2
(

sin
(

1

h+k

)

+ 2
)

√

h2 + k2

∣

∣

∣

∣

∣

∣

≤
h2

(∣

∣

∣sin
(

1

h+k

)∣

∣

∣+ 2
)

√

h2 + k2

≤ h2 3
√

h2 + k2

≤
3
√

h2 + k2
2

√

h2 + k2

≤ 3
√

h2 + k2.

It is sufficient to take δ = ϵ/3. We can find a δ, so we conclude that the

function q(h, k) is continuous.

Figure 281. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 282. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

31.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-
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tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

We want to show that the partial derivative to x is unbounded. If this is

the case, then the function cannot be Lipschitz continuous because the

slopes have to be bounded if a function is Lipschitz continuous.

We calculate the partial derivative to x in a neighbourhood of (0,0) in

points not on the line x +y = 0. The derivative is there

∂f

∂x
(x,y) = −

x2 cos
(

1

x+y

)

(x +y)2 + 2x sin

(

1

x +y

)

+ 4x.

The second and third terms are continuous and bounded. So we take a

look at the first term and call this h(x,y).

h(x,y) = −
x2 cos

(

1

x+y

)

(x +y)2 .

We think that this function h behaves very badly on curves tangent to

x +y = 0 in (0,0). We take the curve y = −x + x2. We calculate now

h(x,−x + x2) = −
cos

(

1

x2

)

x2
.

We see that this curve is not bounded. We can be a little bit more explicit

and define the sequence xn = 1√
2π
√
n

, n ∈ N0, converging to 0. Then

h(xn,−xn + x2
n) = −2nπ proving the unboundedness.

So we cannot apply this alternative criterion for differentiability.



www.mathandphoto.eu. Exercise Notes 438

31.7 Continuity of the partial derivatives

We have seen in section 4 that the partial derivatives are not defined in

any neighbourhood of (0,0). So we cannot use this particular alternative

criterion for continuity.

31.8 Overview

f(x,y) =















x2

(

sin

(

1

x +y

)

+ 2

)

if x +y ≠ 0,

0 if x +y = 0.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no

••••
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Exercise 32.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x sin

(

1

x

)

+y sin

(

1

y

)

if xy ≠ 0,

0 if x = 0 or y = 0.

32.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∣

x sin





1

x



+y sin





1

y



− 0

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

∣

x sin





1

x



+y sin





1

y





∣

∣

∣

∣

∣

∣

≤ |x|

∣

∣

∣

∣

∣

∣

sin





1

x





∣

∣

∣

∣

∣

∣

+ |y|

∣

∣

∣

∣

∣

∣

sin





1

y





∣

∣

∣

∣

∣

∣

≤ |x| + |y|

≤
√

x2 +y2 +
√

x2 +y2

≤ 2
√

x2 +y2.

It is sufficient to take δ = ϵ/2. We can find a δ, so we conclude that the

function is continuous.

Figure 283. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 284. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

32.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.



www.mathandphoto.eu. Exercise Notes 442

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

32.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

u sin

(

1

hu

)

+ v sin

(

1

hv

)

.

This directional derivative does not exist.

So the directional derivatives do not always exist.

Figure 285. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). We see that this function

has continuous behaviour in 0. But it is not differentiable in 0. This is a

classical example of non differentiability in one variable.

32.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we
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have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Looking for a definition of the partial derivatives.

We have to be able to define the partial derivatives in at least one neigh-

bourhood around (0,0). We have no problems with points that are in

the interior of the definition domains of the classical functions. We have

there the classical calculation rules for defining those functions and the

partial derivatives always exist there and are even continuous.

But in our case, we have to investigate the points that are in exceptional

subsets in the definition of the function.

In this case these are the points (a,0) and (0, b).

Let us look at a point (a,0) with a ≠ 0. We are going to investigate the

function in (a,0) in the Y -direction. This function is defined by

f(a,h) =











a sin
(

1

a

)

+ h sin
(

1

h

)

if h ≠ 0,

0 if h = 0.

We see that this function is continuous but not differentiable. The con-

clusion is that the partial derivative
∂f
∂y (a,0) does not exist for all a with

a ≠ 0.

We consult a figure for this observation.
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Figure 286. We see here a figure of the graph of the function restricted

to the line through (a,0) with direction (0,1), this is the Y -direction.

This function is not continuous. Thus it is not differentiable. The figure

is drawn with a = 2.

The partial derivatives do not all exist in any neighbourhood of (0,0). So

the partial derivatives cannot be defined in any neighbourhood of (0,0).
The conclusion is that an alternative proof following the lines described

at the start of this section cannot be given. Other alternative proofs can

of course exist.

We note also that a function can be perfectly differentiable, even as the

partial derivatives are not defined in any neighbourhood of (0,0). It

is though necessary that the partial derivative in the point (0,0) itself

does exist in order that the function is differentiable in (0,0). From this

viewpoint, the existence of the partial derivatives in a neighbourhood of

(0,0) is pure luxury.
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Figure 287. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the unboundedness from this picture.

32.5 Differentiability

There are directional derivatives that do not exist. Thus the function is

not differentiable. So it is futile to continue.

32.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

32.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

32.8 Overview

f(x,y) =















x sin

(

1

x

)

+y sin

(

1

y

)

if xy ≠ 0,

0 if x = 0 or y = 0.
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continuous yes

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 33.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x2 sin2

(

y

x

)

if x ≠ 0,

0 if x = 0.

33.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

x2 sin2

(

y

x

)

− 0

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

x2 sin2

(

y

x

)∣

∣

∣

∣

≤ x2

∣

∣

∣

∣

sin2

(

y

x

)∣

∣

∣

∣

≤ x2

≤
√

x2 +y2
2

.
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It is sufficient to take δ =
√

ϵ. We can find a δ, so we conclude that the

function is continuous.

Figure 288. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 289. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

33.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

33.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

hu2 sin2

(

v

u

)

= 0.

Remark that u ≠ 0. But we covered that case already while discussing

the partial derivatives.

So the directional derivatives do always exist.

Figure 290. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).
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33.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Looking for a definition of the partial derivatives. We have to be able

to define the partial derivatives in at least one neighbourhood around

(0,0). We have no problems with points that are in the interior of the

definition domains of the classical functions. We have there the classical

calculation rules for defining those functions and the partial derivatives

always exist there and are even continuous.

But in our case, we have to investigate the points that are in exceptional

subsets in the definition of the function.

In this case these are the points (0, b).

Let us look at a point (0, b) with b ≠ 0. We are going to investigate

the function in (0, b) in the X-direction. There is no problem in the Y -

direction. The function is there identically zero. This function is defined

by

f(h, b) =











h2 sin2
(

b
h

)

if h ≠ 0,

0 if h = 0.

We see that this function is obviously differentiable.

We have indeed

∂f

∂x
(0, b) = lim

h→0

f(h, b)− f(0, b)
h

= lim
h→0

h sin2

(

b

h

)

= 0.

We can use the squeeze method for this calculation. The conclusion is

that the partial derivative
∂f
∂x (0, b) does exist and equals zero for all b.
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Figure 291. We see here a figure of the graph of the function restricted

to the line through (0, b) with direction (1,0), this is the X-direction. We

have drawn the function f(h, b) We see that this function is continuous

and differentiable in h = 0. We have drawn this figure with the value

b = 1/3. This is a figure of the function with function definition f(h, b).

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =















2 sin

(

y

x

)(

x sin

(

y

x

)

−y cos

(

y

x

))

if x ≠ 0,

0 if x = 0.

The partial derivative to y is:

∂f

∂y
(x,y) =















x sin

(

2y

x

)

if x ≠ 0,

0 if x = 0.

We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.



www.mathandphoto.eu. Exercise Notes 455

∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

2 sin

(

y

x

)(

x sin

(

y

x

)

−y cos

(

y

x

))∣

∣

∣

∣

≤
∣

∣

∣

∣

2 sin

(

y

x

)∣

∣

∣

∣

∣

∣

∣

∣

(

x sin

(

y

x

)

−y cos

(

y

x

))∣

∣

∣

∣

≤ 2

(

|x|
∣

∣

∣

∣

sin

(

y

x

)∣

∣

∣

∣

+ |y|
∣

∣

∣

∣

cos

(

y

x

)∣

∣

∣

∣

)

≤ 2 (|x| + |y|)

≤ 2

(

√

x2 +y2 +
√

x2 +y2

)

≤ 4
√

x2 +y2

≤ 4.

We have for the last inequality chosen the neighbourhood defined by
√

x2 +y2 < 1.

Let us try to prove that
∣

∣

∣

∂f
∂y

∣

∣

∣ is bounded.

∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

x sin

(

2y

x

)∣

∣

∣

∣

≤ |x|

≤
√

x2 +y2

≤ 1.

We have for the last inequality chosen the neighbourhood defined by
√

x2 +y2 < 1.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.
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Figure 292. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.

Figure 293. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture.



www.mathandphoto.eu. Exercise Notes 457

33.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 294. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very nicely.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we
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know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.

Figure 295. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.
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We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =























h2 sin2

(

k

h

)

√

h2 + k2
if (h, k) ≠ (0,0) and h ≠ 0;

0 if (h, k) = (0,0) or h = 0

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

∣

h2 sin2
(

k
h

)

√

h2 + k2
− 0

∣

∣

∣

∣

∣

∣

< ϵ.
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We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

h2 sin2
(

k
h

)

√

h2 + k2

∣

∣

∣

∣

∣

∣

≤ h2

√

h2 + k2

≤

√

h2 + k2
2

√

h2 + k2

≤
√

h2 + k2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function q(h, k) is continuous.

Figure 296. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 297. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

33.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-
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tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

Let us try to prove the Lipschitz condition. We are going to use a well

known method.

|f(x1, y1)− f(x2, y2)|

= |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|.

We focus now on the first term |f(x1, y1) − f(x1, y2)|. We fix now x1

and look upon f(x1, y) as a function in one variable y . So it springs to

mind that we can estimate this by using Lagrange’s intermediate value

theorem. So we have

|f(x1, y1)− f(x1, y2)| =
∣

∣

∣

∣

∣

∂f

∂y
(x1, ξ)

∣

∣

∣

∣

∣

|y1 −y2|
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where ξ is a number lying in the open interval (y1, y2) if e.g. y1 ≤
y2. Remark that we already have proven that the partial derivatives are

bounded in a neighbourhood, we can take that bound found for
∂f
∂y , say

M2 and that neighbourhood in this case also. So
∣

∣

∣

∂f
∂y (x1, ξ)

∣

∣

∣ ≤ M2. We

work in a completely analogous way for the second term |f(x1, y2) −
f(x2, y2)|. We have in that case

∣

∣

∣

∂f
∂x (ξ,y2)

∣

∣

∣ ≤ M1 where ξ is now a

number in the open interval (x1, x2) if e.g. x1 ≤ x2.

We take up our inequality again

|f(x1, y1)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|

≤ M2 |(y1 −y2)| +M1 |(x1 − x2)|

≤ M2

√

(x1 − x2)2 + (y1 −y2)2 +M1

√

(x1 − x2)2 + (y1 −y2)2

≤ (M1 +M2)
√

(x1 − x2)2 + (y1 −y2)2.

So this function is locally Lipschitz continuous. We have an alternative

proof for the differentiability.

33.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

We know that the partial derivative to x exists and is equal to
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∂f

∂x
(x,y) =















2 sin

(

y

x

)(

x sin

(

y

x

)

−y cos

(

y

x

))

if x ≠ 0,

0 if x = 0.

We want to see if it is continuous or not.

We will make a distinction of three cases. We consider the function first

for x ≠ 0. Then we consider it in the point (0,0). The third case is

considering the function in (0, b) with b ≠ 0.

If x ≠ 0, then we have a function composed of classical functions which

are known to be infinitely differentiable. So in this first case there is no

problem.

Now we are secondly going to consider the point (0,0).
Discussion of the continuity of the first partial derivative in (0,0).

We are investigating now the continuity in the point (0,0). We investi-

gate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove the inequality | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ. The problem is now to find a δ > 0 such that if the inequal-

ity
∥

∥(x,y)− (0,0)
∥

∥ < δ holds, then it follows that | ∂f∂x (x,y)−
∂f
∂x (0,0)| <

ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∂f

∂x
(x,y)− ∂f

∂x
(0,0)

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

2 sin

(

y

x

)(

x sin

(

y

x

)

−y cos

(

y

x

))∣

∣

∣

∣

≤
∣

∣

∣

∣

2 sin

(

y

x

)∣

∣

∣

∣

∣

∣

∣

∣

(

x sin

(

y

x

)

−y cos

(

y

x

))∣

∣

∣

∣

≤ 2

(

|x|
∣

∣

∣

∣

sin

(

y

x

)∣

∣

∣

∣

+ |y|
∣

∣

∣

∣

cos

(

y

x

))∣

∣

∣

∣

≤ 2 (|x| + |y|)

≤ 2

(

√

x2 +y2 +
√

x2 +y2

)

≤ 4
√

x2 +y2.

It is sufficient to take δ = ϵ/4. We can find a δ, so we conclude that the

function is continuous in (0,0).

We start considering the third case. We are left with proving the con-

tinuity of
∂f
∂x in a neighbourhood of (0, b) with b ≠ 0. To make the

calculations easier, let us first do the translation transformation from

(0, b) to (0,0). We transform by the translation x = u and y = b + v
and investigate the function in (u,v) = (0,0).

We have then the function

g(u,v) =











2 (b + v) sin
(

b+v
u

)

cos
(

b+v
u

)

− 2u sin2
(

b+v
u

)

if u ≠ 0,

0 if u = 0.

The second term in the main definition is certainly continuous. We drop

that term and investigate the first term. By rewriting the first term by

expanding b + v . we have
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2 (b + v) sin

(

b + v
u

)

cos

(

b + v
u

)

= 2b sin

(

b + v
u

)

cos

(

b + v
u

)

+ 2v sin

(

b + v
u

)

cos

(

b + v
u

)

.

The second term in the last equation is certainly continuous, so we are

left with investigating the first term

2b sin

(

b + v
u

)

cos

(

b + v
u

)

.

We use a trigonometric identity

2b sin

(

b + v
u

)

cos

(

b + v
u

)

= b sin

(

2(b + v)
u

)

.

This term is certainly discontinuous. It is a classical example of a dis-

continuous function. We can be more explicit. The sequence
(

un = b (n+1)
π n2 , vn = b

n

)

, n ∈ N0, converges to (0,0) and makes this term

converge to 0. But the sequence
(

un = 4b (n+1)
π n(4n+1) , vn =

b
n

)

, n ∈ N0, con-

verges to (0,0) and makes this term converge to b. But b ≠ 0.

We conclude that we cannot use this particular criterion for the differ-

entiability of the function.



www.mathandphoto.eu. Exercise Notes 467

Figure 298. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂x (x,y). This looks like a continuous function in

(0,0).
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Figure 299. We see here a figure of the contour plot of the
∂f
∂x (x,y). Only

level curves of level around 0 come close to (0,0).

33.8 Overview

f(x,y) =











x2 sin2
(

y
x

)

if x ≠ 0,

0 if x = 0.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no
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33.9 One step further

We want to know if this function is further uneventful from the point of

view of differentiability. Let us take a look at the second order partial

derivative twice to y .

∂2f

∂y2
= 2 cos

(

2y

x

)

.

Let us take a look of a three dimensional plot of this second order partial

derivative of the function.

Figure 300. We see here a figure of the second order partial deriva-

tive
∂2f
∂y2 (x,y). It seems quite improbable that this second order partial

derivative is continuous. We stop however our investigations here and

leave this to the initiative of the interested reader.

••••
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Exercise 34.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















sin2 (x +y)
|x| + |y|

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

34.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

sin2 (x +y)
|x| + |y| − 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

sin2 (x +y)
|x| + |y|

∣

∣

∣

∣

∣

≤ (x +y)2
√

x2 +y2

≤ (|x| + |y|)
2

√

x2 +y2

≤

(√

x2 +y2 +
√

x2 +y2
)2

√

x2 +y2

≤

(

2
√

x2 +y2
)2

√

x2 +y2

≤ 4
√

x2 +y2.

For the steps in the inequalities we have used that
√

x2 +y2 ≤ |x| + |y|
so that 1/(|x|+ |y|) ≤ 1/

√

x2 +y2. By multiplying with sin2 (x+y), we

have that sin2 (x +y)/(|x| + |y|) ≤ sin2 (x +y)/
√

x2 +y2.

It is sufficient to take δ = ϵ/4. We can find a δ, so we conclude that the

function is continuous.
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Figure 301. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 302. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

34.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =



















f(x,0) = sin2(x)

|x|
if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

sin2(h)

h |h|

= lim
h→0

sin(h)

|h| .

So the partial derivative to x does not exist.

Because the function is symmetric, we have in a completely similar way

that the partial derivative to y does not exist.

We conclude that the partial derivative to x does not exist. and that the

partial derivative to y does not exist.

Figure 303. We see here a figure of the graph of the function restricted to

the horizontal X-axis through (0,0). We observe the non differentiability

of the function. We have plotted here the function f(h,0).

34.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-
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tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

sin2(h (u+ v))
h (|hu| + |hv|)

= lim
h→0

sin2(h (u+ v))
h2 (u+ v)2

h(u+ v)2
|hu| + |hv|

= lim
h→0

h(u+ v)2
|hu| + |hv|

= lim
h→0

h(u+ v)2
|h| (|u| + |v|).

This last limit does not exist unless u+ v = 0.

So the directional derivatives do not always exist.
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Figure 304. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). We see that the directional

derivative does not exist.

34.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

The partial derivatives do not exist. So this alternative criterion cannot

be applied.

34.5 Differentiability

We see that at least one of the directional derivatives does not exist. So

the function is not differentiable.

34.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.
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34.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

34.8 Overview

f(x,y) =















sin2 (x +y)
|x| + |y|

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 35.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) = |xy|.

35.1 Continuity

We can argue that this function is composed of functions that are con-

tinuous. So there is nothing more to prove. We will argue with an ϵ-δ
approach anyway.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣|xy| − 0
∣

∣ < ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣|xy|
∣

∣ ≤ |x| |y|

≤
√

x2 +y2

√

x2 +y2

≤
√

x2 +y2
2

.

It is sufficient to take δ = ϵ1/2. We can find a δ, so we conclude that the

function is continuous.

Figure 305. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 306. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

35.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.
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So the partial derivative to x does exist.

We can do a completely similar calculation for the partial derivative to

y .

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

35.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

∣

∣h2uv
∣

∣

h

= 0.

So the directional derivatives do always exist.
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Figure 307. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

35.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

We want to investigate the existence of the partial derivatives not in the

point (0,0) but on points of the X and Y axes close to (0,0).

Let us take a point (a,0) with a ≠ 0 and investigate the behaviour of

the function in the vertical direction. In order to do that, we will look at

the function f(a,h) and check the continuity and differentiability of the

function.

We calculate the function

f(a,h) =











|ah| if h ≠ 0;

0 if h = 0.
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We will look for the partial derivative and we calculate the limit

lim
h→0

|ah|
h

.

We see that this limit does not exist if a ≠ 0. So the partial derivative

does not exist.

We remark that the partial derivative does not always exist in any neigh-

bourhood of (0,0). So we cannot use this criterion for our alternative

proof.

We illustrate in the next picture the behaviour of the function.

-0.5 0.5
H

0.05

0.10

0.15

0.20

0.25

0.30

Z

Figure 308. We see here a two dimensional figure of the graph of the

function f(a,h). We have drawn the function here for the value a = 1/2
which is exemplary for the values of a close to 0. This does not look like

a differentiable function. We have plotted here the function f(a,h).

35.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that
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we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 309. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function not so convincingly. There remain at

least doubts.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 310. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















|hk|
√

h2 + k2
if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)
is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

∣

|hk|
√

h2 + k2
− 0

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

∣

|hk|
√

h2 + k2

∣

∣

∣

∣

∣

∣

≤ |h| |k|
√

h2 + k2

≤

√

h2 + k2
√

h2 + k2

√

h2 + k2

≤
√

h2 + k2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function q(h, k) is continuous.

Figure 311. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 312. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

35.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-
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tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

Let us try to prove the Lipschitz condition. We are going to use a well

known method.

||x1y1| − |x2y2|| ≤ |x1y1 − x2y2 |

≤ |x1y1 − x1y2 + x1y2 − x2y2|

≤ |x1y1 − x1y2| + |x1y2 − x2y2|

≤ |x1| |y1 −y2| + |y2| |x1 − x2|

≤ |y1 −y2| + |x1 − x2|

≤
√

(x1 − x2)2 + (y1 −y2)2 +
√

(x1 − x2)2 + (y1 −y2)2

≤ 2
√

(x1 − x2)2 + (y1 −y2)2.
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We have chosen here the restriction to the neighbourhood defined by
√

(x1 − x2)2 + (y1 −y2)2 < 1 so that |x1| < 1 and |y2| < 1. We conclude

that f is locally Lipschitz with a Lipschitz constant K = 2.

We have thus an alternative proof for the differentiability.

35.7 Continuity of the partial derivatives

We have seen in 35.4 that not all the partial derivatives exist in any

neighbourhood of (0,0). So this criterion cannot be used.

35.8 Overview

f(x,y) = |xy|.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no

••••
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Exercise 36.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =



















y sin





x
√

|y|



 if y ≠ 0,

0 if y = 0.

36.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∣

y sin





x
√

|y|



− 0

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

∣

y sin





x
√

|y|





∣

∣

∣

∣

∣

∣

≤ |y|

∣

∣

∣

∣

∣

∣

sin





x
√

|y|





∣

∣

∣

∣

∣

∣

≤ |y|

≤
√

x2 +y2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function is continuous.

Figure 313. We see here a three dimensional figure of the graph of the

function. This is a more global view of the function.



www.mathandphoto.eu. Exercise Notes 493

Figure 314. We see here a three dimensional figure of the graph of the

function. This is a more local view of the function. This looks like a

continuous function.
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Figure 315. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

36.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.
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36.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

v sin





hu
√

|hv|





= lim
h→0

v sin





sgn(h)
√

|h|u
√

|v|





= 0.

This calculation is valid if v ≠ 0. Remark that we already discussed the

case v = 0 in the part on the partial derivatives.

So the directional derivatives do always exist.
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Figure 316. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). Remark the slope in 0.

36.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

We want to investigate the existence of the partial derivatives not in the

point (0,0) but on points of the X-axis close to (0,0).

Let us take a point (a,0) and investigate the behaviour of the function

in the vertical direction. In order to do that, we will look at the function

f(a,h) and see if the function is continuous and differentiable.

We calculate the function

f(a,h) =















h sin

(

a√
|h|

)

if h ≠ 0;

0 if h = 0.
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We will look for the partial derivative and we calculate for the limit

lim
h→0

h sin

(

a√
|h|

)

h
= lim
h→0

sin





a
√

h



 .

We see that this limit does not exist if a ≠ 0. So the partial derivative

does not exist.

We illustrate in the next picture the behaviour of the function.

0.0005 0.0010 0.0015
H

-0.0005

0.0000

0.0005

0.0010

0.0015

Z

Figure 317. We see here a two dimensional figure of the graph of the

function f(a,h). We have drawn the function here for the value a = 1/3
which is representative for the values of a close to 0. This is not a

differentiable function. This is the classical example of a continuous

function in one variable that is continuous but not differentiable.

We draw the conclusion that it is pointless to investigate this func-

tion further in the neighbourhood of (0,0) because some of the par-

tial derivatives do not exist in any neighbourhood of (0,0). The partial

derivative to y in (a,0) with a ≠ 0 does not exist.

36.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.
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Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 318. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very nicely.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 319. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =































k sin





h
√

|k|





√

h2 + k2
if k ≠ 0 and (h, k) ≠ (0,0),

0 if k = 0 or (h, k) = (0,0)
is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

∣

∣

∣

k sin

(

h√
|k|

)

√

h2 + k2
− 0

∣

∣

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have
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the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

∣

∣

k sin

(

h√
|k|

)

√

h2 + k2

∣

∣

∣

∣

∣

∣

∣

∣

≤
|k|

∣

∣

∣

∣

sin

(

h√
|k|

)∣

∣

∣

∣

√

h2 + k2

≤
|k|

(

|h|√
|k|

)

√

h2 + k2

≤

√

|k| |h|
√

h2 + k2

≤

√

|k|
√

h2 + k2

√

h2 + k2

≤
√

√

h2 + k2

≤
√

h2 + k2
1/2

.

It is sufficient to take δ = ϵ2. We can find a δ, so we conclude that the

function q(h, k) is continuous.
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Figure 320. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.

Figure 321. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).
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36.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-

tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

We will try to prove that the partial derivative to y is not bounded if

y ≥ 0 in any neighbourhood of (0,0). This will be sufficient to conclude

that the function is not Lipschitz continuous in (0,0).
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Let us take a look at the partial derivative to y . This is equal, where it

exists, to

∂f

∂y
(x,y) = sin





x
√

y



−
x cos

(

x√
y

)

2
√

y
.

We see that the first term is bounded. We concentrate on the second

term and call that h(x,y).

h(x,y) = −
x cos

(

x√
y

)

2
√
y

.

Let us now take y = x3 with x > 0. Then we have

h(x,x3) = −
x cos

(

x√
x3

)

2
√

x3
= −

cos

(

1√
x

)

2
√

x
.

It is clear that this function is not bounded. To be more specific, let us

take the sequence xn = 1

4π 2n2 , n ∈ N0, that converges to 0. We have

then h(xn, x3
n) = −nπ . This is clearly not bounded.

So the function f is not Lipschitz continuous and we conclude that an

alternative proof following these lines is not possible.

36.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

Some of the partial derivatives do not exist in any neighbourhood of

(0.0). Consult section 4. An alternative proof following this criterion is

not possible.



www.mathandphoto.eu. Exercise Notes 506

36.8 Overview

f(x,y) =



















y sin





x
√

|y|



 if y ≠ 0,

0 if y = 0.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no

••••
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Exercise 37.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) = sin(y) sgn(sin(x)).

37.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣sin(y) sgn(sin(x))− 0
∣

∣ < ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣sin(y) sgn(sin(x))
∣

∣ ≤ | sin(y)|

≤ |y|

≤
√

x2 +y2.
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It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function is continuous.

Figure 322. We see here a three dimensional figure of the graph of the

function. We have here a more global view of the function.
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Figure 323. We see here a three dimensional figure of the graph of the

function. We have here a more local view of the function.
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Figure 324. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

37.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We will restrict in the following the function to the region [−1,1] ×
[−1,1] in order to work more easily with the following function defi-

nition

f(x,y) =































− sin(y) if −1 ≤ x < 0, −1 ≤ y ≤ 1;

sin(y) if 0 < x ≤ 1, −1 ≤ y ≤ 1;

0 if x = 0.

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.
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So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.
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37.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

So let us try to write down he function f(0 + hu,0 + hv). In the case

that u > 0, we have if we restrict h also to the interval [−1,1]

f (0+ hu,0+ hv)

=



















sgn(sin(hu)) sin(hv) = − sin(hv) if −1 ≤ h < 0;

sgn(sin(hu)) sin(hv) = sin(hv) if 0 ≤ h ≤ 1.

In the case that u < 0, we have if we restrict h also to the interval [−1,1]

f (0+ hu,0+ hv)

=















sgn(sin(hu)) sin(hv) = sin(hv) if −1 ≤ h < 0;

sgn(sin(hu)) sin(hv) = − sin(hv) if 0 ≤ h ≤ 1.

So, if u > 0, we have
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

sgn(sin(hu)) sin(hv)

h

= lim
h→0

sgn(sin(hu)) sin(hv)

hv
v

= lim
h→0

sgn(sin(hu))v.

So there is no limit if v ≠ 0. But we covered that case before.

Some of the directional derivatives do not exist.

Figure 325. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

37.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.
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If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

The problem is here that the partial derivatives have to exist in a neigh-

bourhood of (0,0). We see that all points on the Y -axis, (0,0) excluded,

have no derivative to x because the function is in the X-direction in

these points not continuous. One can easily see this from the three di-

mensional figure of the function. So the derivatives in those points do

not exist in any neighbourhood of (0,0).

37.5 Differentiability

At least one of the directional derivatives does not exist, thus the func-

tion is not differentiable.

37.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

37.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.
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37.8 Overview

f(x,y) = sin(y) sgn(sin(x))

continuous yes

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 38.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =























sin

(

4x
√

|y|
)

√

|xy|
if xy ≠ 0,

0 if xy = 0.

38.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∣

∣

sin
(

4x
√

|y|
)

√

|xy|
− 0

∣

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

∣

∣

sin
(

4x
√

|y|
)

√

|xy|

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣sin
(

4x
√

|y|
)∣

∣

∣

√

|xy|

≤

∣

∣

∣4x
√

|y|
∣

∣

∣

√

|xy|

≤
4 |x|

√

|y|
√

|xy|

≤ 4 |x|
√

|x|

≤ 4
√

|x|

≤ 4

√

√

x2 +y2

≤ 4
√

x2 +y2
1/2

.

It is sufficient to take δ = (ϵ/4)2. We can find a δ, so we conclude that

the function is continuous.
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Figure 326. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 327. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

38.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

38.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

sin
(

4hu
√

|hv|
)

h
√

|h2uv|

= lim
h→0

sin
(

4hu
√

|hv|
)

4hu
√

|hv|

4hu
√

|hv|

h
√

|h2uv|

= lim
h→0

4u
√

|hu|
.

This limit is not finite if u ≠ 0. But we covered that case before.

So some of the directional derivatives do not exist.
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Figure 328. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). We see a vertical tangent

in 0. This causes the non existence of the directional derivative.

38.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

We want to investigate the existence of the partial derivatives not in the

point (0,0) but on points of the X and Y axes close to (0,0).

Let us take a point (a,0) and investigate the behaviour of the function

in the vertical direction. In order to do that, we will look at the func-

tion f(a,h) and see if the function is continuous and differentiable. We

calculate for a > 0 the function
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f(a,h) =























sin

(

4a
√

|h|
)

√

a
√

|h|
if h ≠ 0;

0 if h = 0.

Let us calculate the limit.

lim
h→0

sin

(

4a
√

|h|
)

√

a
√

|h|
= lim
h→0

sin
(

4a
√

|h|
)

(

4a
√

|h|
)

(

4a
√

|h|
)

√

a
√

|h|

= 4
√
a.

We see that this function is not continuous if a ≠ 0 and not differen-

tiable.

We illustrate in the next picture the behaviour of the function.

-0.10 -0.05 0.05 0.10
H

1

2

3

4

5

Z

Figure 329. We see here a figure of the graph of the function f(a,h). We

have drawn the function here for the value a = 1/3 which is representa-

tive for the values of a close to 0. This does not look like a differentiable

function. We have plotted here the function f(a,h).

We draw the conclusion that it is pointless to investigate this function

further in the neighbourhood of (0,0) because the partial derivatives do
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not all exist in any neighbourhood of (0,0). The partial derivative to y
in (a,0) does not exist.

38.5 Differentiability

Not all directional derivatives exist. So the function is not differentiable.

38.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

38.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

38.8 Overview

f(x,y) =























sin

(

4x
√

|y|
)

√

|xy|
if xy ≠ 0,

0 if xy = 0.

continuous yes

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 39.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) = max{x,y}.

39.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣max{x,y}| − 0
∣

∣ < ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣max{x,y}
∣

∣ ≤ max{|x|, |y|}

≤ max{
√

x2 +y2,
√

x2 +y2}

≤
√

x2 +y2.
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It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function is continuous.

Figure 330. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 331. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

39.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We know that

max{x,y} = x +y
2

+ |x −y|
2

.

We observe then that

f
∣

∣

y=0(x,y) =



















f(x,0) = x
2
+ |x|

2
if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

h
2
+ |h|

2

h

= lim
h→0

1

2
+ sgn(h)

2
.

So the partial derivative to x does not exist.

Discussion of the partial derivative to y in (0,0).

We know that

max{x,y} = x +y
2

+ |x −y|
2

.

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = y
2
+ |−y|

2
if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

h
2
+ |−h|

2

h

= lim
h→0

1

2
− sgn(−h)

2
.

So the partial derivative to y does not exist.

We conclude that the partial derivative to x does not exist and that the

partial derivative to y does not exist.
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Figure 332. We see here a figure of the graph of the function restricted

to the horizontal X-axis through (0,0). The derivative does not exist.

We have plotted here the function f(h,0).

39.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

|h(u− v)| + h(u+ v)
2h

= lim
h→0

sgn(h)|(u− v)| + (u+ v)
2

.
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This limit does not exist if u− v ≠ 0.

Some of the directional derivatives do not exist.

Figure 333. We see here a figure of the graph of the function restricted to

the line through (0,0) with direction (u,v) =
(√

3/2,1/2
)

. The deriva-

tive in 0 does not exist. There is no tangent line in 0. We have plotted

here the function f(hu,hv).

39.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

The partial derivatives do not exist. An alternative proof following this

criterion does not exist.

39.5 Differentiability

At least one of the directional derivatives does not exist, thus the func-

tion is not differentiable.
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39.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

39.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

39.8 Overview

f(x,y) = max{x,y} = x +y
2

+ |x −y|
2

.

continuous yes

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 40.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) = y
√

|x|.

40.1 Continuity

We can argue that this function is composed of functions that are con-

tinuous. So there is nothing more to prove. We will argue with an ϵ-δ
approach anyway.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

y
√

|x| − 0

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

y
√

|x|
∣

∣

∣

∣

≤ |y|
√

|x|

≤
√

x2 +y2

√

√

x2 +y2

≤
√

x2 +y2
3/2

.

It is sufficient to take δ = ϵ2/3. We can find a δ, so we conclude that the

function is continuous.

Figure 334. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 335. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

40.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) = f(x,0) = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.
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So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) = f(0, y) = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

40.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

v
√

|hu|

= 0.

So the directional derivatives do always exist.

Figure 336. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

40.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.
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We want to answer the question whether the derivatives do exist in a

neighbourhood of (0,0).

Let us take a point (0, b) and investigate the behaviour of the function in

the horizontal direction. In order to do that, we will look at the function

f(h, b) and see if the function is continuous and differentiable.

We calculate the function

f(h, b) =































√

hb if h > 0;

√

− hb if h < 0;

0 if h = 0.

We see that this function is is not differentiable.

We illustrate in the next picture the behaviour of the function.

-0.5 0.5
H

0.1

0.2

0.3

0.4

Z

Figure 337. We see here a two dimensional figure of the graph of the

function f(h, b). We have drawn the function here for the value b = 1/2
which is exemplary for the values of b close to 0. This function does not

look like a differentiable function.

We draw the conclusion that it is pointless to investigate this function

further in the neighbourhood of (0,0) because the partial derivatives do

not exist in any neighbourhood of (0,0).
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40.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 338. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function quite nicely.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we
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know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.

Figure 339. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.
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We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =



















k
√

|h|
√

h2 + k2
if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)
is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

∣

k
√

|h|
√

h2 + k2
− 0

∣

∣

∣

∣

∣

∣

< ϵ.
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We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

k
√

|h|
√

h2 + k2

∣

∣

∣

∣

∣

∣

≤
|k|

√

|h|
√

h2 + k2

≤

√

h2 + k2

√

√

h2 + k2

√

h2 + k2

≤
√

h2 + k2
1/2

.

It is sufficient to take δ = ϵ2. We can find a δ, so we conclude that the

function q(h, k) is continuous.

Figure 340. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 341. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

40.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

As we have seen in 40.4, we have the square root function in the do-

main which is the standard example of non Lipschitz continuity. We

have there e.g. at the right hand side of h = 0 small intervals [h1, h2]
on which the difference quotients can be arbitrarily large. This is caused

geometrically by the vertical tangent on the vertical axis. So the func-

tion is not Lipschitz. An alternative proof following this criterion is not

possible.

40.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability. The

partial derivatives do not all exist in any neighbourhood of (0,0). So we
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cannot find an alternative proof.

40.8 Overview

f(x,y) = y
√

|x|.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no

••••
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Exercise 41.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x sin

(

1

x2 +y2

)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

41.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x sin

(

1

x2 +y2

)

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

x sin

(

1

x2 +y2

)∣

∣

∣

∣

∣

≤ |x|
∣

∣

∣

∣

∣

sin

(

1

x2 +y2

)∣

∣

∣

∣

∣

≤ |x|

≤
√

x2 +y2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function is continuous.

Figure 342. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 343. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

41.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =



















f(x,0) = x sin

(

1

x2

)

if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

sin

(

1

h2

)

.
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This limit does not exist.

So the partial derivative to x does not exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂y
(0,0) = 0.

and that the partial derivative to x does not exist.
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Figure 344. We see here a figure of the graph of the function restricted

to the horizontal X-axis through (0,0). We see that the function is con-

tinuous. It is a classical example of a function that is not differentiable.

We have plotted here the function f(h,0).

41.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

u sin

(

1

h2 (u2 + v2)

)

.

This limit does not exist.
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So the directional derivatives do not always exist.

Figure 345. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). This is a classical example

of a function that is continuous but the derivative does not exist.

41.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

The partial derivatives do not exist in any neighbourhood of (0,0). So

an alternative proof following this criterion is not possible.

41.5 Differentiability

We have that at least one of the directional derivatives does not exist,

then the function is not differentiable. So it is futile to continue.
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41.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

This section is irrelevant for this exercise, because the function is not

differentiable

41.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable

41.8 Overview

f(x,y) =















x sin

(

1

x2 +y2

)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 42.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) = max{|x|, |y|} = |x| + |y|
2

+ ||x| − |y||
2

.

42.1 Continuity

We can reason that this function is composed of continuous functions.

But we also try to reason by the definition only.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

|x| + |y|
2

+ ||x| − |y||
2

− 0

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

|x| + |y|
2

+ ||x| − |y||
2

∣

∣

∣

∣

≤ |x| + |y|
2

+ ||x| + |y||
2

≤ |x| + |y|

≤
√

x2 +y2 +
√

x2 +y2

≤ 2
√

x2 +y2.

It is sufficient to take δ = ϵ/2. We can find a δ, so we conclude that the

function is continuous.

Figure 346. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 347. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

42.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = |x| if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

|h|
h

= lim
h→0

sgn(h).

So the partial derivative to x does not exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = |y| if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

|h|
h

= lim
h→0

sgn(h).

So the partial derivative to y does not exist.

We conclude that the partial derivative to x does not exist and the partial

derivative to y does not exist.

42.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition



www.mathandphoto.eu. Exercise Notes 555

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

||hu| − |hv|| + |hu| + |hv|
2h

= lim
h→0

|h| ||u| − |v|| + |h| |u| + |v|
2h

= lim
h→0

sgn(h)
||u| − |v|| + |u| + |v|

2
.

This limit does not exist.

So the directional derivatives do not always exist.
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Figure 348. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

√

3/2,1/2

)

. This func-

tion is not differentiable. The directional derivative does not exist. We

have plotted here the function f(hu,hv).

42.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

The partials do not exist in all neighbourhoods of (0,0). An alternative

proof following this criterion does not exist.

42.5 Differentiability

At least one of the directional derivatives does not exist, so the function

is not differentiable.

42.6 Alternative proof of differentiability (optional)
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This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

This section is irrelevant for this exercise, because the function is not

differentiable

42.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

42.8 Overview

f(x,y) = max{|x|, |y|} = |x| + |y|
2

+ ||x| − |y||
2

.

continuous yes

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 43.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















(

x2 +y2
)

sin

(

1

x +y

)

if x +y ≠ 0,

0 if x +y = 0.

43.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

(

x2 +y2
)

sin

(

1

x +y

)

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.



www.mathandphoto.eu. Exercise Notes 559

∣

∣

∣

∣

∣

(

x2 +y2
)

sin

(

1

x +y

)∣

∣

∣

∣

∣

≤
(

x2 +y2
)

∣

∣

∣

∣

∣

sin

(

1

x +y

)∣

∣

∣

∣

∣

≤ x2 +y2

≤
√

x2 +y2
2

.

It is sufficient to take δ = ϵ1/2. We can find a δ, so we conclude that the

function is continuous.

Figure 349. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.



www.mathandphoto.eu. Exercise Notes 560

Figure 350. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

43.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = x2 sin
(

1

x

)

if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

h sin

(

1

h

)

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = y2 sin
(

1

y

)

if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

h sin

(

1

h

)

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

43.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

h
(

u2 + v2
)

sin

(

1

hu+ hv

)

= 0.

This limit is 0 if u+ v ≠ 0. If u+ v = 0, we have differentiability by the

definition which says that the function f is zero if x +y = 0.

So the directional derivatives do always exist.

Figure 351. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). This function is continuous

and differentiable.
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43.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

We want to investigate the existence of the partial derivatives not in the

point (0,0) but on points on the line defined by x+y = 0 close to (0,0).
Let us take a point (a,−a) and investigate the behaviour of the function

in the vertical direction. In order to do that, we will look at the function

f(a,−a+ h) and see if the function is continuous and differentiable.

We will look for the partial derivative and we calculate the limit

lim
h→0

f(a,−a+ h)
h

= lim
h→0

(

a2 + (h− a)2
)

sin
(

1

h

)

h

= lim
h→0

2a2 sin

(

1

h

)

− 2ah sin

(

1

h

)

+ h2 sin

(

1

h

)

= lim
h→0

2a2 sin

(

1

h

)

.

This limit does not exist if a ≠ 0. We can be more explicit. Let us define

g(h) = 2a2 sin
(

1

h

)

. We define the sequence hn = 1

2π n which converges

to 0. Then g(hn) = 0. But now we define hn = 2

π (4n+1) which converges

to 0. Then g(hn) = 2a2. This is impossible if the limit exists.

We conclude that the partial derivative to y of points on x + y = 0 do

not exist.
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-0.4 -0.2 0.2 0.4
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-0.2

0.2

0.4

Z

Figure 352. We see here a two dimensional figure of the graph of the

function f(a,−a + h). We have drawn the function here for the value

a = 1/3 which is exemplary for the values of a close to 0. This is not a

continuous nor a differentiable function.

So we cannot give an alternative proof following this criterion.

43.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 353. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function quite nicely. But further calculations will

be necessary.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 354. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient
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q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =











√

h2 + k2 sin
(

1

h+k

)

if (h, k) ≠ (0,0) and h+ k ≠ 0;

0 if (h, k) = (0,0) or h+ k = 0

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

√

h2 + k2 sin

(

1

h+ k

)

− 0

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

√

h2 + k2 sin

(

1

h+ k

)∣

∣

∣

∣

≤
√

h2 + k2

∣

∣

∣

∣

sin

(

1

h+ k

)∣

∣

∣

∣

≤
√

h2 + k2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function q(h, k) is continuous.

Figure 355. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 356. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

43.6 Alternative proof of differentiability (optional)

We have seen that we have that the function in points (−a,a) is not

continuous. So they cannot be Lipschitz continuous.

43.7 Continuity of the partial derivatives

The function has non existing directional derivatives in any neighbour-

hood of (0,0). We cannot use this criterion.

43.8 Overview

f(x,y) =















(

x2 +y2
)

sin

(

1

x +y

)

if x +y ≠ 0,

0 if x +y = 0.
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f(x,y) =















(

x2 +y2
)

sin

(

1

x +y

)

if x +y ≠ 0,

0 if x +y = 0.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no

••••
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Exercise 44.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =











(

x2 +y2
)

sin
(

1

x4+y4

)

if (x,y) ≠ (0,0)

0 if (x,y) = (0,0).

44.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

(

x2 +y2
)

sin

(

1

x4 +y4

)

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

(

x2 +y2
)

∣

∣

∣

∣

∣

sin

(

1

x4 +y4

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
(

x2 +y2
)

∣

∣

∣

∣

∣

sin

(

1

x4 +y4

)∣

∣

∣

∣

∣

≤ x2 +y2

≤
√

x2 +y2
2

.

It is sufficient to take δ = ϵ1/2. We can find a δ, so we conclude that the

function is continuous.

Figure 357. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 358. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

44.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =



















f(x,0) = x2 sin

(

1

x4

)

if x ≠ 0;

0 if x = 0.

So



www.mathandphoto.eu. Exercise Notes 574

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

h sin

(

1

h4

)

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = y2 sin
(

1

y4

)

if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

h sin

(

1

h4

)

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.
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Figure 359. We see here a figure of the graph of the function restricted

to the horizontal X-axis through (0,0). This function is continuous and

differentiable. We have plotted here the function f(h,0).

44.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

h
(

u2 + v2
)

sin

(

1

h4 (u4 + v4)

)

= 0.
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So the directional derivatives do always exist.

Figure 360. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

44.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is

∂f

∂x
(x,y) =



















2x sin
(

1

x4+y4

)

−
4x3 (x2+y2) cos

(

1

x4+y4

)

(x4+y4)
2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

We do not think we can apply this criterion because the partial derivative
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to x is not bounded in any neighbourhood of (0,0). Let us analyse this

further.

The first term in the main definition is continuous and so locally bounded.

The second term looks suspicious. Let us call this main term h(x,y).
We have then

h(x,y) = −
4x3

(

x2 +y2
)

cos
(

1

x4+y4

)

(

x4 +y4
)2 .

Let us restrict by taking y = λx and λ = 1. We have then

h(x,x) = −
2 cos

(

1

2x4

)

x3
.

This term is certainly unbounded. We can be very specific. Let us define

the sequence xn = 1√
2 4√π 4√n , n ∈ N0. Because y = x, we have also

yn = 1√
2 4√π 4√n . These sequences converge both to 0. We calculate the

image of this sequence.

h(xn, yn) = h
(

1√
2 4
√
π 4
√
n
,

1√
2 4
√
π 4
√
n

)

= −4
√

2π3/4n3/4.

Let us sketch this partial derivative with y = λx and λ = 1.

Figure 361. We see here a figure of the graph of the function restricted

to the line through (0,0) with equation y = x. The predicted unbound-

edness is not explicit but suggested. We have drawn here the function

f(h,h).
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Figure 362. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the unboundedness from this picture.

We do not draw the absolute value of the second partial derivative. This

will be a similar graph by symmetry reasons.

44.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 363. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very nicely.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 364. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















√

h2 + k2 sin

(

1

h4 + k4

)

if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

√

h2 + k2 sin

(

1

h4 + k4

)

− 0

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

√

h2 + k2 sin

(

1

h4 + k4

)∣

∣

∣

∣

≤
√

h2 + k2

∣

∣

∣

∣

sin

(

1

h4 + k4

)∣

∣

∣

∣

≤
√

h2 + k2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function q(h, k) is continuous.

Figure 365. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 366. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

44.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-
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tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

The function cannot be Lipschitz continuous because the first partial

derivative is unbounded. We have calculated that fact in section 44.4. So

we cannot apply this particular criterion for differentiability.

44.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

The partial derivative to y is not bounded in any neighbourhood of

(0,0). So this derivative is not continuous in (0,0). We conclude that

this particular criterion cannot be used. Please consult section 44.4.
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44.8 Overview

f(x,y) =















(

x2 +y2
)

sin

(

1

x4 +y4

)

if (x,y) ≠ (0,0)

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no

••••
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Exercise 45.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =











(

x2 +y2
)

sin
(

1

x2+y2

)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

45.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

(

x2 +y2
)

sin

(

1

x2 +y2

)

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

(

x2 +y2
)

sin

(

1

x2 +y2

)∣

∣

∣

∣

∣

≤
(

x2 +y2
)

∣

∣

∣

∣

∣

sin

(

1

x2 +y2

)∣

∣

∣

∣

∣

≤ x2 +y2.
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It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function is continuous.

Figure 367. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 368. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

45.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = x2 sin
(

1

x2

)

if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

h sin

(

1

h2

)

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

The calculations are very similar here due to the symmetry of the func-

tion.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

Figure 369. We see here a figure of the graph of the function restricted to

the horizontal X-axis through (0,0). We have plotted here the function

f(h,0).
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45.3 Directional derivatives

Because of the symmetry caused by the function definition, we conclude

that all directional derivatives exist and are 0.

45.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =























2x sin

(

1

x2 +y2

)

−
2x cos





1

x2 +y2





x2+y2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

We see that the first term in the main definition is continuous and thus

locally bounded. The second term gives rise to suspicion. Let us call the

second term h(x,y).

h(x,y) = −
2x cos

(

1

x2 +y2

)

x2 +y2
.

We substitute y = x. Then we have

h(x,x) = −
cos

(

1

2x2

)

x
.

This term is unbounded. To be more specific, let us define the sequence

xn = 1

2
√
π
√
n , n ∈ N0. Then because y = x, yn = 1

2
√
π
√
n , n ∈ N0. These

sequences converge to 0. We calculate now the image.
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h(xn, yn) = −2
√
π
√
n.

This illustrates the unboundedness of the partial derivative.

So we cannot use this particular criterion for continuity.

Figure 370. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the unboundedness from this picture.

45.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.
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The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 371. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very nicely.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 372. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















√

h2 + k2 sin

(

1

h2 + k2

)

if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

√

h2 + k2 sin

(

1

h2 + k2

)

− 0

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

√

h2 + k2 sin

(

1

h2 + k2

)∣

∣

∣

∣

≤
√

h2 + k2

∣

∣

∣

∣

sin

(

1

h2 + k2

)∣

∣

∣

∣

≤
√

h2 + k2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function q(h, k) is continuous.

Figure 373. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 374. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

45.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-
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tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

Lipschitz continuity is not possible because the first partial derivative is

not bounded in any neighbourhood of (0,0). See section 45.4. So the

function cannot be Lipschitz continuous.

45.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

We have seen that the first partial derivative is unbounded in any neigh-

bourhood of (0,0). See section 45.4. Continuity is then impossible in

(0,0).
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Figure 375. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂x (x,y). This looks like an unbounded function.

We will not repeat those remarks for the second partial derivative to y .

The computations are completely similar due to the rotational symme-

tries of the function.
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45.8 Overview

f(x,y) =















(

x2 +y2
)

sin

(

1

x2 +y2

)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no

••••
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Exercise 46.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =











xy2 sin
(

1

y

)

if y ≠ 0,

0 if y = 0.

46.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

xy2 sin

(

1

y

)

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

xy2 sin

(

1

y

)∣

∣

∣

∣

∣

≤ |x|y2

∣

∣

∣

∣

∣

sin

(

1

y

)∣

∣

∣

∣

∣

≤
√

x2 +y2

√

x2 +y2
2

≤
√

x2 +y2
3

.

It is sufficient to take δ = ϵ1/3. We can find a δ, so we conclude that the

function is continuous.

Figure 376. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 377. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

46.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

46.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

h2uv2 sin

(

1

hv

)

= 0.

We can use the squeeze theorem for this calculation.

So the directional derivatives do always exist.

Figure 378. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).
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46.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).

Looking for a definition of the partial derivatives. We have to be able

to define the partial derivatives in at least one neighbourhood around

(0,0). We have no problems with points that are in the interior of the

definition domains of the classical functions. We have there the classical

calculation rules for defining those functions and the partial derivatives

always exist there and are even continuous.

But in our case, we have to investigate the points that are in exceptional

subsets in the definition of the function.

In this case these are the points (a,0). We do not have to investigate

other points.

The partial derivative to x exists in the points (a,0) because the function

is then by definition identically 0. So the partial derivative to x is also

identically 0.

We draw our attention now to the partial derivative to y . Let us look at

a point (a,0). We are going to investigate the function in (a,0) in the

Y -direction. This function is defined by

f(a,h) =











ah2 sin
(

1

h

)

if h ≠ 0,

0 if h = 0.

We calculate the limit

∂f

∂y
(a,0) = lim

h→0

ah2 sin
(

1

h

)

h
= 0.

We see that this function is differentiable in h = 0. We conclude that the

partial derivative
∂f
∂y (a,0) does exist and is equal to 0.
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We consult a figure for this last observation.

Figure 379. We see here a figure of the graph of the function restricted

to the line through (a,0) with direction (0,1), this is the Y -direction. We

see that this function is differentiable in h = 0. We have plotted here the

function f(a,h).

The partial derivative to x is:

∂f

∂x
=











y2 sin
(

1

y

)

if y ≠ 0,

0 if y = 0.

The partial derivative to y is together with the observations we made:

∂f

∂y
=











x
(

2y sin
(

1

y

)

− cos
(

1

y

))

if y ≠ 0,

0 if y = 0.

We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.
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∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

y2 sin

(

1

y

)∣

∣

∣

∣

∣

≤ y2

∣

∣

∣

∣

∣

sin

(

1

y

)∣

∣

∣

∣

∣

≤ y2

≤
√

x2 +y2
2

≤ 1.

We have chosen here the restriction to the neighbourhood defined by
√

x2 +y2 < 1 in order to get the last inequality.

Let us try to prove that
∣

∣

∣

∂f
∂y

∣

∣

∣ is bounded.

∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

x

(

2y sin

(

1

y

)

− cos

(

1

y

))∣

∣

∣

∣

∣

≤ |x|
(

2 |y|
∣

∣

∣

∣

∣

sin

(

1

y

)∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

cos

(

1

y

)∣

∣

∣

∣

∣

)

≤ |x| (2 |y| + 1)

≤
√

x2 +y2

(

2
√

x2 +y2 + 1

)

≤ 3.

We have chosen here the restriction to the neighbourhood defined by
√

x2 +y2 < 1 in order to get the last inequality.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.
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Figure 380. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.

Figure 381. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture.
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46.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 382. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very nicely.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we
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know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.

Figure 383. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.
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We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =























hk2 sin

(

1

k

)

√

h2 + k2
if (h, k) ≠ (0,0) and k ≠ 0;

0 if (h, k) = (0,0) or k = 0

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

∣

hk2 sin
(

1

k

)

√

h2 + k2
− 0

∣

∣

∣

∣

∣

∣

< ϵ.
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We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

hk2 sin
(

1

k

)

√

h2 + k2

∣

∣

∣

∣

∣

∣

≤
|h|k2

∣

∣

∣sin
(

1

k

)∣

∣

∣

√

h2 + k2

≤ |h|k2

√

h2 + k2

≤

√

h2 + k2
√

h2 + k2
2

√

h2 + k2

≤
√

h2 + k2
2

.

It is sufficient to take δ = ϵ1/2. We can find a δ, so we conclude that the

function q(h, k) is continuous.

Figure 384. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 385. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

46.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-
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tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

Let us try to prove the Lipschitz condition. We are going to use a well

known method.

|f(x1, y1)− f(x2, y2)|

= |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|.

We focus now on the first term |f(x1, y1) − f(x1, y2)|. We fix now x1

and look upon f(x1, y) as a function in one variable y . So it springs to

mind that we can estimate this by using Lagrange’s intermediate value

theorem. So we have

|f(x1, y1)− f(x1, y2)| =
∣

∣

∣

∣

∣

∂f

∂y
(x1, ξ)

∣

∣

∣

∣

∣

|y1 −y2|
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where ξ is a number lying in the open interval (y1, y2) if e.g. y1 ≤
y2. Remark that we already have proven that the partial derivatives are

bounded in a neighbourhood, we can take that bound found for
∂f
∂y , say

M2 and that neighbourhood in this case also. So
∣

∣

∣

∂f
∂y (x1, ξ)

∣

∣

∣ ≤ M2. We

work in a completely analogous way for the second term |f(x1, y2) −
f(x2, y2)|. We have in that case

∣

∣

∣

∂f
∂x (ξ,y2)

∣

∣

∣ ≤ M1 where ξ is now a

number in the open interval (x1, x2) if e.g. x1 ≤ x2.

We take up our inequality again

|f(x1, y1)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|

≤ M2 |(y1 −y2)| +M1 |(x1 − x2)|

≤ M2

√

(x1 − x2)2 + (y1 −y2)2 +M1

√

(x1 − x2)2 + (y1 −y2)2

≤ (M1 +M2)
√

(x1 − x2)2 + (y1 −y2)2.

So this function is locally Lipschitz continuous. We have an alternative

proof for the differentiability.

46.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

We already now that the partials exist everywhere in at least one neigh-

bourhood of (0,0). The question is now if they are continuous.
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We have to distinguish three cases. The first case is where y ≠ 0. The

second case is the point (0,0) itself. The third case is in the points (a,0)
with a ≠ 0.

The first case is a region in which the partial derivative to x is composed

of classical functions which are known to be infinitely differentiable.

The second case is the point (0,0).

Discussion of the continuity of the first partial derivative in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove then that the inequality

| ∂f∂x (x,y) −
∂f
∂x (0,0)| < ϵ holds under certain conditions. The problem

is now to find a δ > 0 such that if the inequality
∥

∥(x,y)− (0,0)
∥

∥ < δ

holds, then it follows that | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∂f

∂x
(x,y)− ∂f

∂x
(0,0)

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

y2 sin

(

1

y

)∣

∣

∣

∣

∣

≤ y2

∣

∣

∣

∣

∣

sin

(

1

y

)∣

∣

∣

∣

∣

≤ y2

≤
√

x2 +y2
2

.
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It is sufficient to take δ = ϵ1/2. We can find a δ, so we conclude that the

function
∂f
∂x is continuous.

Figure 386. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂x (x,y). This looks like a continuous function in

(0,0).
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Figure 387. We see here a figure of the contour plot of the
∂f
∂x (x,y).

Only level curves of level around 0 come close to (0,0). This looks like

a continuous function in (0,0).

The third case is in the points (a,0) with a ≠ 0. We remember that the

partial derivative is

∂f

∂x
(x,y) =











y2 sin
(

1

y

)

if y ≠ 0,

0 if y = 0.

We have to prove continuity in (a,0). We start from the inequality

| ∂f∂x (x,y)−
∂f
∂x (a,0)| < ϵ and look for a δ such that if

√

(x − a)2 +y2
2

< δ

holds, the inequality | ∂f∂x (x,y)−
∂f
∂x (a,0)| < ϵ also holds.

∣

∣

∣

∣

∣

y2 sin

(

1

y

)

− 0

∣

∣

∣

∣

∣

≤
∣

∣

∣y2
∣

∣

∣

≤
√

(x − a)2 +y2
2

.
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So we can take δ = ϵ1/2 and the partial derivative
∂f
∂x is in (a,0) continu-

ous.

Discussion of the continuity of the second partial derivative in (0,0).

Let us now investigate the continuity of the partial derivative to y .

We have to distinguish three cases. The first case is where y ≠ 0. The

second case is the point (0,0) itself. The third case is in the points (a,0)
with a ≠ 0.

We remember

∂f

∂y
=











x
(

2y sin
(

1

y

)

− cos
(

1

y

))

if y ≠ 0,

0 if y = 0.

The first case is a region in which the partial derivative to x is composed

of classical functions which are known to be infinitely differentiable.

The second case is the point (0,0).

Discussion of the continuity in (0,0).
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that the inequality

| ∂f∂y (x,y) −
∂f
∂y (0,0)| < ϵ holds subject to conditions. The problem is

now to find a δ > 0 such that if
∥

∥(x,y)− (0,0)
∥

∥ < δ it follows that

| ∂f∂y (x,y)−
∂f
∂y (0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∂f

∂y
(x,y)− ∂f

∂y
(0,0)

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

x

(

2y sin

(

1

y

)

− cos

(

1

y

))∣

∣

∣

∣

∣

≤ |x|
(

2 |y|
∣

∣

∣

∣

∣

sin

(

1

y

)∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

cos

(

1

y

)∣

∣

∣

∣

∣

)

≤ |x| (2 |y| + 1)

≤
√

x2 +y2 (2
√

x2 +y2 + 1)

≤ 3
√

x2 +y2.

We have chosen here the restriction to the neighbourhood defined by
√

x2 +y2 < 1 in order to get the last inequality.

It is sufficient to take δ = min{1, ϵ/3}. We can find a δ, so we conclude

that the function
∂f
∂y is continuous.

Figure 388. We see here a three dimensional figure of the graph of the

second partial derivative
∂f
∂y (x,y). This looks like a continuous function

in (0,0).
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Figure 389. We see here a figure of the contour plot of the
∂f
∂y (x,y).

Only level curves of level around 0 come close to (0,0). This looks like

a continuous function in (0,0).

The third case is the investigation of the continuity in points (a,0) with

a ≠ 0.

Let us translate the function to the origin. We substitute x = u + a,

y = v and have then for the main part of the function definition

g(u,v) = 2v (a+u) sin

(

1

v

)

− (a+u) cos

(

1

v

)

which we have to investigate in (0,0).

So we have the following function in the new coordinates.

g(u,v) =











2v (a+u) sin
(

1

v

)

− (a+u) cos
(

1

v

)

if v ≠ 0,

0 if v = 0.

We see that the first term in the main part of the definition of g(u,v)
is surely continuous. We turn our attention to the second term. By

expanding the term a+u we see that the second term is
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−a cos

(

1

v

)

−u cos

(

1

v

)

.

The second term is surely continuous, so we are left with investigating

the first term. After dropping the non zero coefficient, we are left with

investigating the term

h(v) = cos

(

1

v

)

.

This term is a classical example of a non continuous function. We can

be more explicit here. We define a sequence vn = 1

2π n , n ∈ N0, that

converges to zero. We have that limn→∞h(vn) = limn→∞ 1 = 1. But we

define another sequence vn = 2

π (4n+1) , n ∈ N0, that converges to zero.

We have that limn→∞h(vn) = limn→∞ 0 = 0. This last term cannot be

continuous.

We cannot apply this criterion for an alternative proof of the differentia-

bility.

46.8 Overview

f(x,y) =











xy2 sin
(

1

y

)

if y ≠ 0,

0 if y = 0.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no

46.9 One step further

We want to know if this function is further uneventful from the point of

view of differentiability. Let us take a look at the second order partial

derivative
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∂2f

∂y2
(x,y) =

x
(

(

2y2 − 1
)

sin
(

1

y

)

− 2y cos
(

1

y

))

y2
.

Let us take a look of a three dimensional plot of this second order partial

derivative of the function.

Figure 390. We see here a figure of the second order partial deriva-

tive
∂2f
∂y2 (x,y). It seems quite improbable that this second order partial

derivative is continuous. We stop however our investigations here and

leave this to the initiative of the interested reader.

••••
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Exercise 47.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =



















|y|2−
|y|
x2

x2
if x ≠ 0,

0 if x = 0.

47.1 Continuity

We restrict the function to the continuous curves with equations y =
λx2. We observe then that

f
∣

∣

y=λx(x,y) =



























f(x, λx) =
2
−|λx2|

x2

∣

∣

∣λx2
∣

∣

∣

x2
= 2−|λ| |λ| if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 391. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 392. We have restricted the function here to y = 1/3x2 and y =
1/5x2 and y = 1/7x2. We see in this figure clearly that the restrictions

of the function to these lines are functions that have different limits in

0.
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Figure 393. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

47.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

47.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

|hv|2
− |hv|
h2u2

h3u2
.

We compute the left limit first. We will substitute α = −1/h and observ-

ing that h→
<

0 causes α→ +∞,

lim
h→
<

0

−h|v|2−
−h|v|
h2 u2

h3u2
= lim
h→
<

0
−|v|2

|v|
hu2

h2u2

= lim
α→+∞

−2

−α |v|
u2 α2 |v|

u2

= 0.

The last result is obtained by applying the theorem of de l’Hospital. We

do not to cover the cases uv = 0 because we already did that in the

section on partial derivatives.

We compute now the right limit. We will substitute α = 1/h and observ-

ing that h→
>

0 causes α→ +∞,
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lim
h→
>

0

h|v|2−
h|v|
h2 u2

h3u2
= lim
h→
>

0

|v|2−
|v|
hu2

h2u2

= lim
α→∞

2

−α |v|
u2 α2 |v|

u2

= 0.

The last result is again obtained by applying the theorem of de l’Hospital.

We do not to cover the case uv = 0 because we already did that in the

section on partial derivatives.

So the directional derivatives do always exist.

Figure 394. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

47.4 Alternative proof of continuity (optional)

The function is not continuous. So this is irrelevant.

47.5 Differentiability

We have that the function is not continuous and therefore not differen-

tiable.
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47.6 Alternative proof of differentiability (optional)

This section is irrelevant for this exercise, because the function is not

differentiable.

47.7 Continuity of the partial derivatives

This section is irrelevant for this exercise, because the function is not

differentiable.

47.8 Overview

f(x,y) =























|y|2
−|y|
x2

x2
if x ≠ 0,

0 if x = 0.

continuous no

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

••••
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Exercise 48.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















xy

|x|
+ x sin

(

1

y

)

if xy ≠ 0,

0 if x = 0 or y = 0.

48.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

xy

|x| + x sin

(

1

y

)

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

xy

|x| + x sin

(

1

y

)∣

∣

∣

∣

∣

≤ |x| |y||x| + |x|
∣

∣

∣

∣

∣

sin

(

1

y

)∣

∣

∣

∣

∣

≤ |y| + |x|

≤
√

x2 +y2 +
√

x2 +y2

≤ 2
√

x2 +y2.

It is sufficient to take δ = ϵ/2. We can find a δ, so we conclude that the

function is continuous.

Figure 395. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 396. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

48.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

48.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

u

(

hv

|hu| + sin

(

1

hv

))

= lim
h→0

u

(

sgn(h)v

|u| + sin

(

1

hv

))

.

This limit does not exist if uv ≠ 0. We have already calculated these

exceptional cases. Let us try to be more specific about the non existence

of the limit. Let us define first g(h) = u
(

sgn(h)v
|u| + sin

(

1

hv

))

. Let us

define the sequence hn = 2

π (2n+1)v , n ∈ N. This sequence converges

to 0. We evaluate this sequence in the function g(h) and find g(hn) =
u

(

1

(2n+1)| u
2nv+v | + cos(π n)

)

or g(hn) = u
(

1

|u/v| + cos(π n)
)

. But this

sequence does not have a limit at all. If the function g(h) is continuous,

then there is a limit.

So the directional derivatives do not always exist.
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Figure 397. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). This function is not differ-

entiable.

48.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Looking for a definition of the partial derivatives.

We have to be able to define the partial derivatives in at least one neigh-

bourhood around (0,0). We have no problems with points that are in

the interior of the definition domains of the classical functions. We have

there the classical calculation rules for defining those functions and the

partial derivatives always exist there and are even continuous.

But in our case, we have to investigate the points that are in exceptional

subsets in the definition of the function.
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In this case these are the points (a,0) and (0, b).

Let us look at a point (a,0) with a ≠ 0. We are going to investigate the

function in (a,0) in the Y -direction. This function is defined by

f(a,h) =











a
(

h
|a| + sin

(

1

h

))

if h ≠ 0,

0 if h = 0.

We see that this function is not continuous in h = 0 if a ≠ 0, so the

derivative does not exist. The conclusion is that the partial derivative
∂f
∂y (a,0) does not exist for all a with a ≠ 0.

We consult a figure for this observation.

-0.5 0.5
H

-2

-1

1

2

Z

Figure 398. We see here a figure of the graph of the function restricted

to the line through (a,0) with direction (0,1), this is the Y -direction.

We have drawn this figure with the value a = 2. This is a figure of the

function with function definition f(a,h).

Some of the partial derivatives do not exist in any neighbourhood of

(0,0). So the partial derivatives cannot be defined in any neighbourhood

of (0,0). The conclusion is that an alternative proof following the lines

described at the start of this section cannot be given. Other alternative

proofs can of course exist.

48.5 Differentiability

Not all directional derivatives exist, so this function is not differentiable.
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48.6 Alternative proof of differentiability (optional)

The function is not differentiable, so this is irrelevant.

48.7 Continuity of the partial derivatives

The function is not differentiable, so this section is irrelevant.

48.8 Overview

f(x,y) =















xy

|x|
+ x sin

(

1

y

)

if xy ≠ 0,

0 if x = 0 or y = 0.

continuous yes

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 49.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =











x3 sin
(

1

x2

)

+y3 sin
(

1

y2

)

if xy ≠ 0,

0 if xy = 0.

49.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x3 sin

(

1

x2

)

+y3 sin

(

1

y2

)

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

x3 sin

(

1

x2

)

+y3 sin

(

1

y2

)∣

∣

∣

∣

∣

≤ |x|3
∣

∣

∣

∣

sin

(

1

x2

)∣

∣

∣

∣

+ |y|3
∣

∣

∣

∣

∣

sin

(

1

y2

)∣

∣

∣

∣

∣

≤ |x|3 + |y|3

≤
√

x2 +y2
3

+
√

x2 +y2
3

≤ 2
√

x2 +y2
3

.

It is sufficient to take δ = (ϵ/2)1/3. We can find a δ, so we conclude that

the function is continuous.

Figure 399. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 400. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

49.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

We can use the squeeze theorem for this limit.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

49.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

h2

(

u3 sin

(

1

h2u2

)

+ v3 sin

(

1

h2v2

))

= 0.

We can use the squeeze theorem for this. Remark that this calculation

is only valid if uv ≠ 0. We did the other cases before.

So the directional derivatives do always exist.

Figure 401. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).
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49.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

We remark that some of the partial derivatives do not exist in any neigh-

bourhood of (0,0). We have e.g. in (a,0) with a ≠ 0 in the Y -direction

the following function.

f(a,h) =











a3 sin
(

1

a2

)

+ h3 sin
(

1

h2

)

if h ≠ 0;

0 if h = 0.

This function is almost never continuous except in those cases where

a3 sin
(

1

a2

)

= 0. This only happens in a countable number of cases.

We see that this limit does not exist if a3 sin
(

1

a2

)

≠ 0.

So an alternative proof following this criterion is not possible.

Consult the following figure.
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H

-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

Z

Figure 402. We see here a figure of the graph of the function f(a,h). We

have drawn the function here for the value a = 1/10 which is exemplary

for the values of a close to 0. Remark that in h = 0 the function is

0 causing a discontinuous point in h = 0. This does not look like a

continuous function. We have plotted here the function f(a,h).

49.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 403. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very nicely.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 404. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k)

=































h3 sin





1

h2



+ k3 sin





1

k2





√

h2 + k2
if (h, k) ≠ (0,0) and h ≠ 0 and k ≠ 0;

0 if (h, k) = (0,0) or h = 0 or k = 0

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h3 sin

(

1

h2

)

+ k3 sin

(

1

k2

)

√

h2 + k2
− 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

h3 sin
(

1

h2

)

+ k3 sin
(

1

k2

)

√

h2 + k2

∣

∣

∣

∣

∣

∣

≤
|h|3

∣

∣

∣sin
(

1

h2

)∣

∣

∣+ |k|3
∣

∣

∣sin
(

1

k2

)∣

∣

∣

√

h2 + k2

≤ |h|
3 + |k|3

√

h2 + k2

≤

√

h2 + k2
3

+
√

h2 + k2
3

√

h2 + k2

≤ 2

√

h2 + k2
3

√

h2 + k2

≤ 2
√

h2 + k2
2

.

It is sufficient to take δ = (ϵ/2)1/2. We can find a δ, so we conclude that

the function q(h, k) is continuous.
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Figure 405. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.

Figure 406. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).



www.mathandphoto.eu. Exercise Notes 651

49.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-

tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

We have seen in section 49.4 that that in every neighbourhood of (0,0),
there are points where the function is not continuous. So the function

cannot be Lipschitz continuous.
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49.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

We have seen in section 49.4 that not all partial derivatives exist in any

neighbourhood of (0,0). So we cannot use this criterion.

49.8 Overview

f(x,y) =















x3 sin

(

1

x2

)

+y3 sin

(

1

y2

)

if xy ≠ 0,

0 if xy = 0.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no

••••
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Exercise 50.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =



















y
√

x2 +y2

|y|
if y ≠ 0,

0 if y = 0.

50.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∣

y
√

x2 +y2

|y| − 0

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

∣

y
√

x2 +y2

|y|

∣

∣

∣

∣

∣

∣

≤
|y|

√

x2 +y2

|y|

≤
√

x2 +y2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function is continuous.

Figure 407. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 408. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

50.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =























f(0, y) =
y
√

y2

|y|
if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

√

h2

|h|

= 1.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 1.
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50.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

v
√

h2 (u2 + v2)

|hv|

= lim
h→0

v|h|
√

(u2 + v2)

|hv|

=
v
√

(u2 + v2)

|v| .

These calculations are done with v ≠ 0. This is a case that we have

covered before.

So the directional derivatives do always exist.
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Figure 409. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). This function is differen-

tiable.

50.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

The partial derivative does not exist in points (a,0) with a ≠ 0 in the

Y -direction. The function is in those points not even continuous as can

be seen on the figure.

So the partial derivatives do not all exist in any neighbourhood of (0,0).
We cannot use this alternative criterion.

50.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks of the calculations that we have
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performed until now. Maybe these figures can make us doubtful about

the differentiability. Because we do not rely on purely visual proofs, we

will then continue as if we did not perform these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 410. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very nicely.

We make our second observation. We can look at it in another way. We

have calculated all the directional derivatives and we know that if the

function is differentiable, then the vectors (u,v,D(u,v)(0,0)) must lie in

one plane, which is the tangent plane if the function is differentiable. So

let us visually check that these vectors are coplanar.
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Figure 411. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) do not sweep out a nice

ellipse lying in one plane! This is very bad news for the differentiability.

Discussion of the continuity of the quotient.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(x,y) and not the differential

quotient.

If the

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















k

(

1

|k| −
1√
h2+k2

)

if (h, k) ≠ (0,0);

0 if (h, k) = (0,0).

is continuous in (0,0).

We restrict the function q(h, k) to the continuous curves with equations

k = λh. We observe then that

q
∣

∣

k=λh(h, k) =



















q(h, λh) = hλ
(

1

|hλ| −
1

√

h2(λ2+1)

)

if h ≠ 0;

0 if h = 0.

We see that these restricted functions have different limits if λ ≠ 0. But

if q(h, k) is continuous, all these limit values should be q(0,0) = 0. So

this function q(h, k) is not continuous in (0,0). The function f(x,y) is

not differentiable in (0,0).
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Figure 412. We see here a three dimensional figure of the graph of the

function q(h, k). The vertical line above (0,0) looks suspicious. This

does not seem to be a graph of a continuous function.

Figure 413. We have restricted the function q(h, k) here to k = 1/2h
and k = 3/10h and k = 9/10h. We see in this figure clearly that the re-

strictions of the function to these lines are functions that have different

limits in 0.
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Figure 414. We see here a figure of the contour plot of the function

q(h, k). Many level curves of very different levels approach (0,0). This

looks discontinuous indeed.

50.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-
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tion q(h, k). It turns out that we only have to prove now that the func-

tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if and only if it satisfies the three

following conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is a indeed very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

This function is not locally Lipschitz continuous because it is not lo-

cally continuous. We have no alternative proof for the differentiability

following these lines.

50.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

The function is not locally continuous. Please consult section 50.4.
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50.8 Overview

f(x,y) =



















y
√

x2 +y2

|y|
if y ≠ 0,

0 if y = 0.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

50.9 One step further

We have used in the calculations for differentiability that we had some

magical curves k = λh which behaved very strangely when mapped by

q(h, k) to the Z-direction. We want to see what is going on with these

curves. Let us define the 3-dimensional curve in parametric form that

projects in the (h, k)-plane to our curve k = λh where we use λ = 1:

(x(t),y(t), z(t)) = (t, λ t, f (t, λ t)) =
(

t, t,
√

2 t
)

.

This curve lies completely in the surface defined by the function. It is

clear that the tangent vector lies in the tangent plane if the function is

differentiable. Now we have a candidate tangent plane, we draw that

and draw also the curve defined above which is in this case a line. The

tangent vector in t = 0 coincides with this line. But the tangent vector

should be in the candidate tangent plane if it is a tangent plane. This is

not the case.
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Figure 415. The tangent vector is not in the candidate tangent plane.

The curve intersects the candidate tangent plane transversally and not

tangentially. We have used λ = 1 in this figure.

••••
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Exercise 51.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =



















x2y
√

|y|
x4 +y2

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

51.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∣

x2y
√

|y|
x4 +y2

− 0

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

∣

x2 |y|
√

|y|
x4 +y2

∣

∣

∣

∣

∣

∣

≤
x2 |y|

√

|y|
x4 +y2

≤

√

|y|
2

≤

√

√

x2 +y2

2

≤

√

x2 +y2
1/2

2
.

We know that 0 ≤ (a−b)2 so that 2ab ≤ a2+b2. So ab/(a2+b2) ≤ 1/2.

We have applied that with a = x2 and b = |y|.

It is sufficient to take δ = (2 ϵ)2. We can find a δ, so we conclude that

the function is continuous.

Figure 416. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 417. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

51.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

51.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

u2 v
√

|hv|
h2u4 + v2

= 0.

We see that v = 0 must be excluded from this calculation but we dis-

cussed that direction before.

So the directional derivatives do always exist.

Figure 418. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).
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51.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Let us investigate the partial derivative to y .

If y > 0, this is equal to

∂f

∂y
(x,y) =

x2
√

y
(

3x4 −y2
)

2
(

x4 +y2
)2 .

By restricting to y = x2 with y > 0, we have then

∂f

∂y
(x,x2) = 1

4
√

x2
.

This function is not bounded in any neighbourhood of (0,0). So this

criterion cannot be used for an alternative proof of continuity.

We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.
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Figure 419. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.

Figure 420. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the unboundedness from this picture.



www.mathandphoto.eu. Exercise Notes 674

Figure 421. We see here a contour plot of the absolute value of the

second partial derivative

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We see a picture that indicates that

unboundedness is possible.

51.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 422. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function quite nicely. One cannot be sure. The

calculations will decide if the fit is strong enough.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 423. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =



















h2 k
√

|k|
√

h2 + k2
(

h4 + k2
) if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)
is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We restrict the function q(h, k) to the continuous curves with equations

k = λh2. We observe then that

q
∣

∣

k=λh2(h, k) =



































































q(h, λh2)

=
λ
√

|h2λ|
(

λ2 + 1
)
√

h4λ2 + h2

=
λ|h|

√

|λ|
(

λ2 + 1
)

|h|
√

h2λ2 + 1

if h ≠ 0;

0 if h = 0.

We see that these restricted functions have different limits. But if q(h, k)
is continuous, all these limit values should be q(0,0) = 0. So this func-

tion q(h, k) is not continuous in (0,0). The function f(x,y) is not dif-

ferentiable in (0,0).
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Figure 424. We see here a three dimensional figure of the graph of the

function q(h, k). The vertical line above (0,0) looks suspicious. This

does not seem to be a graph of a continuous function.

Figure 425. We have restricted the function q(h, k) here to k = 1/2h2

and k = 3/10h2 and k = 9/10h2. We see in this figure clearly that

the restrictions of the function to these lines are functions that have

different limits in 0.
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Figure 426. We see here a figure of the contour plot of the function

q(h, k). Many level curves of very different levels approach (0,0). This

looks discontinuous indeed.

51.6 Alternative proof of differentiability (optional)

The function is not differentiable. So this section is irrelevant.

51.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability. The

function is not differentiable. So this section is irrelevant.

51.8 Overview

f(x,y) =



















x2y
√

|y|
x4 +y2

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
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continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

51.9 One step further

We wonder what those magical curves h = λh2 could mean for the ge-

ometry of the graph of our function.

We calculate the curve

(x(t),y(t), z(t)) = (t, λ t2, f (t, λ t2))

which is entirely on the surface defined by the graph of our function.

By the composition law of differentiable functions, also called the chain

rule, we have that this curve must be differentiable if f is differentiable.

We calculate the curve.

(x(t),y(t), z(t)) =
(

t, t2,
|t|
2

)

.

We calculate the tangent vector in t = 0 for t ≤ 0. It is (1,0,−1/2). We

calculate the tangent vector in t = 0 for t ≥ 0. It is (1,0,1/2). So there

is no tangent vector at all. This curve is not differentiable. We illustrate

this situation.
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Figure 427. We see here a figure of the curve that is on our surface. We

see the tangent vectors in t = 0. They are clearly different what cannot

be possible if f is differentiable.

••••
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Exercise 52.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) = 3

√

x 3

√

y.

52.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

3

√

x 3

√

y − 0

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

3

√

x 3

√

y

∣

∣

∣

∣

≤ 3

√

|x| 3

√

|y|

≤ 3

√

√

x2 +y2
3

√

√

x2 +y2

≤
√

x2 +y2
2/3

.
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It is sufficient to take δ = ϵ3/2. We can find a δ, so we conclude that the

function is continuous.

Figure 428. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 429. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

52.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

52.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

3

√

hu 3

√

hv

h

= lim
h→0

h2/3( 3

√

u 3

√

v)

h

= lim
h→0

3

√

u 3

√

v

h1/3
.

We see that the limit does not exist if uv ≠ 0 but we dealt with these

exceptional cases before.

So the directional derivatives do not always exist.
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Figure 430. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). This function is not differ-

entiable in h = 0.

52.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

We doubt that all partial derivatives exist in a neighbourhood of (0,0).
Let us consider points (a,0) with a ≠ 0 and look upon the behaviour of

the function in the Y -direction.

f(a,h) = 3

√

a 3

√

h.

The partial derivative to y in (a,0) is then

lim
h→0

f(a,h)− f(a,0)
h

= lim
h→0

3

√

a

h2/3
.
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This limit is not finite if a ≠ 0. This function is not differentiable in

h = 0. Let us take a look at the behaviour in a = 1/2.

-0.05 0.05
H

-0.2

0.2

Z

Figure 431. We see here a three dimensional figure of the graph of the

function f(a,h). We have drawn the function here for the value a = 1/2
which is exemplary for the values of a close to 0. This does not look

like a differentiable function. The vertical tangent behaviour in h = 0 is

problematic.

So an alternative proof using this criterion is not possible.

52.5 Differentiability

At least one of the directional derivatives does not exist. It follows then

that the function is not differentiable.

52.6 Alternative proof of differentiability (optional)

Irrelevant because the function is not differentiable.

52.7 Continuity of the partial derivatives

Irrelevant because the function is not differentiable.
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52.8 Overview

continuous yes

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 53.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















sin

(

x2 +y2

x4 +y4

)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

53.1 Continuity

We restrict the function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

y=λx(x,y) =























f(x, λx) = sin





λ2 + 1
(

λ4 + 1
)

x2



 if x ≠ 0;

0 if x = 0.

We see that these restricted functions have no limits. But if f(x,y) is

continuous, all the limit values should be f(0,0) = 0. So this function

f(x,y) is not continuous.
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Figure 432. We see here a three dimensional figure of the graph of the

function. This does not seem to be a graph of a continuous function.

Figure 433. We have restricted the function here to y = 0 and y = 1/2x.

We see in this figure clearly that the restrictions of the function to these

lines are functions that have no limits in 0. This is a standard example

of the theory in one variable.



www.mathandphoto.eu. Exercise Notes 692

Figure 434. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

53.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =



















f(x,0) = sin

(

1

x2

)

if x ≠ 0;

0 if x = 0.

This function is not continuous and thus not differentiable. So the par-

tial derivative
∂f
∂x (0,0) does not exist.

By symmetry reasons we have that the partial derivative to y does not

exist.

We conclude that the partial derivative to x does not exist. and that the

partial derivative to y does not exist.
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53.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

We see that the function

f(0+ hu,0+ hv) = sin







u2 + v2

h2
(

u4 + v4
)







is not continuous. So it cannot be differentiable.

So the directional derivatives do not always exist.

Figure 435. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We

have drawn the graph of the function f(hu,hv). This function has

no derivative in 0.

53.4 Alternative proof of continuity (optional)

Irrelevant. The function is not continuous.
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53.5 Differentiability

The function is not continuous. It follows that the function is not differ-

entiable.

53.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

53.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

53.8 Overview

f(x,y) =















sin

(

x2 +y2

x4 +y4

)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous no

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 54.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =
√

sin2(x)+ sin2(y).

54.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

√

sin2(x)+ sin2(y)− 0

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

√

sin2(x)+ sin2(y)

∣

∣

∣

∣

≤
√

x2 +y2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function is continuous.
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Figure 436. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 437. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

54.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) =
√

sin2(x) if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

√

sin2(h)

h

= lim
h→0

| sin(h)|
h

|h|
|h|

= lim
h→0

| sin(h)|
|h|

|h|
h

= lim
h→0

sgn(h).

This limit does not exist.

So the partial derivative to x does not exist.

By the symmetry in the function definition, one can assume that it is the

same case for y .

We conclude that the partial derivative to x does not exist and that the

partial derivative to y does not exist.
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Figure 438. We see here a figure of the graph of the function restricted

to the horizontal X-axis through (0,0). We see that the derivative does

not exist. We have plotted here the function f(h,0).

54.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

√

sin2(hu)+ sin2(hv)

h
.
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

√

h2u2 sin2(hu)/(hu)2 + h2 v2 sin2(hv)/(hv)2

h

= lim
h→0

√

h2 (u2 sin2(hu)/(hu)2 + v2 sin2(hv)/(hv)2)

h

= lim
h→0

|h|
√

(u2 + v2)

h
.

This limit does not exist.

So the directional derivatives do not always exist.

Figure 439. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

54.4 Alternative proof of continuity (optional)
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This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Irrelevant. The partials do not exist in any neighbourhood of (0,0).

54.5 Differentiability

The directional derivatives of the function do not exist. The function

cannot be differentiable.

54.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

54.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

54.8 Overview

continuous yes

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 55.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















|x| + |y| − |x +y|
(

x2 +y2
)1/5 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

55.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

|x| + |y| − |x +y|
(

x2 +y2
)1/5 − 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

|x| + |y| − |x +y|
(

x2 +y2
)1/5

∣

∣

∣

∣

∣

≤ |x| + |y| + |x +y|
(

x2 +y2
)1/5

≤ |x| + |y| + |x| + |y|
(

x2 +y2
)1/5

≤ 2 |x| + 2 |y|
(

x2 +y2
)1/5

≤
2
√

x2 +y2 + 2
√

x2 +y2

(

x2 +y2
)1/5

≤
4
√

x2 +y2

(

x2 +y2
)1/5

≤ 4
√

x2 +y2
4/5

.

It is sufficient to take δ = (ϵ/4)5/4. We can find a δ, so we conclude that

the function is continuous.

Figure 440. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 441. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

55.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

55.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

|h| (−|(u+ v)| + |u| + |v|)
hh2/5 5

√

(u2 + v2)

= lim
h→0

sgn(h) (−|(u+ v)| + |u| + |v|)
h2/5 5

√

(u2 + v2)
.

This limit does not exist if −|(u+ v)| + |u| + |v| ≠ 0. It is equal to 0 if

−|(u+ v)| + |u| + |v| = 0.

So the directional derivatives do not always exist.

Figure 442. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

−
√

3/2,1/2

)

. We have

plotted here the function f(hu,hv).
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55.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

We have doubts about the existence of the partial derivatives in a neigh-

bourhood of (0,0). Let us take a look at the point (a,0) in the Y -

direction. The function f(a,h) with a > 0 is there the following.

f(a,h) =















−|a+ h| + |a| + |h|
5
√

a2 + h2
= −2h

5
√

a2 + h2
if h < 0 and |h| < a;

0 if h ≥ 0.

This function has no partial derivative to y in (a,0). We conclude that

an alternative proof following this criterion is not possible.

-0.05 0.05
H

0.05

0.10

0.15

0.20

0.25

Z

Figure 443. We see here a figure of the graph of the function f(a,h).
We have drawn the function here for the value a = 1/2 which is repre-

sentative for the values of a > 0. This does not look like a differentiable

function.



www.mathandphoto.eu. Exercise Notes 708

55.5 Differentiability

The function is not differentiable. At least one of the directional deriva-

tives does not exist.

55.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

55.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

55.8 Overview

f(x,y) =















|x| + |y| − |x +y|
(

x2 +y2
)1/5 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 56.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















|x| + |y| − |x +y|
(

x2 +y2
)1/2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

56.1 Continuity

We restrict the function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

y=λx(x,y) =







































































∂f

∂x
(x, λx)

=
|λx| − |λx + x| + |x|

√

λ2x2 + x2

=
|x| (|λ| − |λ+ 1| + 1)

|x|
√

λ2 + 1

if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits if |λ| − |λ +
1| + 1 ≠ 0. But if f(x,y) is continuous, all these limit values should be

f(0,0) = 0. So this function f(x,y) is not continuous.



www.mathandphoto.eu. Exercise Notes 710

Figure 444. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 445. We have restricted the function here to y = −3/10x and

y = −1/10x and y = −1/2x. We see in this figure clearly that the re-

strictions of the function to these lines are functions that have different

limits in 0.
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Figure 446. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

56.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

By symmetry reasons, the partial derivative to y does exist.

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

56.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

−|h(u+ v)| + |hu| + |hv|
h
√

h2 (u2 + v2)

= lim
h→0

|h|(−|u+ v| + |u| + |v|)
h|h|

√

u2 + v2

= lim
h→0

−|u+ v| + |u| + |v|
h
√

u2 + v2
.

This limit is 0 if −|u+v| + |u| + |v| = 0. But if −|u+v| + |u| + |v| ≠ 0,

then the function f(hu,hv) is not continuous, and thus evidently not

differentiable. We consult the figure.

So the directional derivatives do not always exist.

Figure 447. We see here a figure of the graph of the function restricted

to the line through (u,v) = (0,0) with direction (cos
(

7π
9

)

, sin
(

7π
9

)

).

We have plotted here the function f(hu,hv). This function is not con-

tinuous in this case.
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56.4 Alternative proof of continuity (optional)

Irrelevant. The function is not continuous.

56.5 Differentiability

The function is not continuous and thus not differentiable.

56.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

56.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

56.8 Overview

f(x,y) =















|x| + |y| − |x +y|
(

x2 +y2
)1/2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous no

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 57.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















sin

(

1

x2 +y2

)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

57.1 Continuity

We restrict the function to the continuous curves with equations y =
λx???. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx) = sin

(

1

λ2x2 + x2

)

if x ≠ 0;

0 if x = 0.

We see that these restricted functions are not continuous in 0. They

have no limits. But if f(x,y) is continuous, all these limit values should

be f(0,0) = 0. So this function f(x,y) is not continuous.
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Figure 448. We see here a three dimensional figure of the graph of the

function. This does not seem to be a graph of a continuous function.

Figure 449. We have restricted the function here to y = 3/10x and y =
3/5x and y = 9/10x. We see in this figure clearly that the restrictions

of the function to these lines are functions that have no limits in 0.
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Figure 450. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

57.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =



















f(x,0) = sin

(

1

x2

)

if x ≠ 0;

0 if x = 0.

This function is not continuous, so the partial derivative to x does not

exist.

By rotational symmetry, the partial derivative to y does not exist.

We conclude that the partial derivative to x does not exist and that the

partial derivative to y does not exist.
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Figure 451. We see here a figure of the graph of the function restricted

to the horizontal X-axis through (0,0). This is a classical example of

discontinuity and the function is of course also not differentiable.

57.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

By rotational symmetry, the directional derivatives do not exist.

57.4 Alternative proof of continuity (optional)

Irrelevant. The function is not continuous.

57.5 Differentiability

The function is not continuous. Thus it is not differentiable.

57.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.
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57.8 Overview

f(x,y) =















sin

(

1

x2 +y2

)

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous no

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 58.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =







































x sin

(

1

x

)

if y = 0 and x ≠ 0,

y sin

(

1

y

)

if x = 0 and y ≠ 0,

0 elsewhere.

58.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣f(x,y)− 0
∣

∣ < ϵ.

We will be first investigate the function on the X-axis.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣f(x,0)− 0
∣

∣ ≤ |x|
∣

∣

∣

∣

sin

(

1

x

)∣

∣

∣

∣

≤ |x|

≤
√

x2 +y2.

It is sufficient to take δ = ϵ.

We will now investigate the function on the Y -axis. This can be proven

in a similar way and we can take the same δ.

We will now investigate the function elsewhere. The function is there

equal to 0, so we can take every δ.

We conclude that δ can be chosen as δ = ϵ. The function is continuous.

Figure 452. We see here a three dimensional figure of the graph of the

function. For a good understanding: the graph consists of the green

function above the X-axis and the red function above the Y -axis. Above

all other points we have the yellow opaque plane. This looks like a con-

tinuous function.



www.mathandphoto.eu. Exercise Notes 723

A contour plot cannot be drawn. The function behaves too weird for

that.

58.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =



















f(x,0) = x sin

(

1

x

)

if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

sin

(

1

h

)

.

This limit does not exist. This is a standard example from the theory in

one variable.

So the partial derivative to x does not exist.

The partial derivative to y does not exist by symmetry considerations.
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Figure 453. We see here a figure of the graph of the function restricted to

the horizontal X-axis through (0,0). This function is not differentiable.

This is a standard example from the theory in one variable. We have

plotted here the function f(h,0).

58.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit if

uv ≠ 0:

lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= 0.

So the directional derivatives do not always exist because the partial

derivatives do not exist.

58.4 Alternative proof of continuity (optional)

The partial derivatives do not exist. So a proof following this criterion

cannot be given.
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58.5 Differentiability

The function has no partial derivatives. So the function is not differen-

tiable.

58.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

58.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

58.8 Overview

f(x,y) =







































x sin

(

1

x

)

if y = 0 and x ≠ 0,

y sin

(

1

y

)

if x = 0 and y ≠ 0,

0 elsewhere.

continuous yes

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 59.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) = min{x,y} =
x +y

2

−
|x −y|

2

.

59.1 Continuity

We can immediately conclude that this function is not continuous. All

the composing functions are continuous. We are nevertheless going to

reason by the definition.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∣

min{x,y} =
x +y

2

−
|x −y|

2

− 0

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

∣

x +y

2

−
|x −y|

2

∣

∣

∣

∣

∣

∣

≤
|x| + |y|

2

+
|x| + |y|

2

≤

√

x2 +y2 +
√

x2 +y2

2

+

√

x2 +y2 +
√

x2 +y2

2

≤ 2
√

x2 +y2.

It is sufficient to take δ = ϵ/2. We can find a δ, so we conclude that the

function is continuous.

Figure 454. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 455. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

59.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =
x

2
− |x|

2
.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

h

2h
− |h|

2h

= lim
h→0

1

2
− sgn(h)

2
.

So the partial derivative to x does not exist.

The partial derivative can be calculated by symmetric reasons in a com-

pletely similar way.

So the partial derivative to y does not exist.

We conclude that the partial derivative to x does not exist and that the

partial derivative to y does not exist.

Figure 456. We see here a figure of the graph of the function restricted

to the horizontal X-axis through (0,0). The function is not differentiable

in 0.
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59.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

h(u+ v)− |h(u− v)|
2h

= lim
h→0

(u+ v)− sgn(h)|(u− v)|
2

.

This limit does not exist unless u − v = 0. So in almost all cases, the

partial derivative does not exist.

So the directional derivatives do not always exist.
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Figure 457. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction

(

√

3/2,1/2

)

. We see that this

function is not differentiable in h = 0. We have plotted here the function

f(h,0).

59.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

The partial derivatives do not all exist in any neighbourhood of (0,0).
So this criterion cannot be used.

59.5 Differentiability

At least one of the directional derivatives does not exist, thus the func-

tion is not differentiable. So it is futile to continue.

59.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.
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59.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

59.8 Overview

f(x,y) = min{x,y} =
x +y

2

−
|x −y|

2

.

continuous yes

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••



www.mathandphoto.eu. Exercise Notes 733

Exercise 60.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) = |x| + |y|.

60.1 Continuity

This function is continuous because it is composed of continuous func-

tions. We give nevertheless a classical proof. We investigate continuity

with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣|x| + |y| − 0
∣

∣ < ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣|x| + |y|
∣

∣ ≤
√

x2 +y2 +
√

x2 +y2

≤ 2
√

x2 +y2.
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It is sufficient to take δ = ϵ/2. We can find a δ, so we conclude that the

function is continuous.

Figure 458. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 459. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

60.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = |x| if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

|h|
h

= lim
h→0

sgn(h).

So the partial derivative to x does not exist.

The partial derivative to y does not exist by symmetry reasons.

We conclude that the partial derivative to x does not exist and that the

partial derivative to y does not exist.

60.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

|hu| + |hv|
h

= lim
h→0

|h|(|u| + |v|)
h

= lim
h→0

sgn(h) (|u| + |v|).



www.mathandphoto.eu. Exercise Notes 737

This limit does not exist unless |u|+ |v| = 0 and that is not possible for

unit vectors.

So the directional derivatives do not always exist.

Figure 460. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). The function is not differ-

entiable in 0.

60.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

The partial derivatives do not exist in any neighbourhood of (0,0). This

criterion cannot be applied.
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60.5 Differentiability

At least one of the directional derivatives does not exist, thus the func-

tion is not differentiable. So it is futile to continue.

60.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

60.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

60.8 Overview

f(x,y) = |x| + |y|.

continuous yes

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 61.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =











xy

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

61.1 Continuity

We restrict the function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx) = λx2

λ2x2 + x2
= λ

λ2 + 1
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 461. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 462. We have restricted the function here to y = 1/10x and y =
3/10x and y = 9/10x. We see in this figure clearly that the restrictions

of the function to these lines are functions that have different limits in

0.
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Figure 463. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

61.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does not exist.

We see that the partial derivative to y exists by symmetry considera-

tions.

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

61.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

We have however the following discontinuous function. It is not differ-

entiable.

f(0+ hu,0+ hv) =











uv

u2 + v2
if h ≠ 0,

0 if h = 0.

So the directional derivatives do not always exist.
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Figure 464. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

61.4 Alternative proof of continuity (optional)

The function is not continuous. So this section is irrelevant.

61.5 Differentiability

We have that the function is not continuous. Thus the function is not

differentiable.

61.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

61.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

61.8 Overview

f(x,y) =











xy

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).
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continuous no

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 62.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =
(

3

√

x + 3

√

y

)3

.

62.1 Continuity

We could reason that the function is composed by continuous functions

and that there is nothing to be proved any more. We are nevertheless

going to give a classic proof.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

(

3

√

x + 3

√

y

)3

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

(

3

√

x + 3

√

y

)3
∣

∣

∣

∣

∣

≤
(

3

√

√

x2 +y2 + 3

√

√

x2 +y2

)3

≤
(

2
3

√

√

x2 +y2

)3

≤ 8
√

x2 +y2.

It is sufficient to take δ = ϵ/8. We can find a δ, so we conclude that the

function is continuous.

Figure 465. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 466. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

62.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =
(

3

√

x

)3

= x.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

1

= 1.
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So the partial derivative to x does exist.

By symmetry reasons we can do similar calculations for y . So the partial

derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 1 and

∂f

∂y
(0,0) = 1.

62.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

(

3

√

hu+ 3

√

hv
)3

h

= lim
h→0

h
(

3

√

u+ 3

√

v
)3

h

=
(

3

√

u+ 3

√

v

)3

.

So the directional derivatives do always exist.
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Figure 467. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

62.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =























(

3

√

x + 3

√

y

)2

x2/3
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We can consult figures of the absolute values of the first partial deriva-

tive at the end of this section.

We investigate the boundedness of this partial derivative to x. To see

this, we take x = y2 and see that the main part of the definition is
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f(y2, y) =

(

y2/3 + 3

√

y
)2

y4/3
=

(

3

√

y + 1
)2

y2/3
.

We can observe unboundedness in any neighbourhood of (0,0). We can-

not apply this criterion for continuity. So we have not an alternative

proof with this criterion for the continuity.

Figure 468. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the unboundedness from this picture.

62.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual
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proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 469. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function nicely but there remain a few doubts.

The vertical tangential behaviour on the axes give reason for concern.

Further calculations will have to decide.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 470. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see here that the vectors (u,v,D(u,v)(0,0)) do not sweep out a nice el-

lipse lying in one plane! This is extremely bad news for differentiability.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.



www.mathandphoto.eu. Exercise Notes 753

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =























(

3

√

h+ 3

√

k

)3

− h− k
√

h2 + k2
if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We restrict the function q(h, k) to the continuous curves with equations

k = λh. We observe then that

q
∣

∣

k=λh(h, k) =



























q(h, λh) =
3h

(

3

√

λ+ 1

)

3

√

λ
√

h2 (λ2 + 1)
if h ≠ 0;

0 if h = 0.

We see that these restricted functions have many different limits. But if

q(h, k) is continuous, all these limit values should be q(0,0) = 0. So this

function q(h, k) is not continuous in (0,0). The function f(x,y) is not

differentiable in (0,0).
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Figure 471. We see here a three dimensional figure of the graph of the

function q(h, k). The vertical line above (0,0) looks suspicious. This

does not seem to be a graph of a continuous function.

Figure 472. We have restricted the function q(h, k) here to k = −2h and

k = −1/3h and k = −h. We see in this figure clearly that the restrictions

of the function to these lines are functions that have different limits in

0.
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Figure 473. We see here a figure of the contour plot of the function

q(h, k). Many level curves of very different levels approach (0,0). This

looks discontinuous indeed.

62.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

62.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

62.8 Overview

f(x,y) =
(

3

√

x + 3

√

y

)3

.



www.mathandphoto.eu. Exercise Notes 756

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

62.9 One step further

We are interested in the magical curves k = λh which we used in the

proof of non differentiability.

Let us define a plane curve β(t) = (t, λ t). This curve goes through (0,0)
and is differentiable. Now we take the space curve that projects to β(t):

α(t) = (t, λt, f (t, λ t)) =
(

t, λ t,
(

3
√
λ t + 3

√
t
)3
)

.

This curve lies on the surface defined by the function f . We see that this

curve is differentiable, but remark that this is not guaranteed because f
is not differentiable!

We calculate the derivative in t.

α′(t) =
(

1, λ,1+ 3λ1/3 + 3λ2/3 + λ
)

.

We draw the curve, the tangent line and the candidate tangent plane.
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Figure 474. We see here a figure of the candidate tangent plane. The

tangent line is drawn in red and completely obscures the curve which is

also the same line in this case. We see that the tangent line is not in the

candidate tangent plane. It intersects the tangent plane transversally

and not tangentially. So the candidate tangent plane is not a tangent

plane. The yellow point lies on the candidate tangent plane. We have

drawn that yellow point in order to see more clearly that the tangent line

is not on the candidate tangent plane. We conclude that the candidate

tangent plane is not a tangent plane. The function is not differentiable.

The figure is made with λ = 1.
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••••
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Exercise 63.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















(x +y)2

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

63.1 Continuity

We restrict the function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

y=λx(x,y) =



















f(x, λx) = (λx + x)
2

λ2x2 + x2
= (λ+ 1)2

λ2 + 1
if x ≠ 0;

0 if x = 0.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 475. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 476. We have restricted the function here to y = 3/10x and y =
6/10x and y = 9/10x. We see in this figure clearly that the restrictions

of the function to these lines are functions that have different limits in

0.



www.mathandphoto.eu. Exercise Notes 761

Figure 477. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

63.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 1 if x ≠ 0;

0 if x = 0.

The function restricted to y = 0 is not continuous and therefore not

differentiable.

By symmetry reasons the same holds for the derivative to y .

We conclude that the partial derivative to x does not exist and that the

partial derivative to y does not exist.



www.mathandphoto.eu. Exercise Notes 762

63.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

We see that the function is not continuous.

So the directional derivatives do not always exist.

Figure 478. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

63.4 Alternative proof of continuity (optional)

Irrelevant. The function is not continuous.

63.5 Differentiability

The function is not continuous. Thus the function is not differentiable.
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63.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

63.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

63.8 Overview

f(x,y) =















(x +y)2

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous no

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 64.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =



















log
(

x2y2
)

x2 +y2
if xy ≠ 0;

0 if xy = 0.

64.1 Continuity

We restrict the function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

y=λx(x,y) =























f(x, λx) =
log

(

λ2x4
)

λ2x2 + x2
if x ≠ 0;

0 if x = 0.

We see that

lim
x→0

log
(

λ2x4
)

λ2x2 + x2
= −∞.

We see that these restricted functions tend to −∞ if λ ≠ 0. But if f(x,y)
is continuous, it is bounded in at least one neighbourhood of (0,0). So

this function f(x,y) is not continuous.
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Figure 479. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.

Figure 480. We have restricted the function here to y = 1/10x and y =
3/10x and y = 9/10x. We see in this figure clearly that the restrictions

of the function to these lines are functions that are unbounded in any

neighbourhood of (0,0).
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Figure 481. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed. We see that the function is unbounded in any

neighbourhood of (0,0). There are not enough colours to show that, so

the neighbourhood of (0,0) is just depicted by white area.

64.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So



www.mathandphoto.eu. Exercise Notes 767

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

By symmetry reasons, the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

64.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

log
(

h4u2 v2
)

h3 (u2 + v2)
.

This limit is not a real number, so the direction derivatives do not exist

if uv ≠ 0. We calculated these exceptional cases before.
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So the directional derivatives do not always exist.

Figure 482. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). These functions are un-

bounded. So the derivatives do not exist.

64.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

We doubt that the partial derivatives do all exist. We take a point (a,0)
on the X-axis and investigate the function f(a,h) with a ≠ 0. We see

that this function is not continuous and thus not differentiable.

f(a,h) =



















log
(

a2h2
)

a2 + h2
if h ≠ 0;

0 if h = 0.

We consult a figure for this.
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Figure 483. We see here a figure of the graph of the function f(a,h). We

have drawn the function here for the value a = 1/2 which is exemplary

for the values of a close to 0. This does not look like a continuous or

differentiable function.

64.5 Differentiability

We have that the function is not continuous. Thus the function is not

differentiable.

64.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.
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64.8 Overview

continuous no

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 65.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =



























































x2 sin

(

1

x

)

+y2 sin

(

1

y

)

if xy ≠ 0,

x2 sin

(

1

x

)

if x ≠ 0 and y = 0,

y2 sin

(

1

y

)

if y ≠ 0 and x = 0,

0 if x = 0 and y = 0.

65.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

We are going to find a δ valid for the interior parts of the quadrants, and

then investigate the X-axis and the Y -axis separately.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

x2 sin

(

1

x

)

+y2 sin

(

1

y

)

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.



www.mathandphoto.eu. Exercise Notes 772

∣

∣

∣

∣

∣

x2 sin

(

1

x

)

+y2 sin

(

1

y

)∣

∣

∣

∣

∣

≤ x2

∣

∣

∣

∣

sin

(

1

x

)∣

∣

∣

∣

+y2

∣

∣

∣

∣

∣

sin

(

1

y

)∣

∣

∣

∣

∣

≤ x2 +y2

≤
√

x2 +y2
2

.

It is sufficient to take δ = ϵ1/2. We can find a δ, so we conclude that the

function is continuous.

We look now for a δ for the points on the X-axis.

∣

∣

∣

∣

x2 sin

(

1

x

)∣

∣

∣

∣

≤ x2

∣

∣

∣

∣

sin

(

1

x

)∣

∣

∣

∣

≤ x2

≤
√

x2 +y2
2

.

It is sufficient to take δ = ϵ1/2. We can find a δ, so we conclude that the

function is continuous.

The reasoning on the Y -axis is similar.

We conclude the continuity of the function. We can take a δ which is

valid for all three sets at the same time, e.g. the minimum of the three

delta’s.
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Figure 484. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 485. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

65.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =



















f(x,0) = x2 sin

(

1

x

)

if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

h2 sin
(

1

h

)

h

= lim
h→0

h sin

(

1

h

)

= 0.

We can for example use the squeeze theorem. So the partial derivative

to x does exist.

Discussion of the partial derivative to y in (0,0).

This runs in a completely similar way. So the partial derivative to y does

exist.

We conclude that the partial derivative to x does exist and that the par-

tial derivative to y does exist.

Figure 486. We see here a figure of the graph of the function restricted

to the horizontal X-axis through (0,0).
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65.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

h

(

u2 sin

(

1

hu

)

+ v2 sin

(

1

hv

))

= 0.

We can for example use the squeeze theorem.

So the directional derivatives do always exist.

Figure 487. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).
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65.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).

We try now to see that the partial derivatives do exist. We start our

investigation with the partial derivatives in (a,0) with a ≠ 0. We can

explicitly calculate the partial derivative to x.

The partial derivative to x is:

∂f

∂x
(x,y) =











2x sin
(

1

x

)

− cos
(

1

x

)

if x ≠ 0,

0 if x = 0.

We conclude that the partial derivative to x does exist in (a,0).

We start investigating the partial derivative to y in (a,0) with a ≠ 0. The

function is then composed of classical functions which are known to be

infinitely differentiable. Let us start with writing the function f(a,h).
This function is equal to

f(a,h) =











a2 sin
(

1

a

)

+ h2 sin
(

1

h

)

if h ≠ 0,

a2 sin
(

1

a

)

if h = 0.

So

∂f

∂y
(a,0) = lim

h→0

a2 sin
(

1

a

)

+ h2 sin
(

1

h

)

− a2 sin
(

1

a

)

h
= lim
h→0

h sin

(

1

h

)

= 0.

So the derivative to y in (a,0) does exist and equals 0.

By the symmetry of the function, we conclude that the derivative to y
does also exist.

We summarise.
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∂f

∂x
(x,y) =











2x sin
(

1

x

)

− cos
(

1

x

)

if x ≠ 0,

0 if x = 0.

We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

≤
∣

∣

∣

∣

2x sin

(

1

x

)

− cos

(

1

x

)∣

∣

∣

∣

≤
∣

∣

∣

∣

2 |x|
∣

∣

∣

∣

sin

(

1

x

)∣

∣

∣

∣

+
∣

∣

∣

∣

cos

(

1

x

)∣

∣

∣

∣

∣

∣

∣

∣

≤ 2 |x| + 1

≤ 2
√

x2 +y2 + 1

≤ 3.

We have chosen here the restriction to the neighbourhood defined by
√

x2 +y2 < 1.

The calculation for the absolute value of the partial derivative
∣

∣

∣

∂f
∂y

∣

∣

∣ is

completely similar.

So the partial derivative
∣

∣

∣

∂f
∂y

∣

∣

∣ is bounded.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.
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Figure 488. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.

65.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 489. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function nicely.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 490. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k)

=























h2 sin

(

1

h

)

+ k2 sin

(

1

k

)

√

h2 + k2
if (h, k) ≠ (0,0) and h ≠ 0 and k ≠ 0;

0 if (h, k) = (0,0) or h = 0 or k = 0

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h2 sin

(

1

h

)

+ k2 sin

(

1

k

)

√

h2 + k2
− 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

h2 sin
(

1

h

)

+ k2 sin
(

1

k

)

√

h2 + k2

∣

∣

∣

∣

∣

∣

≤
h2
∣

∣

∣sin
(

1

h

)∣

∣

∣+ k2
∣

∣

∣sin
(

1

k

)∣

∣

∣

√

h2 + k2

≤ h2 + k2

√

h2 + k2

≤

√

h2 + k2
2

√

h2 + k2

≤
√

h2 + k2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function q(h, k) is continuous. The function is thus differentiable.
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Figure 491. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.

Figure 492. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).
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65.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We can see that the partial derivatives are not bounded in any neighbour-

hood of (0,0). So the function is not Lipschitz continuous. We cannot

give an alternative proof following this criterion.

65.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

We have that the partial derivative to x is

∂f

∂x
(x,y) =











2x sin
(

1

x

)

− cos
(

1

x

)

if x ≠ 0,

0 if x = 0.

We restrict this function to the X-axis. But this function has many limit

or accumulation points in x = 0. But no one makes the function contin-

uous. We see that this function is not continuous.

So we cannot use this alternative criterion in order to prove differentia-

bility.
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Figure 493. We see here a figure of the graph of the function
∂f
∂x (x,y)

restricted to the X-axis. This does not seem to be a graph of a continu-

ous function. There are many accumulation or limit points in x = 0. But

no one makes the function continuous.

Figure 494. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂x (x,y). This does not look like a continuous

function in (0,0).
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65.8 Overview

f(x,y) =















































x2 sin
(

1

x

)

+y2 sin
(

1

y

)

if xy ≠ 0,

x2 sin
(

1

x

)

if x ≠ 0 and y = 0,

y2 sin
(

1

y

)

if y ≠ 0 and x = 0,

0 if x = 0 and y = 0.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no

••••



www.mathandphoto.eu. Exercise Notes 788

Exercise 66.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =











x +y if xy ≠ 0;

0 if x = 0 or y = 0.

66.1 Continuity

Remark the subtlety in the definition. The main definition x + y is a

perfect function in the sense that it is everywhere differentiable. It exists

everywhere in the real plane, but it is forced to be something else on the

X-axis and the Y -axis. We must take care and consider this fact.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments.

We are going to prove first the ϵ criterion for the points (x,y) with

xy ≠ 0. Then we will do it for the X-axis and the Y -axis. Try to find

for the points (x,y) with xy ≠ 0 a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we have that

∣

∣x +y − 0
∣

∣ < ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣x +y
∣

∣ ≤
√

x2 +y2 +
√

x2 +y2

≤ 2
√

x2 +y2.

It is sufficient to take δ = ϵ/2. We can find a δ, so we conclude that the

function is continuous on this set.

We work now on the X-axis. Because the function is identically 0 on this

axis, we can take every δ that is allowed. We take δ = 1. We can find a

δ, so we conclude that the function is continuous on this set. We do a

similar reasoning on the Y -axis.

We take then the minimum of the three δ values. We can find a δ, so the

function is continuous.

Figure 495. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function. We see here the plane

z = x + y but our imagination must see also the two exceptional lines

above the X-axis and Y -axis. They make the function quite special. It is

difficult to draw them.
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Figure 496. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

66.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

The calculation for the second partial to y is completely similar.

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

66.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

u+ v

= u+ v.

This calculation is only valid for the directions not pointing to the X-axis

or the Y -axis. We did these special cases before.
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Figure 497. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

66.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

But it is clear that in the points (a,0) with a ≠ 0, the function in the

Y -direction is not continuous. Let us investigate this further.

f(a,h) =











a+ h if h ≠ 0;

0 if h = 0.

This function is not continuous if a ≠ 0, so the function is not differen-

tiable. So the partial derivative does not exist.

We illustrate in the next picture the behaviour of the function.
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Figure 498. We see here a two dimensional figure of the graph of the

function f(a,h). We have drawn the function here for the value a = 1/2
which is exemplary for the values of a close to 0. This does not look like

a continuous or differentiable function.

66.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 499. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane does not fit the function at all. It is indeed no tangent

plane following our calculations.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 500. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

But these points are not valid because of the definition of the function

on the axes. They must be replaced by the green points. We see here

that the vectors (u,v,D(u,v)(0,0)) do not sweep out a nice ellipse in the

candidate tangent plane because of the green points. This is extremely

bad news for the differentiability.
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We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















h+ k
√

h2 + k2
if hk ≠ 0 and (h, k) ≠ (0,0);

0 if h = 0 or k = 0 or (h, k) = (0,0)
is continuous in (0,0).
We can remark here also that the linear terms in the numerator of a are

not cancelled as they normally, i.e. if there was no special definition on

the coordinate axes, are cancelled!

Discussion of the continuity of q(h,k) in (0,0).

We restrict the function q(h, k) to the continuous curves with equations

k = λh. We observe then that if λ ≠ 0

q
∣

∣

k=λh(h, k) =



















q(h, λh) = sgn(h)
λ+ 1
√

λ2 + 1
if h ≠ 0;

0 if h = 0.
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We see that these restricted functions have different limits. But if q(h, k)
is continuous, all these limit values should be q(0,0) = 0. So this func-

tion q(h, k) is not continuous in (0,0). The function f(x,y) is not dif-

ferentiable in (0,0).

Figure 501. We see here a three dimensional figure of the graph of the

function q(h, k). The vertical line above (0,0) looks suspicious. This

does not seem to be a graph of a continuous function.
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Figure 502. We have restricted the function q(h, k) here to k = 1/2h
and k = 3/10h and k = 9/10h. We see in this figure clearly that the re-

strictions of the function to these lines are functions that have different

limits in 0.
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Figure 503. We see here a figure of the contour plot of the function

q(h, k). Many level curves of very different levels approach (0,0). This

looks discontinuous indeed.

66.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

66.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

66.8 Overview

f(x,y) =











x +y if xy ≠ 0;

0 if x = 0 or y = 0.
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continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

66.9 One step further

We want to investigate further what happens with those curves k = λh,

λ ≠ 0, which we used in the investigation of the differentiability. We

draw now in the X-Y plane a plane curve β(t) = (t, λ t). The space curve

α(t) = (t, λ t, f (t, λt)) = (t, λt, t + λ t) lies on the surface defined by f
and projects to β(t). We remark that this curve is differentiable and note

that this is not guaranteed because f is not differentiable. The curve

α(t) is a line and the tangent line is the same as the curve. The tangent

line is now transversal and not tangential to the candidate tangent plane

which is the X-Y plane. So the candidate tangent plane is not a tangent

plane. The function is not differentiable in (0,0).

Remark also that if the function is differentiable in (0,0), then its direc-

tional derivative can be written in the form

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

In our case this takes the form

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v = 0u+ 0v = 0.

This is not the case for this function. We have calculated in section

67.3 the formula u+ v for (u,v) not pointing to the X-direction or the

Y -direction. So it is impossible that the function is differentiable.

••••
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Exercise 67.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















x2

(

1− cos

(

y

x

))

if x ≠ 0,

0 if x = 0.

67.1 Continuity

We remark first that we have the identity

x2

(

1− cos

(

y

x

))

= 2x2 sin2

(

y

2x

)

.

We think that the function definition in the second form will sometimes

be easier to deal with.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

2x2 sin2

(

y

2x

)

− 0

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

2x2 sin2

(

y

2x

)∣

∣

∣

∣

≤
∣

∣

∣

∣

2x2 sin2

(

y

2x

)∣

∣

∣

∣

≤ 2x2

≤ 2
√

x2 +y2
2

.

It is sufficient to take δ = (ϵ/2)1/2. We can find a δ, so we conclude that

the function is continuous.

Figure 504. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 505. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

67.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

67.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

−hu2

(

cos

(

v

u

)

− 1

)

= 0.

So the directional derivatives do always exist.

Figure 506. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

67.4 Alternative proof of continuity (optional)
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This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

We ask first if the partial derivatives exist in a neighbourhood of (0,0).
We investigate a point (0, b) with b ≠ 0 in the X-direction. So the func-

tion f(h, b) = 2h2 sin2
(

b
2h

)

has to have a derivative in h = 0.

lim
h→0

f(h, b)− f(0, b)
h

= lim
h→0

2h sin2

(

b

2h

)

= 0.

So the partials exist everywhere because the only points left to investi-

gate were the points (0, b) with b ≠ 0.

-0.4 -0.2 0.2 0.4
U

0.05

0.10

0.15

Z

Figure 507. We see here a two dimensional figure of the graph of the

function f(h, b). We have drawn the function here for the value b = 1/2
which is exemplary for the values of b close to 0. This looks like a

differentiable function.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:
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∂f

∂x
(x,y) =











2x
(

1− cos
(

y
x

))

−y sin
(

y
x

)

if x ≠ 0,

0 if x = 0.

The partial derivative to y is:

∂f

∂y
(x,y) =











x sin
(

y
x

)

if x ≠ 0,

0 if x = 0.

We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.

∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

2x

(

1− cos

(

y

x

))

−y sin

(

y

x

)∣

∣

∣

∣

≤ 2 |x|
∣

∣

∣

∣

(

1− cos

(

y

x

))∣

∣

∣

∣

+ |y|
∣

∣

∣

∣

sin

(

y

x

)∣

∣

∣

∣

≤ 2 |x| + |y|

≤ 2
√

x2 +y2 +
√

x2 +y2

≤ 3
√

x2 +y2

≤ 3.

We have chosen here the restriction to the neighbourhood defined by
√

x2 +y2 < 1 for the last inequality.

Let us try to prove that
∣

∣

∣

∂f
∂y

∣

∣

∣ is bounded.
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∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

x sin

(

y

x

)∣

∣

∣

∣

≤ |x|
∣

∣

∣

∣

sin

(

y

x

)∣

∣

∣

∣

≤ |x|

≤
√

x2 +y2.

≤ 1.

We have chosen here the restriction to the neighbourhood defined by
√

x2 +y2 < 1 for the last inequality.

Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.

Figure 508. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.
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Figure 509. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture.

67.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 510. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 511. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =































−
h2



cos





k

h



− 1





√

h2 + k2
if h ≠ 0 and (h, k) ≠ (0,0);

0 if h = 0 or (h, k) = 0

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

∣

−
h2

(

cos
(

k
h

)

− 1
)

√

h2 + k2
− 0

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have
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the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

−
h2

(

cos
(

k
h

)

− 1
)

√

h2 + k2

∣

∣

∣

∣

∣

∣

≤
h2

∣

∣

∣

(

cos
(

k
h

)

+ 1
)∣

∣

∣

√

h2 + k2

≤ 2h2

√

h2 + k2

≤
2
√

h2 + k2
2

√

h2 + k2

≤ 2
√

h2 + k2.

It is sufficient to take δ = ϵ/2. We can find a δ, so we conclude that the

function q(h, k) is continuous.

Figure 512. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 513. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

67.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-
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tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

Let us try to prove the Lipschitz condition. We are going to use a well

known method.

|f(x1, y1)− f(x2, y2)|

= |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|.

We focus now on the first term |f(x1, y1) − f(x1, y2)|. We fix now x1

and look upon f(x1, y) as a function in one variable y . So it springs to

mind that we can estimate this by using Lagrange’s intermediate value

theorem. So we have

|f(x1, y1)− f(x1, y2)| =
∣

∣

∣

∣

∣

∂f

∂y
(x1, ξ)

∣

∣

∣

∣

∣

|y1 −y2|
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where ξ is a number lying in the open interval (y1, y2) if e.g. y1 ≤
y2. Remark that we already have proven that the partial derivatives are

bounded in a neighbourhood, we can take that bound found for
∂f
∂y , say

M2 and that neighbourhood in this case also. So
∣

∣

∣

∂f
∂y (x1, ξ)

∣

∣

∣ ≤ M2. We

work in a completely analogous way for the second term |f(x1, y2) −
f(x2, y2)|. We have in that case

∣

∣

∣

∂f
∂x (ξ,y2)

∣

∣

∣ ≤ M1 where ξ is now a

number in the open interval (x1, x2) if e.g. x1 ≤ x2.

We take up our inequality again

|f(x1, y1)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|

≤ M2 |(y1 −y2)| +M1 |(x1 − x2)|

≤ M2

√

(x1 − x2)2 + (y1 −y2)2 +M1

√

(x1 − x2)2 + (y1 −y2)2

≤ (M1 +M2)
√

(x1 − x2)2 + (y1 −y2)2.

So this function is locally Lipschitz continuous. We have an alternative

proof for the differentiability.

67.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

We know that the partial derivative to x exists and is equal to
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∂f

∂x
(x,y) =











2x
(

1− cos
(

y
x

))

−y sin
(

y
x

)

if x ≠ 0,

0 if x = 0.

We want to see if it is continuous or not.

We know that the partial derivative to y exists and is equal to

∂f

∂y
(x,y) =











x sin
(

y
x

)

if x ≠ 0,

0 if x = 0.

We want to see if it is continuous or not.

Let us start with investigating
∂f
∂x .

We have to distinguish three cases. We have to investigate the continuity

of the function
∂f
∂x first in points (x,y) where x ≠ 0. Then we have

to investigate the function in (0,0). We have thirdly to investigate the

function in points (0, b) where b ≠ 0.

We remark in the first case that the function
∂f
∂x is composed of classical

functions which are known to be infinitely differentiable. So the partial

derivative
∂f
∂x exists there and is continuous.

We are going to investigate the function
∂f
∂x secondly in (0,0).

Discussion of the continuity of the first partial derivative in (0,0).
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove the inequality | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ. The problem is now to find a δ > 0 such that if the inequal-

ity
∥

∥(x,y)− (0,0)
∥

∥ < δ holds, it follows that | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ is

valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∂f

∂x
(x,y)− ∂f

∂x
(0,0)

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have
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the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

2x

(

1− cos

(

y

x

))

−y sin

(

y

x

)∣

∣

∣

∣

≤ 2 |x|
∣

∣

∣

∣

(

1+ cos

(

y

x

))∣

∣

∣

∣

+ |y|
∣

∣

∣

∣

sin

(

y

x

)∣

∣

∣

∣

≤ 2 |x| + |y|

≤ 2
√

x2 +y2 +
√

x2 +y2

≤ 3
√

x2 +y2.

It is sufficient to take δ = ϵ/3. We can find a δ, so we conclude that the

function is continuous in (0,0).

Figure 514. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂x (x,y). This looks like a continuous function in

(0,0).
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Figure 515. We see here a figure of the contour plot of the
∂f
∂x (x,y). Only

level curves of level around 0 come close to (0,0).

We are thirdly going to investigate the continuity of the function
∂f
∂x in

points (0, b).

The function
∂f
∂x is now

∂f

∂x
(x,y) =











4x sin2
(

y
2x

)

− 2y sin
(

y
2x

)

cos
(

y
2x

)

if x ≠ 0,

0 if x = 0.

We transform now x = u and y = v + b in order to work technically

easier.

g(u,v) =











4u sin2
(

b+v
2u

)

− 2 (b + v) sin
(

b+v
2u

)

cos
(

b+v
2u

)

if x ≠ 0,

0 if x = 0.

We see that the first term is certainly continuous. We look at the second

term and expand to the factor b + v .
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− 2 (b + v) sin

(

b + v
2u

)

cos

(

b + v
2u

)

= −2b sin

(

b + v
2u

)

cos

(

b + v
2u

)

− 2v sin

(

b + v
2u

)

cos

(

b + v
2u

)

.

We see that the second term is certainly continuous in 0. So we have to

investigate the first term. After dropping the non zero constant coeffi-

cient, we are left with investigating the function

h(u,v) = sin

(

b + v
2u

)

cos

(

b + v
2u

)

.

We rewrite this as

h(u,v) = sin

(

b + v
2u

)

cos

(

b + v
2u

)

= 1

2
sin

(

b + v
u

)

.

It is obvious that this function is not continuous. We can be explicit. We

define a sequence (un = b (n+1)
2π n2 , vn = b

n), n ∈ N0, such that h(un, vn) =
0 and limn→∞h(un, vn) = 0. We can define another sequence (un =

2 (bn+b)
π n(4n+1) , vn =

b
n), n ∈ N0, such that h(un, vn) = 1/2 and we have then

limn→∞h(un, vn) = 1/2. This is impossible if h is continuous.

We see that we cannot apply this criterion.

67.8 Overview

f(x,y) =















x2

(

1− cos

(

y

x

))

if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no
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67.9 One step further

We want to know if this function is further uneventful from the point of

view of differentiability. Let us take a look at the second order partial

derivative

∂2f

∂x2
(x,y) =

(

y2 − 2x2
)

cos
(

y
x

)

+ 2x
(

x −y sin
(

y
x

))

x2
.

Let us take a look of a three dimensional plot of this second order partial

derivative of the function.

Figure 516. We see here a figure of the second order partial deriva-

tive
∂2f
∂x2 (x,y). It seems quite improbable that this second order partial

derivative is continuous or even exists. We stop however our investiga-

tions here and leave this to the initiative of the interested reader.

••••
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Exercise 68.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















sin(x −y)
√

|x| +
√

|y|
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

68.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∣

sin(x −y)
√

|x| +
√

|y|
− 0

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

∣

sin(x −y)
√

|x| +
√

|y|

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

x −y
√

|x| +
√

|y|

∣

∣

∣

∣

∣

∣

≤ |x| + |y|
√

|x| +
√

|y|
.

It is enough to prove that |x| < ϵ
√

|x| and |y| < ϵ
√

|y| because if we

add left hand sides and right hand sizes of the two inequalities, we have

|x| + |y| < ϵ
√

|x| + ϵ
√

|y|. This is equivalent with
|x|+|y|√
|x|+

√
|y| < ϵ if

|x| + |y| ≠ 0. Now |x| < ϵ
√

|x| is equivalent with
√

|x| < ϵ if x ≠ 0. So

it is enough that
√

|x| ≤
√

√

|x|2 + |y|2 < ϵ. If x = 0 or y = 0, we can

reason in a similar way. So we can take δ = ϵ2.

Figure 517. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 518. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

68.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =



















f(x,0) = sin(x)
√

|x|
if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

sin(h)

h

1
√

|h|
.
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So the partial derivative to x does not exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =



















f(0, y) = sin(−y)
√

|y|
if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

−sin(h)

h

1
√

|h|
.

So the partial derivative to y does not exist.

We conclude that the partial derivative to x and to y do not exist.

Figure 519. We see here a figure of the graph of the function restricted to

the horizontal X-axis through (0,0). This is f(x,0). The vertical tangent

in x = 0 makes this function not differentiable.
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68.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

sin(h (u− v))
h
(√

|hu| +
√

|hv|
)

= lim
h→0

sin(h (u− v))
h (u− v)

u− v
(√

|hu| +
√

|hv|
) .

We can observe that we have no finite limit if u− v ≠ 0.

So the directional derivatives do not always exist.
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Figure 520. We see here a figure of the graph of the function restricted to

the line through (0,0) with direction (u,v) =
(

√

3/2,1/2

)

. The vertical

tangent in h = 0 prevents differentiability. We have plotted here the

function f(hu,hv).

68.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

But the partials in (0,0) do not even exist. So there is no alternative

proof possible for the continuity.

68.5 Differentiability

At least one of the directional derivatives does not exist, thus the func-

tion is not differentiable.

68.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.
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68.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

68.8 Overview

f(x,y) =















sin(x −y)
√

|x| +
√

|y|
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

continuous yes

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 69.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =















xy − sin(x) sin(y)

x2 +y2
if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

69.1 Continuity

Before starting with this exercise, it is necessary to look first at the func-

tion definition, which is a little bit hard to handle. We are going to use

Taylor series out of necessity. We know from the theory of one variable

of the Taylor approximation with remainder

sin(α) = α− 1

2
sin(ξ)α2.

It is generally known as the second order approximation. We have that

ξ is a number between 0 and α. We do now the fourth order approxima-

tion.

sin(α) = α− α
3

3!
+ 1

24
sin(ξ)α4.

We have that ξ is a number between 0 and α.

We remark that the numerator of the function definition after substitut-

ing with the second order approximations can be written as follows

xy − sin(x) sin(y)

= xy −
(

x − 1

2
x2 sin(ξ1)

) (

y − 1

2
y2 sin(ξ2)

)

= −1

4
x2y2 sin(ξ1) sin(ξ2)+

1

2
x2y sin(ξ1)+

1

2
xy2 sin(ξ2).
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We are going to use this simplified form in the calculation of the conti-

nuity in (0,0).

We try to avoid the big O notation because it is not generally known in a

first course in calculus.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

xy − sin(x) sin(y)

x2 +y2
− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

xy − sin(x) sin(y)

x2 +y2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

−1

4
x2y2 sin(ξ1) sin(ξ2)+ 1

2
x2y sin(ξ1)+ 1

2
xy2 sin(ξ2)

x2 +y2

∣

∣

∣

∣

∣

≤
1

4
x2y2| sin(ξ1)| | sin(ξ2)| + 1

2
x2 |y| | sin(ξ1)| + 1

2
|x|y2 | sin(ξ2)|

x2 +y2

≤
1

4
x2y2 + 1

2
x2 |y| + 1

2
|x|y2

x2 +y2

≤
1

4
|x| |y| (|x| |y| + 2 |x| + 2 |y|)

x2 +y2

≤
1

4

√

x2 +y2
2
(

√

x2 +y2
2

+ 2
√

x2 +y2 + 2
√

x2 +y2

)

x2 +y2

≤
1

4

√

x2 +y2
3

(
√

x2 +y2 + 2+ 2)

x2 +y2

≤
1

4

√

x2 +y2
3

5

x2 +y2

≤
5

4

√

x2 +y2
3

√

x2 +y2
2

≤ 5

4

√

x2 +y2.

We used in the first line the Taylor expansion described above. We have

also chosen the restriction
√

x2 +y2 < 1.

It is sufficient to take δ = min{1, 4

5
ϵ}. We can find a δ, so we conclude

that the function is continuous.
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Figure 521. We see here a three dimensional figure of a more global view

of the graph of the function. This looks like a continuous function.

Figure 522. We see here a three dimensional figure of a more local view

of the graph of the function. This looks like a continuous function.
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Figure 523. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

69.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.
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So the partial derivative to x does exist.

By the symmetry in the function definition, we can state the same for

the partial derivative to x.

69.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

We remember that we have the function

f(x,y) = −x
2y2 sin(ξ1) sin(ξ2)

4
(

x2 +y2
) + x

2y sin(ξ1)

2
(

x2 +y2
) + xy

2 sin(ξ2)

2
(

x2 +y2
) .

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

−uv (huv sin(ξ1) sin(ξ2)− 2u sin(ξ1)− 2v sin(ξ2))

4 (u2 + v2)

= 0.

We see that the number ξ1 satisfies the inequality 0 ≤ ξ1 ≤ x = hu.

Because x = hu→ 0, we conclude that this value ξ1 → 0. We can reason

in a similar way if x < 0. We do a similar procedure with ξ2.

So the directional derivatives do always exist.
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Figure 524. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

69.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:
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∂f

∂x
(x,y)

=























−
(

x2 +y2
)

cos(x) sin(y)− x2y
+ 2x sin(x) sin(y)+y3

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

The partial derivative to y is:

∂f

∂y
(x,y)

=























x3 −
(

x2 +y2
)

sin(x) cos(y)− xy2

+ 2y sin(x) sin(y)
(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

We can consult figures of the absolute values of these two partial deriva-

tives at the end of this section.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.

The main part of the definition of the first derivative to x is

−
(

x2 +y2
)

cos(x) sin(y)− x2y + 2x sin(x) sin(y)+y3

(

x2 +y2
)2 .

We are going to rewrite this formula in order to do some computations.

In order to keep the calculations at bay, we are going to do some tricks

to keep oversight.

We know also from the theory of Taylor that we can rewrite

cos(u) = 1− 1

2!
u2 + 1

4!
u4 − 1

6!
cos(ξ)u6

with ξ a number between 0 and u and
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sin(u) = u− 1

3!
u3 + u

5

5!
u5 − 1

7!
sin(ξ)u7

with ξ a number between 0 and u.

We remember from trigonometry that

sin(x) sin(y) = 1

2
(cos(x −y)− cos(x +y)).

We use now our Taylor expansions to rewrite

sin(x) sin(y)

= 1

2

(

−1

2
(x −y)2 + 1

2!
(x +y)2 + 1

4!
(x −y)4 − 1

24
(x +y)4

− 1

6!
(x −y)6 cos(ξ1)+

1

6!
(x +y)6 cos(ξ2)

)

.

We remember from trigonometry that

sin(y) cos(x) = 1

2
(sin(y + x)+ sin(y − x)).

We substitute our expansions in this formula and rewrite

1

2
(sin(y + x)+ sin(y − x))

= 1

2!

(

2y + 1

3!
(x −y)3 − 1

3!
(x +y)3 − 1

5!
(x −y)5

+ 1

5!
(x +y)5 + 1

7!
(x −y)7 sin(ξ4)−

1

7!
(x +y)7 sin(ξ3)

)

.

Now comes the tricky part. We are going to substitute both formulas in

the definition formula of the first derivative. We will see that it is ab-

solutely unnecessary to calculate all terms. We must only calculate the

monomials xiyj with lowest total degree i + j. Otherwise this calcula-

tion would be unwieldy. The reason why we rewrote with the help of the

trigonometric formulas is that it is easier to predict the total degree of
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the monomials. We have then that the terms with the lowest total degree

have degree 5. If we denote the finite sum of the terms with monomials

of higher degree with S, then we have for the main part of the definition

of the first derivative:

−
(

x2 +y2
)

cos(x) sin(y)− x2y + 2x sin(x) sin(y)+y3

(

x2 +y2
)2

=
x4 y

6
+ x2 y3

3
+ y5

6
+ S

(

x2 +y2
)2 .

We have now the following alternative definition of the partial derivative

to x.

∂f

∂x
(x,y) =















x4 y
6 +x

2 y3

3 +y
5

6 +S

(x2+y2)
2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).

We sketch how we can prove that the partial derivative
∂f
∂x is bounded.

We take a monomial divided by the denominator out of the main defini-

tion of the partial derivative. Let us say it is

axiyj
(

x2 +y2
)2 .

We have then the inequalities
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∣

∣

∣

∣

∣

axiyj
(

x2 +y2
)2

∣

∣

∣

∣

∣

≤ |a| |x|
i |y|j

(

x2 +y2
)2

≤
|a|

√

x2 +y2
i√

x2 +y2
j

(

x2 +y2
)2

≤
|a|

√

x2 +y2
i+j

√

x2 +y2
4

≤ |a|
√

x2 +y2
i+j−4

≤ |a|.

We have used that i + j − 4 > 0 and we have restricted to the open

neighbourhood
√

x2 +y2 < 1. This shows that every term is bounded.

We see that the function is indeed locally bounded.

We see by the symmetry in the definition of our function that we do not

have to calculate the partial derivative to y . All calculations are similar.
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Figure 525. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.

Figure 526. We see here the absolute value of the second partial deriva-

tive

∣

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

∣

. We can observe the boundedness from this picture.
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69.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.

Figure 527. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very nicely.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we
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know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.

Figure 528. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.
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We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















hk− sin(h) sin(k)

(h2 + k2)5/2
if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)

is continuous in (0,0).
This is equivalent by the calculations we made in section 1, that the

function

q(h, k) =



























−1

4
h2k2 sin(ξ1) sin(ξ2)

+ 1

2
h2k sin(ξ1)+ 1

2
hk2 sin(ξ2)

(h2 + k2)5/2
if (h, k) ≠ (0,0);

0 if (h, k) = (0,0)

is continuous in (0,0).

Let us shorten this and say that we can work in an analogous way as in

the approach we used for the boundedness of the partial derivatives in

section 4 of this exercise. We can reuse almost all calculations we did

there.
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So this function is continuous.

Figure 529. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 530. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

69.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-
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tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

Let us try to prove the Lipschitz condition. We are going to use a well

known method.

|f(x1, y1)− f(x2, y2)|

= |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|.

We focus now on the first term |f(x1, y1) − f(x1, y2)|. We fix now x1

and look upon f(x1, y) as a function in one variable y . So it springs to

mind that we can estimate this by using Lagrange’s intermediate value

theorem. So we have

|f(x1, y1)− f(x1, y2)| =
∣

∣

∣

∣

∣

∂f

∂y
(x1, ξ)

∣

∣

∣

∣

∣

|y1 −y2|
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where ξ is a number lying in the open interval (y1, y2) if e.g. y1 ≤
y2. Remark that we already have proven that the partial derivatives are

bounded in a neighbourhood, we can take that bound found for
∂f
∂y , say

M2 and that neighbourhood in this case also. So
∣

∣

∣

∂f
∂y (x1, ξ)

∣

∣

∣ ≤ M2. We

work in a completely analogous way for the second term |f(x1, y2) −
f(x2, y2)|. We have in that case

∣

∣

∣

∂f
∂x (ξ,y2)

∣

∣

∣ ≤ M1 where ξ is now a

number in the open interval (x1, x2) if e.g. x1 ≤ x2.

We take up our inequality again

|f(x1, y1)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|

≤ M2 |(y1 −y2)| +M1 |(x1 − x2)|

≤ M2

√

(x1 − x2)2 + (y1 −y2)2 +M1

√

(x1 − x2)2 + (y1 −y2)2

≤ (M1 +M2)
√

(x1 − x2)2 + (y1 −y2)2.

So this function is locally Lipschitz continuous. We have an alternative

proof for the differentiability.

69.7 Continuity of the partial derivatives

By section 4, we have to prove that the following function is continuous:

∂f

∂x
(x,y) =























x4y

6
+ x

2y3

3
+ y

5

6
+ S

(

x2 +y2
)2 if (x,y) ≠ (0,0),

0 if (x,y) = (0,0).
We can do this calculation in a completely similar way as we explained

it in section 70.4. This partial derivative is certainly continuous.

We remark that the computations are completely similar for the other

variable y by the symmetry of the function definition.
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Figure 531. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂x (x,y). This looks like a continuous function.
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Figure 532. We see here a figure of the contour plot of the
∂f
∂x (x,y). Only

level curves of level around 0 come close to (0,0).

69.8 Overview

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous yes

69.9 One step further

We want to know if this function is further uneventful from the point

of view of differentiability. Let us take a look at the third order partial

derivative
∂3f
∂x3 .
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Let us take a look of a three dimensional plot of this third order partial

derivative of the function.

Figure 533. We see here a figure of the third order partial derivative
∂3f
∂x3 (x,y). It seems quite improbable that this third order partial deriva-

tive is continuous. We stop however our investigations here and leave

this to the initiative of the interested reader. We guess that the calcula-

tions will be very unwieldy, so please take care before considering this

investigation.

••••
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Exercise 70.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =



















log
(

|x| + e|y|
)

√

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

70.1 Continuity

We restrict the function to the continuous curves with equations y =
λx. We observe then that

f
∣

∣

y=λx(x,y) =























f(x, λx) =
log

(

e|λx| + |x|
)

√

λ2x2 + x2
if x ≠ 0;

0 if x = 0.

Let us restrict ourselves to positive values for x and positive values for

λ. This will be enough for our purposes.
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lim
x→
>

0
f(x, λx) = lim

x→
>

0

log
(

e|λx| + |x|
)

√

λ2x2 + x2

= lim
x→
>

0

log
(

eλx + x
)

x
√

λ2 + 1

= lim
x→
>

0

λeλx + 1

eλx + x
1

√

λ2 + 1

= λ+ 1
√

λ2 + 1
.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.

Figure 534. We see here a three dimensional figure of the graph of the

function. The vertical line above (0,0) looks suspicious. This does not

seem to be a graph of a continuous function.
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Figure 535. We have restricted the function here to y = 3/10x and y =
1/2x and y = 13/10x. We see in this figure clearly that the restrictions

of the function to these lines are functions that have different limits in

0.
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Figure 536. We see here a figure of the contour plot of the function.

Many level curves of very different levels approach (0,0). This looks

discontinuous indeed.

70.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =



















f(x,0) = log(|x| + 1)
√

x2
if x ≠ 0;

0 if x = 0.

Before starting the computation of the partial derivative, we investigate

the continuity of the partial functions. Remark that we have

lim
h→
<

0

log(|h| + 1)
√

h2
= lim
h→
<

0

log(−h+ 1)

−h = lim
h→
<

0

−1

−(−h+ 1)
= 1.

lim
h→
>

0

log(|h| + 1)
√

h2
= lim
h→
>

0

log(h+ 1)

h
= lim
h→
>

0

1
√

(h+ 1)
= 1.
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This function is even for x, so we expect the two calculations being the

same.

This function is not continuous in h = 0, so the partial derivative to x
does not exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =























f(0, y) =
log

(

e|y|
)

√

y2
= 1 if y ≠ 0;

0 if y = 0.

This function is not continuous, the second partial derivative does not

exist.

We conclude that that the partial derivative to x does not exist and that

the partial derivative to y does not exist.

Figure 537. We see here a figure of the graph of the function restricted

to the horizontal X-axis through (0,0). This is the graph of f(x,0). This

function is not continuous in x = 0.
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Figure 538. We see here a figure of the graph of the function restricted

to the vertical Y -axis through (0,0). This is the function f(0, y).

70.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

Some of these limits do not exist because the function f(0+hu,0+hv)
is not continuous in h = 0. In order to show that, we calculate the limit

for u, v and h positive:
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lim
h→
>

0

log
(

|hu| + e|hv|
)

√

h2u2 + h2v2
= lim
h→
>

0

log
(

hu+ ehv
)

h
√

u2 + v2

= lim
h→
>

0

log
(

hu+ ehv
)

h
√

u2 + v2

= lim
h→
>

0

u+ ehvv
(hu+ ehv)

√

u2 + v2

= u+ v
√

u2 + v2
.

So not all directional derivatives exist.

Figure 539. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

70.4 Alternative proof of continuity (optional)

Irrelevant. The function is not continuous.
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70.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

70.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

70.8 Overview

f(x,y) =



















log
(

|x| + e|y|
)

√

x2 +y2
if (x,y) ≠ (0,0);

0 if (x,y) = (0,0).

continuous no

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 71.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =



















(x −y)y e−
1

x2

(x −y)2 + 2 e−
2

x2

if x ≠ 0,

0 if x = 0.

71.1 Continuity

Before starting with the calculations, we want make some remarks. The

first observation is that the graphics in this exercise are not to be trusted

without using our imagination. The reasons for this is the overflow

caused by the exponential in the function definition. We remark that

e.g. x = 10−10 is a decent machine representable number but that e−1/x2

with x = 10−10 is more problematic depending on the hardware of the

calculator. We have however chosen to show the graphics in order to un-

derstand the trustworthiness and limits of interpreting the calculations

by machine graphics.

We multiply the main part of the definition of the function numerator

and denominator with e
2

x2 . So we have that our function

f(x,y) =



















(x −y)y e−
1

x2

(x −y)2 + 2 e−
2

x2

if x ≠ 0,

0 if x = 0

can be written as

f(x,y) =



























y

(

(x −y)e
1

x2

)

(

e
1

x2 (x −y)
)2

+ 2

if x ≠ 0,

0 if x = 0.
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So if g(z) = z
z2+2

and z = (x −y)e
1

x2 , we can write the main part of the

function definition as

y

(

(x −y)e
1

x2

)

(

e
1

x2 (x −y)
)2

+ 2

= y g(z).

We see a plot of the function g(z) in the following picture.

We see that this function is bounded and uneven. Let us denote the

boundedness as |g(z)| ≤ M1 with M1 being the two sided bound.

Figure 540. We see here a figure of the graph of the function g(z). This

function is everywhere continuous and has horizontal asymptotes. It is

clearly a bounded function.

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

∣

(x −y)y e−
1

x2

(x −y)2 + 2 e−
2

x2

− 0

∣

∣

∣

∣

∣

∣

< ϵ.
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We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

(x −y)y e−
1

x2

(x −y)2 + 2 e−
2

x2

∣

∣

∣

∣

∣

∣

≤ g(z)y

≤ M1

√

x2 +y2.

It is sufficient to take δ = ϵ/M1. We can find a δ, so we conclude that the

function is continuous.

Figure 541. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 542. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

71.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.
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So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

71.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit



www.mathandphoto.eu. Exercise Notes 864

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

g(z (hu,hv))hv

h

= lim
h→0

g(z (hu,hv))v

where z(x,y) is the function that we have introduced at the start of the

exercise. We remember that z(x,y) = (x −y)e
1

x2 .

Now we want to know the limit

lim
h→0

g(z (hu,hv)) = lim
h→0

e
1

(hu)2 (hu− hv).

We observe by the Taylor expansion of e
1

α2 that

0 ≤ 1

α2
≤ e

1

α2

and consequently for α ≥ 0

0 ≤ 1

α2
α ≤ e

1

α2 α.

So

lim
α→
>

0
αe

1

α2 = ∞.

We have for α < 0 that this limit equals −∞.

Therefore if u ≠ 0

lim
h→
<

0
g

(

e
1

hu2 h

)

= (u− v)g(−∞) = 0

and

lim
h→
>

0
g

(

e
1

hu2 h

)

= (u− v)g(∞) = 0.

So the directional derivatives do always exist.
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Figure 543. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

√

3/2,1/2

)

. We see

due to the explosive behaviour of the exponential function, we have that

the convergence to 0 of g(z) starts very rapidly and goes to zero very

fast. We have plotted here the function f(hu,hv).

71.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:



www.mathandphoto.eu. Exercise Notes 866

∂f

∂x
= g′(z) ∂z

∂x
y

= g′(z)y


e
1

x2 − 2 e
1

x2 (x −y)
x3





= g′(z) e
1

x2 y
(

x3 − 2x + 2y
)

x3

= −
e

1

x2 y

(

e
2

x2 (x −y)2 − 2

)

(

x3 − 2x + 2y
)

x3

(

e
2

x2 (x −y)2 + 2

)2 .

The partial derivative
∂f
∂x is in a point (α,α) equal to

∂f

∂x
(α,α) = 1

2
αe

1

α2

which is a function that is unbounded in any neighbourhood of α = 0.

Because this partial derivative is unbounded in any neighbourhood of

(0,0), we have no alternative proof following the lines of the criterion

for the continuity.
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Figure 544. We made a plot of the function
∣

∣

∣

∂f
∂x

∣

∣

∣ restricted to a vertical

line through (α,0). This is the curve
∣

∣

∣

∂f
∂x

∣

∣

∣ (α,h). We have used in this

picture α = 1/2. If h = α we have a peak above the point (α,α) =
(1/2,1/2) where the derivative has the value 1/2αe1/α2

. We can clearly

imagine unbounded behaviour when α→ 0 caused by these peaks which

grow explosively higher and higher when we approach α = 0.

71.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 545. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate tan-

gent plane fits the function very nicely. We must be very careful though.

The wild behaviour of the exponential functions could give cause to mis-

leading as we saw in the previous section.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 546. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =























e
1

h2 k (h− k)
(

e
2

h2 (h− k)2 + 2

)

√

h2 + k2

if (h, k) ≠ (0,0) and h ≠ 0;

0 if (h, k) = (0,0) or h = 0

is continuous in (0,0).

Discussion of the continuity of q(h,k) in (0,0).

We restrict the function q(h, k) to the continuous curves with equations

k = h − λe
−1

h2 . We have chosen these curves because all points of these

curves make the value z constant and therefore stand out among all

other differentiable curves going through (0,0).

We observe then that

q
∣

∣

k=h−λe
−1

h2
(h, k)

=



































q(h,h− λe
−1

h2 ) =
e−

1

h2 λ

(

e
1

h2h− λ
)

(

λ2 + 2
)

√

(

−e−
1

h2 λ+ h
)2

+ h2

if h ≠ 0;

0 if h = 0.
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We calculate the left hand limit and the right hand limit.

lim
h→
<

0

e−
1

h2 λ

(

e
1

h2h− λ
)

(

λ2 + 2
)

√

(

−e−
1

h2 λ+ h
)2

+ h2

= − λ
√

2 (λ2 + 2)
.

lim
h→
>

0

e−
1

h2 λ

(

e
1

h2h− λ
)

(

λ2 + 2
)

√

(

−e−
1

h2 λ+ h
)2

+ h2

= λ
√

2 (λ2 + 2)
.

We see that these restricted functions have different limits. But if q(h, k)
is continuous, all these limit values should be q(0,0) = 0. So this func-

tion q(h, k) is not continuous in (0,0). The function f(x,y) is not dif-

ferentiable in (0,0).

Figure 547. We see here a three dimensional figure of the graph of the

function q(h, k). This drawing is not to be trusted. There is a large hole

cut out above the line with equation h = k.
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Figure 548. We have restricted the function q(h, k) here to k = h +
9/10 e

−1

h2 , k = h+36/10 e
−1

h2 and k = h+56/10 e
−1

h2 . We should see in this

figure that the restrictions of the function to these curves are functions

that have different limits in 0. What happens here is that our curves

are extremely tangent to the line with equation h = k. This tangency

is so strong that by underflow it suddenly coincides with h = k and

it inherits then suddenly the extreme characteristics of the behaviour

of the function q above that line. This has to be avoided. This figure

has been made with huge number arithmetic far exceeding the usual

machine precision in order to be a good representation.
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Figure 549. We see here a figure of the contour plot of the function

q(h, k). With some wild imagination we can see that many level curves

of very different levels approach (0,0) tangent to the line h = k are ap-

proaching (0,0) infinitesimally. Then this looks discontinuous indeed.

71.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

71.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

71.8 Overview

f(x,y) =



















(x −y)y e−
1

x2

(x −y)2 + 2 e−
2

x2

if x ≠ 0,

0 if x = 0.
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continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

••••
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Exercise 72.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =
√

4− x2 −y2.

72.1 Continuity

We observe that this is a function that is composed of classical differ-

entiable functions in the interior of its domain. This is the standard

situation. We do not need to discuss anything further. This function is

differentiable, all its partial order derivatives exist and by consequence

it behaves in the usual way like any other traditional function. Let us

mention that this function describes actually part of a sphere.

Figure 550. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 551. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

72.2 Partial derivatives

This function is differentiable, and by consequence behaves in the usual

way like any other traditional function.

72.3 Directional derivatives

This function is differentiable, and by consequence behaves in the usual

way like any other traditional function.

72.4 Alternative proof of continuity (optional)

This function is differentiable, and by consequence behaves in the usual

way like any other traditional function.

72.5 Differentiability

This function is differentiable, and by consequence behaves in the usual

way like any other traditional function.
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72.7 Continuity of the partial derivatives

This function is differentiable and all its second order partial derivatives

are continuous, and by consequence behaves in the usual way like any

other traditional function.

72.8 Overview

f(x,y) =
√

4− x2 −y2.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous yes

••••
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Exercise 73.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =











1 if x2 = y and x ≠ 0,

0 otherwise.

73.1 Continuity

We construct a sequence of points (1/n,1/n2), n ∈ N0, lying on the

parabola in the X-Y plane with equation y = x2. This sequence con-

verges to (0,0). The images of this sequence satisfy f(1/n,1/n2) = 1.

But this sequence converges obviously to 1 and not to 0. If f is continu-

ous, then the images converge to f(0,0) = 0 which is obviously not the

case. So we conclude that f is not continuous in (0,0).
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Figure 552. We see here a three dimensional figure of the graph of the

function. In order to have a good interpretation of this function: the

yellow plane except the points on the dashed red parabola belong to the

graph of the function. The green points also belong to the graph of the

function.

73.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

73.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

0

= 0.

We remark that for every direction (u,v), there is always a neighbour-

hood of (0,0) such that no points of that neighbourhood has a point

of the dashed red parabola in it. So f(0 + hu,0 + hv) = 0 for all

(0 + hu,0 + hv) in that neighbourhood. Consult the figure for this

observation.

So the directional derivatives do always exist.
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Figure 553. We see here a figure of the domain of the function. The green

line is the picture of the points (0+hu,0+hv). The parabola is drawn in

blue. We see that it is for every direction (u,v) always possible to draw

a neighbourhood of (0,0) drawn in red so that the green line restricted

to that neighbourhood has only one intersection point with the parabola

and that point is (0,0).

73.4 Alternative proof of continuity (optional)

Irrelevant. The function is not continuous.

73.5 Differentiability

Irrelevant. The function is not continuous and consequently not differ-

entiable.

73.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not continuous and consequently not differ-

entiable.
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73.7 Continuity of the partial derivatives

Irrelevant. The function is not continuous and consequently not differ-

entiable.

73.8 Overview

f(x,y) =











1 if x2 = y and x ≠ 0;

0 otherwise.

continuous no

partial derivatives exist yes

all directional derivatives exist yes

differentiable no

partials are continuous irrelevant

••••
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Exercise 74.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =











(x + 1)2 + (y + 1)2 − 2 if x < y and y < 2x and x > 0,

0 elsewhere.

74.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣(x + 1)2 + (y + 1)2 − 2− 0
∣

∣

∣ < ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣(x + 1)2 + (y + 1)2 − 2
∣

∣

∣

≤ x2 + 2 |x| +y2 + 2 |y|

≤
√

x2 +y2
2

+ 2
√

x2 +y2 +
√

x2 +y2
2

+ 2
√

x2 +y2

≤ 4
√

x2 +y2 + 2
√

x2 +y2
2

≤
√

x2 +y2

(

4+ 2
√

x2 +y2

)

≤ 6
√

x2 +y2.

We have restricted to the neighbourhood
√

x2 +y2 < 1.

It is sufficient to take δ = min{1, ϵ/6}. We can find a δ, so we conclude

that the function is continuous.

Figure 554. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 555. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

74.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

74.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

We will calculate the directional derivatives first for the normal vectors

(u,v) =
(

cos(α), sin(α)
)

with α ∈ (π/4, arctan(2)). In the case of our

function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

(

hu2 + hv2 + 2u+ 2v
)

= 2u+ 2v.

The left limit is

lim
h→
<

0
0 = 0.

The right limit is

lim
h→
>

0

(

hu2 + hv2 + 2u+ 2v
)

= 2u+ 2v.

So in this case the directional limit does not exist. We have an analogue

situation for the directional limits with direction (u,v) =
(

cos(α), sin(α)
)

where α ∈ (π +π/4, π + arctan(2)).

In all other directions, the directional limits exist.

So the directional derivatives do not always exist.
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Figure 556. We see here a figure of the graph of the func-

tion restricted to the line through (0,0) with direction (u,v) =
(cos(50π/180), sin(50π/180)). We have plotted here the function

f(hu,hv). This curve is not differentiable.

74.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

The question is here whether the partial derivatives exist in a neighbour-

hood around (0,0).

We take a point (a,a), a ≠ 0, on the line with equation y = x. We draw

the function in the direction of the Y -axis. We see that this function

is not continuous. So it is certainly not differentiable and the partial

derivative to Y does not exist in the point (a,a) where a ≠ 0.
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Figure 557. We see here a figure of the graph of the function f(a,h). We

have drawn the function here for the value a = 1/2 which is exemplary

for the values of a close to 0. The function is not continuous. So the

function is not differentiable.

Because some of the partial derivatives are not defined in any neighbour-

hood of (0,0), we do not have an alternative proof for the continuity.

74.5 Differentiability

Because the directional derivatives do not all exist, the function cannot

be differentiable.

74.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.

74.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

74.8 Overview

f(x,y) =











(x + 1)2 + (y + 1)2 − 2 if x < y and y < 2x and x > 0;

0 elsewhere.
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continuous yes

partial derivatives exist yes

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 75.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) = ⌊x +y⌋.

75.1 Continuity

In order to avoid misunderstandings, please remark that these brackets

are the brackets of the floor function.

We remark first that this floor function equals in a small neighbourhood

of (0,0), say
√

x2 +y2 < 1/10

f(x,y) =















−1 if x +y < 0 and
√

x2 +y2 < 1/10;

0 if x +y ≥ 0 and
√

x2 +y2 < 1/10.

It is technically sometimes easier to work with this form of the function

definition in order to make some calculations.

We restrict the function to the continuous curves with equations y = λx
with λ > 0. We observe then that

f
∣

∣

y=λx(x,y) =















f(x, λx) = 0 if x ≥ 0 and
√

x2 +y2 < 1/10;

−1 if x < 0 and
√

x2 +y2 < 1/10.

We see that these restricted functions have different limits. But if f(x,y)
is continuous, all these limit values should be f(0,0) = 0. So this func-

tion f(x,y) is not continuous.
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Figure 558. We see here a three dimensional figure of the graph of the

function. This is a more global view upon the function. The discontinu-

ities are in a manner of speaking almost build in. This does not seem to

be a graph of a continuous function.
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Figure 559. We see here a three dimensional figure of the graph of the

function. This is a more local view upon the function. The discontinu-

ities are in a manner of speaking almost build in. This does not seem to

be a graph of a continuous function.

Figure 560. We have restricted the function here to y = 3/10x and y =
6/10x and y = 9/10x. We see in this figure clearly that the restrictions

of the function to these lines are functions that have no limits in 0.
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Figure 561. We see here a figure of the contour plot of the function. Level

curves of very different levels approach (0,0). This looks discontinuous

indeed.

75.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = −1 if x < 0 and
√

x2 +y2 < 1/10;

0 if x ≥ 0 and
√

x2 +y2 < 1/10.

We conclude that this function is discontinuous and that the partial

derivative does not exist.

Discussion of the partial derivative to y in (0,0).

We observe that
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f
∣

∣

x=0(x,y) =















f(0, y) = −1 if y < 0 and
√

x2 +y2 < 1/10;

0 if y ≥ 0 and
√

x2 +y2 < 1/10.

We conclude that this function is discontinuous and that the partial

derivative does not exist.

We conclude that the partial derivative to x does not exist and that the

partial derivative to y does not exist.

Figure 562. We see here a figure of the graph of the function f(h,0)
restricted to the horizontal X-axis through (0,0). This function is not

continuous and thus not differentiable.
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Figure 563. We see here a figure of the graph of the function restricted

to the vertical Y -axis through (0,0).

75.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

We remark that the functions f(0 + hu,0 + hv) are not continuous if

(u,v) ≠
(

−1/
√

2,1/
√

2
)

and (u,v) ≠
(

1/
√

2,−1/
√

2
)

and are identically

zero if (u,v) =
(

−1/
√

2,1/
√

2
)

or (u,v) =
(

1/
√

2,−1/
√

2
)

. In these

last cases, the functions are differentiable and the directional derivative

exists.

So the directional derivatives do not always exist.
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Figure 564. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv).

75.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

But we calculated that the function has no partial derivatives. So this

criterion cannot be applied.

75.5 Differentiability

We have that the function is not continuous. So it is not differentiable.

75.6 Alternative proof of differentiability (optional)

Irrelevant. The function is not differentiable.
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75.7 Continuity of the partial derivatives

Irrelevant. The function is not differentiable.

75.8 Overview

f(x,y) = ⌊x +y⌋.

continuous no

partial derivatives exist no

all directional derivatives exist no

differentiable no

partials are continuous irrelevant

••••
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Exercise 76.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =



















cos(x y)− 1

x2y2
if xy ≠ 0,

−1

2
if xy = 0.

76.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∣

cos(x y)− 1

x2y2
+ 1

2

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

We remark also that by the Taylor expansion with remainder we have

cos(α) = 1− α
2

2!
+ sin(ξ)

α3

3!

where 0 ≤ |ξ| ≤ |α|.
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∣

∣

∣

∣

∣

cos(x y)− 1

x2y2
+ 1

2

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1− x2 y2

2!
+ sin(ξ) x

3 y3

3!
− 1

x2y2
+ 1

2

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

−x2 y2

2
+ sin(ξ) x

3 y3

3!

x2y2
+ 1

2

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

−1

2
+ sin(ξ)

x y

3!
+ 1

2

∣

∣

∣

∣

≤ | sin(ξ)| |x| |y|
3!

≤ |x| |y|
3!

≤

√

x2 +y2
√

x2 +y2

3!

≤

√

x2 +y2
2

3!
.

It is sufficient to take δ = (3! ϵ)1/2. We can find a δ, so we conclude that

the function is continuous.
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Figure 565. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.

Figure 566. We see here a figure of the contour plot of the function. Only

level curves of level around −1/2 come close to (0,0).
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76.2 Partial derivatives

Discussion of the partial derivative to x in (0,0).

We observe then that

f
∣

∣

y=0(x,y) = f(x,0) =
−1

2
.

So

∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative to y in (0,0).

We observe that

f
∣

∣

x=0(x,y) = f(0, y) =
−1

2
.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.
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76.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√

u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

In the case of our function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

cos(huhv)−1

(hu)2 (hv)2 + 1

2

h

= lim
h→0

1

h

(

cos(huhv)− 1

(hu)2 (hv)2
+ 1

2

)

= lim
h→0

1

h





1− (hu)2 (hv)2

2!
+ sin(ξ) (hu)

3 (hv)3

3!
− 1

(hu)2 (hv)2
+ 1

2





= lim
h→0

1

h





− (hu)2 (hv)2

2
+ sin(ξ) (hu)

3 (hv)3

3!

(hu)2 (hv)2
+ 1

2





= lim
h→0

1

h

(

−1

2
+ sin(ξ)

huhv

3!
+ 1

2

)

= lim
h→0

1

h
| sin(ξ|) |hu| |hv|

3!

= 0.

We have made use of the Taylor expansion with remainder.

So the directional derivatives do always exist.
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Figure 567. We see here a figure of the graph of the function restricted

to the line through (0,0) with direction (u,v) =
(

1/
√

2,1/
√

2

)

. We have

drawn the graph of the function f(hu,hv). This is certainly differen-

tiable.

76.4 Alternative proof of continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

Let us first investigate if the function is partial differentiable in a neigh-

bourhood of (0,0). Let us investigate the partial derivatives in a point

(a,0) with a ≠ 0. We are going to calculate the derivative in the Y -

direction. We have f(a,0) = −1/2 and the derivative to the Y -direction

is then
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∂f

∂y
(a,0) = lim

h→0

f(a,h)− f(a,0)
h

= lim
h→0

cos(ah)−1

a2 h2 + 1

2

h

= lim
h→0

a2h2 + 2 cos(ah)− 2

2a2h3

= 0.

We can use de l’Hospital for the last step in the calculation.

The function is in the X-direction constant, so this partial derivative to

x also exists.

Because of the symmetry in the function definition, the reasoning is sim-

ilar for points (0, a).

Remember that we already calculated the partial derivatives in (0,0).
The partial derivative to x is:

∂f

∂x
(x,y) =















−xy sin(x y)− 2 cos(x y)+ 2

x3y2
if xy ≠ 0,

0 if x = 0 or y = 0.

All calculations are similar for y because of the symmetry in the func-

tion definition.

We can consult figures of the absolute values of the first partial deriva-

tive at the end of this section.

We know by the theorem of Taylor with remainder that

cos(α) = 1− α
2

2
+ sin(ξ)

α3

6

with 0 ≤ |ξ| ≤ |α|
and
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sin(α) = α− α
3

6
+ sin(ξ)

α4

24

with 0 ≤ |ξ| ≤ |α|.

So we have the following equality

−xy sin(x y)− 2 cos(x y)+ 2

x3y2

=

2− 2
(

1− (x y)2

2
+ 1

6
sin(ξ1) (x y)3

)

− xy
(

(x y)− (x y)3

6
+ 1

24
sin(ξ2)(x y)4

)

x3y2

= 1

24

(

−x2y3 sin(ξ2)+ 4xy2 − 8y sin(ξ1)
)

.

Let us try to prove that
∣

∣

∣

∂f
∂x

∣

∣

∣ is bounded.

∣

∣

∣

∣

1

24

(

−x2y3 sin(ξ2)+ 4xy2 − 8y sin(ξ1)
)

∣

∣

∣

∣

≤ 1

24

(

x2 |y|3 | sin(ξ2)| + 4 |x|y2 + 8 |y|| sin(ξ1)|
)

≤ 1

24

(

√

x2 +y2
2√

x2 +y2
3

+ 4
√

x2 +y2

√

x2 +y2
2

+ 8
√

x2 +y2

)

≤ 1

24

(

√

x2 +y2
5

+ 4
√

x2 +y2
3

+ 8
√

x2 +y2

)

≤ 13

24
.

We have chosen here the restriction to the neighbourhood defined by
√

x2 +y2 < 1 for the last step.

We can reason similarly for the derivative to y because of the symmetry

in the function definition.
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Because the two partial derivatives are bounded in a neighbourhood of

(0,0), we have an alternative proof for the continuity.

Figure 568. We see here the absolute value of the first partial derivative
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

. We can observe the boundedness from this picture.

76.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks based on the calculations that

we have performed until now. Maybe these figures can make us doubt-

ful about the differentiability. Because we do not rely on purely visual

proofs, we will then continue our reasoning as if we did not perform

these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 569. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very nicely.

We perform now our second visual check. We can take a look at it in

another way. We have calculated all the directional derivatives and we

know that if the function is differentiable, then the following vectors

(u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent plane if

the function is differentiable. So let us visually check that these vectors

are coplanar.
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Figure 570. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We are going to define the quotient for this function.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .

Remark that this quotient is the two variable equivalent of the one vari-

able quotient
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q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(h, k) and not the differential

quotient.

If

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =



























cos(hk)− 1

h2 k2
+ 1

2
√

h2 + k2
if hk ≠ 0;

0 if hk = 0.

By using the Taylor expansion with remainder we find

q(h, k) =



































1

6
h3 k3 sin(ξ)− h

2 k2

2

h2k2
+ 1

2
√

h2 + k2
if hk ≠ 0;

0 if hk = 0.

is continuous in (0,0).
We can rewrite this as

q(h, k) =















hk sin(ξ)

6
√

h2 + k2
if hk ≠ 0;

0 if hk = 0.

Discussion of the continuity of q(h,k) in (0,0).

We investigate continuity with an ϵ-δ approach.
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We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√

h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

∣

cos(hk)−1

h2 k2 + 1

2
√

h2 + k2
− 0

∣

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣

∣

∣

∣

cos(hk)−1

h2 k2 + 1

2
√

h2 + k2

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

hk sin(ξ)

6
√

h2 + k2

∣

∣

∣

∣

∣

∣

≤ |h| |k| | sin(ξ)|
6
√

h2 + k2

≤

√

h2 + k2
√

h2 + k2

6
√

h2 + k2

≤ 1/6
√

h2 + k2.

It is sufficient to take δ = 6 ϵ. We can find a δ, so we conclude that the

function q(h, k) is continuous. Thus the function f(x,y) is differen-

tiable.
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Figure 571. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.

Figure 572. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).
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76.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

We have calculated all directional derivatives. We have seen that the

vectors (u,v,D(u,v)(0,0)) are nicely coplanar and that they satisfy the

formula

D(u,v)(0,0) =
∂f

∂x
(0,0)u+ ∂f

∂y
(0,0)v.

So we have now almost an intuitive tangent plane.

So we wonder if we could use an alternative proof of differentiability

without the nuisance of calculating the continuity of the quotient func-

tion q(h, k). It turns out that we only have to prove now that the func-

tion f(x,y) is locally Lipschitz continuous in (0,0). We cite here the

criterion that we will use.

A function is differentiable in (a, b) if it satisfies the three following

conditions

1. All the directional derivatives of the function exist.

2. The directional derivatives have the following form: D(u,v)(a, b) =
∇f(a, b) · (u,v) = ∂f

∂x (a, b)u+
∂f
∂y (a, b)v .

3. The function is locally Lipschitz continuous in (a, b). This means

that there exists at least one neighbourhood of (a, b) and a number

K > 0 such that for all (x1, y1) and (x2, y2) in the neighbourhood,

we have |f(x1, y1) − f(x2, y2)| < K
∥

∥(x1, y1)− (x2, y2)
∥

∥. Remark

that the same K must be valid for all (x1, y1) and (x2, y2).

Remark. It is to be expected that a very strong continuity condition

must be satisfied. The Lipschitz local continuity is indeed a very strong

condition but this is not unexpected because the differentiable function

f must be “locally flat" and thus “locally linear" which is partly expressed

by this Lipschitz continuity condition.

Let us try to prove the Lipschitz condition. We are going to use a well

known method.
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|f(x1, y1)− f(x2, y2)|

= |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|.

We focus now on the first term |f(x1, y1) − f(x1, y2)|. We fix now x1

and look upon f(x1, y) as a function in one variable y . So it springs to

mind that we can estimate this by using Lagrange’s intermediate value

theorem. So we have

|f(x1, y1)− f(x1, y2)| =
∣

∣

∣

∣

∣

∂f

∂y
(x1, ξ)

∣

∣

∣

∣

∣

|y1 −y2|

where ξ is a number lying in the open interval (y1, y2) if e.g. y1 ≤
y2. Remark that we already have proven that the partial derivatives are

bounded in a neighbourhood, we can take that bound found for
∂f
∂y , say

M2 and that neighbourhood in this case also. So
∣

∣

∣

∂f
∂y (x1, ξ)

∣

∣

∣ ≤ M2. We

work in a completely analogous way for the second term |f(x1, y2) −
f(x2, y2)|. We have in that case

∣

∣

∣

∂f
∂x (ξ,y2)

∣

∣

∣ ≤ M1 where ξ is now a

number in the open interval (x1, x2) if e.g. x1 ≤ x2.

We take up our inequality again

|f(x1, y1)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)+ f(x1, y2)− f(x2, y2)|

≤ |f(x1, y1)− f(x1, y2)| + |f(x1, y2)− f(x2, y2)|

≤ M2 |(y1 −y2)| +M1 |(x1 − x2)|

≤ M2

√

(x1 − x2)2 + (y1 −y2)2 +M1

√

(x1 − x2)2 + (y1 −y2)2

≤ (M1 +M2)
√

(x1 − x2)2 + (y1 −y2)2.
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So this function is locally Lipschitz continuous. We have an alternative

proof for the differentiability.

76.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the

sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

We know that the partial derivative to x exists and is equal to

∂f

∂x
(x,y) =















−xy sin(x y)− 2 cos(x y)+ 2

x3y2
if xy ≠ 0,

0 if x = 0 of y = 0.

We want to see if it is continuous or not.

Discussion of the continuity of the first partial derivative in (0,0).
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove the inequality | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ. The problem is now to find a δ > 0 such that if the inequal-

ity
∥

∥(x,y)− (0,0)
∥

∥ < δ holds, it follows that | ∂f∂x (x,y)−
∂f
∂x (0,0)| < ϵ is

valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣

∣

∂f

∂x
(x,y)− ∂f

∂x
(0,0)

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

We ask the reader to read section 4 of this exercise again. We are going

to use those reasoning and notations but change only the inequalities at

the end of that calculation.
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∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

24

(

−x2y3 sin(ξ2)+ 4xy2 − 8y sin(ξ1)
)

∣

∣

∣

∣

≤ 1

24

(

x2 |y|3 | sin(ξ2)| + 4 |x|y2 + 8 |y| | sin(ξ1)|
)

≤ 1

24

(

√

x2 +y2
2√

x2 +y2
3

+ 4
√

x2 +y2

√

x2 +y2
2

+ 8
√

x2 +y2

)

≤ 1

24

(

√

x2 +y2
5

+ 4
√

x2 +y2
3

+ 8
√

x2 +y2

)

≤ 1

24

√

x2 +y2

(

√

x2 +y2
4

+ 4
√

x2 +y2
2

+ 8

)

≤ 13

24

√

x2 +y2.

We have chosen here the restriction to the neighbourhood defined by
√

x2 +y2 < 1.

It is sufficient to take δ = min{24/13 ϵ,1}. We can find a δ, so we con-

clude that the function is continuous.
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Figure 573. We see here a three dimensional figure of the graph of the

first partial derivative
∂f
∂x (x,y). This looks like a continuous function.
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Figure 574. We see here a figure of the contour plot of the
∂f
∂x (x,y). Only

level curves of level around 0 come close to (0,0).
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76.8 Overview

f(x,y) =



















cos(x y)− 1

x2y2
if xy ≠ 0,

−1

2
if xy = 0.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous yes

••••
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Exercise 77.

Discuss the

1. continuity,

2. partial derivatives,

3. directional derivatives,

4. differentiability

of the following function in (0,0).

f(x,y) =











x2 +y2 if x < y and y < 2x and x > 0,

0 elsewhere.

77.1 Continuity

We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |f(x,y)−f(0,0)| <
ϵ. The problem is now to find a δ > 0 such that if

∥

∥(x,y)− (0,0)
∥

∥ < δ
it follows that |f(x,y)− f(0,0)| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if
∥

∥(x,y)− (0,0)
∥

∥ =
√

x2 +y2 < δ, we

have that

∣

∣

∣x2 +y2 − 0
∣

∣

∣ < ϵ.

We are looking for a function ℓ(x,y) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(x,y) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.

∣

∣

∣x2 +y2 − 0
∣

∣

∣ ≤ |x2 +y2|

≤
√

x2 +y2
2

+
√

x2 +y2
2

≤ 2
√

x2 +y2
2

.
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It is sufficient to take δ = (ϵ/2)1/2. We can find a δ, so we conclude that

the function is continuous.

Figure 575. We see here a three dimensional figure of the graph of the

function. This looks like a continuous function.
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Figure 576. We see here a figure of the contour plot of the function. Only

level curves of level around 0 come close to (0,0).

77.2 Partial derivatives

Discussion of the partial derivative of x in (0,0).
We observe then that

f
∣

∣

y=0(x,y) =















f(x,0) = 0 if x ≠ 0;

0 if x = 0.

So
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∂f

∂x
(0,0) = lim

h→0

f(h,0)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to x does exist.

Discussion of the partial derivative of y in (0,0).

We observe that

f
∣

∣

x=0(x,y) =















f(0, y) = 0 if y ≠ 0;

0 if y = 0.

So

∂f

∂y
(0,0) = lim

h→0

f(0, h)− f(0,0)
h

= lim
h→0

0

= 0.

So the partial derivative to y does exist.

We conclude that

∂f

∂x
(0,0) = 0 and

∂f

∂y
(0,0) = 0.

77.3 Directional derivatives

Let (u,v) be a normalised direction vector. So it has length 1, this means

that
√
u2 + v2 = 1. Then the directional derivative in (0,0) in the direc-

tion (u,v), notation D(u,v)(0,0) is by definition
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D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

.

The classical partial derivatives are of course also directional derivatives

in the directions (1,0) and (0,1).

We will calculate the directional derivatives first for the normal vectors

(u,v) =
(

cos(α), sin(α)
)

with α ∈ (π/4, arctan(2)). In the case of our

function we have to calculate the following limit

D(u,v)(0,0) = lim
h→0

f(0+ hu,0+ hv)− f(0,0)
h

= lim
h→0

(hu)2 + (hv)2
h

= lim
h→0

hu2 + hv2

= 0.

Let us calculate the right limit.

lim
h→
>

0

(hu)2 + (hv)2
h

= 0.

The left limit is evidently 0. So the directional limit does exist.

In all other directions, the directional derivative is 0.

So the directional derivatives do always exist.
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Figure 577. We see here a figure of the graph of the func-

tion restricted to the line through (0,0) with direction (u,v) =
(cos(50π/180), sin(50π/180)). We have plotted here the function

f(hu,hv). We see that this function is differentiable.

77.4 Alternative proof of Continuity (optional)

This item is not suited for a first reading. The following criterion for

continuity has not been treated in some calculus courses. In that case,

skip this and carry on reading the section about differentiability.

If the partial derivatives exist and are bounded in a neighbourhood of

(0,0), then this implies that the function is continuous. Because we

have calculated the partial derivatives, this gives us an easy opportunity

to see if we can have a supplementary proof of the continuity.

The question is here whether the partial derivatives exist in a neighbour-

hood around (0,0).

We take a point (a,a), a ≠ 0, on the line with equation y = x. We draw

the function in the direction of the Y -axis. We see that this function

is not continuous. So it is certainly not differentiable and the partial

derivative to Y does not exist in the point (a,a) where a ≠ 0.
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-0.5 0.5
H

0.5

1.0

Z

Figure 578. We see here a figure of the graph of the function f(a,a +
h). We have drawn the function here for the value a = 1/2 which is

exemplary for the values of a close to 0. The function is not continuous.

So the function is not differentiable. The partial derivatives do not exist

everywhere in any neighbourhood of (0,0).

We cannot use this criterion for proving the continuity.

77.5 Differentiability

The function is continuous and all directional derivatives exist, so there

is a possibility that this function is differentiable.

Some preliminary visual tests.

Before setting out to do an investigation of the differentiability, let us

take the liberty to do a few visual checks of the calculations that we have

performed until now. Maybe these figures can make us doubtful about

the differentiability. Because we do not rely on purely visual proofs, we

will then continue as if we did not perform these visual checks.

The partial derivatives exist and all other directional derivatives exist.

The function is also continuous. So it can be useful to show the function

and its candidate tangent plane in (0,0) in order to see what is going on.
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Figure 579. We see here a three dimensional figure of the graph of the

function
∂f
∂x (0,0)x +

∂f
∂y (0,0)y , which is graphically the candidate tan-

gent plane and the function f(x,y). We see here that the candidate

tangent plane fits the function very nicely.

We can look at it in another way. We have calculated all the directional

derivatives and we know that if the function is differentiable, then the

vectors (u,v,D(u,v)(0,0)) must lie in one plane, which is the tangent

plane if the function is differentiable. So let us visually check that these

vectors are coplanar.
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Figure 580. We see here a three dimensional figure of the graph of the

function and the position of the vectors (u,v,D(u,v)(0,0)) which must

sweep out an ellipse in the candidate tangent plane. If they do not, then

there is no tangent plane and the function cannot be differentiable. We

see the red circle of the unit vectors (u,v) in the X-Y plane. We see

also in the blue circle the vectors (u,v,D(u,v)(0,0)). It is possible that

the red circle is completely covered by the blue circle and then it is made

invisible. Four points on the blue circle are indicated by large red points.

We see here that the vectors (u,v,D(u,v)(0,0)) sweep out a nice ellipse

in the candidate tangent plane.

Discussion of the continuity of the quotient.

We define the quotient function, notation q(h, k) in (0,0) as

q(h, k) =
f(h, k)− f(0,0)−

(

∂f
∂x (0,0)h+

∂f
∂y (0,0) k

)

∥(h, k)∥ .
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Remark that this quotient is the two variable equivalent of the one vari-

able quotient

q(h) = f(h)− f(0)− f
′(0)h

h
.

So please do not confuse this with
f(h)−f(0)

h , which is commonly called

the differential quotient! To avoid any misunderstandings we call our

q from now on the quotient, notation q(x,y) and not the differential

quotient.

If the

lim
(h,k)→(0,0)

q(h, k) = 0,

then the function f(x,y) is by definition differentiable in (0,0). So we

have to prove that the function

q(h, k) =















h2 + k2

√

h2 + k2
if h < k and k < 2h and h > 0;

0 elsewhere.

is continuous in (0,0).

Discussion of the continuity in of q(h, k) in (0,0).
We investigate continuity with an ϵ-δ approach.

We take an arbitrary ϵ > 0 and we have to prove that |q(h, k) − 0| < ϵ.
The problem is now to find a δ > 0 such that if ∥(h, k)− (0,0)∥ < δ it

follows that |q(h, k)− 0| < ϵ is valid.

When applying our function definition, we have then the following state-

ments. Try to find a δ such that if ∥(h, k)− (0,0)∥ =
√
h2 + k2 < δ, we

have that

∣

∣

∣

∣

∣

h2 + k2

√
h2 + k2

− 0

∣

∣

∣

∣

∣

< ϵ.

We are looking for a function ℓ(h, k) that is larger then or equal to the

left hand side of this last inequality. This function ℓ(h, k) has to have

the property that it can be made smaller then ϵ by carefully manipulating

the value δ. This is sufficient for our continuity proof.
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∣

∣

∣

∣

∣

h2 + k2

√
h2 + k2

− 0

∣

∣

∣

∣

∣

≤ h2 + k2

√
h2 + k2

≤
√
h2 + k2

2

√
h2 + k2

≤
√

h2 + k2.

It is sufficient to take δ = ϵ. We can find a δ, so we conclude that the

function q(h, k) is continuous.

Figure 581. We see here a three dimensional figure of the graph of the

function q(h, k). This looks like a continuous function.
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Figure 582. We see here a figure of the contour plot of the function

q(h, k). Only level curves of level around 0 come close to (0,0).

77.6 Alternative proof of differentiability (optional)

This is not suited for a first reading or if the student is not acquainted

with Lipschitz continuity. Skip this section then and continue with the

continuity of the first partial derivatives.

This section is irrelevant for this exercise, because the function is not

continuous in any neighbourhood of (0,0).

77.7 Continuity of the partial derivatives

We are looking for an alternative proof for the differentiability.

If both the partial derivative derivatives are continuous, then we have an

alternative proof of the existence of the derivative. The condition that

both of the partial derivatives are continuous is in fact too strong in the
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sense that it is not equivalent with differentiability only. But this crite-

rion is in fact used by many instructors and textbooks, so it is interesting

to take a look at it.

We have seen that the partial derivatives do not all exist in any neigh-

bourhood of (0,0).

77.8 Overview

f(x,y) =











x2 +y2 if x < y and y < 2x and x > 0,

0 elsewhere.

continuous yes

partial derivatives exist yes

all directional derivatives exist yes

differentiable yes

partials are continuous no

••••
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Appendix

Alternative proof of continuity

If the function f has bounded partial derivatives in a neighbourhood

of (0,0), then it is continuous. See Rudin, principles of mathematical

analysis, third edition, p. 239 exercise 7.

Lipschitz continuity

Definition of Lipschitz continuity

A function is Lipschitz continuous in a set S ⊆ R if there exists a positive

real number L such that for all x1 and x2 in S we have that

|f(x1)− f(x2)| ≤ L |x1 − x2|.

Remark.

The positive number L is called a Lipschitz constant for f in S. Many

values for L are possible. In most applications it is irrelevant which value

L has. Only the existence of a L usually matters. This is also the case in

these exercises. It is possible that no L satisfies the inequality. Then we

say that f is not Lipschitz continuous.

Example and visualisation of Lipschitz continuity
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Figure 583. We consider here the function f(x) = x2 on the interval

S = [−1,1]. We have taken L = 3. We drew a red cone or degenerate

hyperbola consisting of the lines y = −Lx and y = Lx in red. We

can translate this cone to any point on the graph of the function. An

example of this is the green cone. No cone may have points of the graph

of the function in its interior, we mean by that the region containing the

vertical line. We see in this figure that no cone has points of the function

in its interior. This means that the function f is Lipschitz continuous in

S with Lipschitz constant L = 3.

We consider now the the same function f(x) = x2 on the interval [−1,1].
We try to see if this function is Lipschitz continuous with constant

L = 1/3.
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Figure 584. We consider here the function f(x) = x2 on the interval

S = [−1,1]. We have taken L = 1/3. We drew a red cone or degenerate

hyperbola consisting of the lines y = −Lx and y = Lx in red. We

can translate this cone to any point on the graph of the function. An

example of this is the green cone. No cone may have points of the graph

of the function in its interior, we mean by that the region containing the

vertical line. We see in this figure that at least one cone has points of the

function in its interior. This means that the function f is not Lipschitz

continuous in S with Lipschitz constant L = 1/3.

Example of non Lipschitz continuity

The following figure is an example of a function that is not Lipschitz

continuous. There does not exist a real number L such that |f(x1) −
f(x2)| ≤ L |x1 − x2| in S. We take the function f(x) = 1/x on S = R+0 .
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Figure 585. We see here the graph of the function f(x) = 1/x on the

set S = R+0 . We have drawn the green line piece with vertices (x1, f (x1))
and (x2, f (x2)). The absolute value of the slope of this line piece is

|(f (x1) − f(x2))/(x1 − x2)|. This value is not bounded on the set S. It

is easy to see that the value becomes arbitrarily large if we move either

x1 or x2 or both close to 0. A small calculation shows indeed |(f (x1)−
f(x2))/(x1−x2)| = |(1/x1−1/x2)/(x1−x2)| = |−1/(x1x2)|. This value

is unbounded in any neighbourhood of 0.

Here is another example of a function that is not Lipschitz continuous.

We take the function f(x) = √x in the set S = R+.
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Figure 586. We see here the graph of the function f(x) = √x on the set

S = R+0 . We have drawn the green line piece with vertices (x1, f (x1)) and

(x2, f (x2)). The absolute value of the slope of this line piece is |(f (x1)−
f(x2))/(x1 − x2)|. This value is not bounded on the set S. It is easy to

see that the value becomes arbitrarily large if we take x1 = 0 and move

x2 close to 0. A small calculation shows indeed |(f (0) − f(x2))/(0 −
x2)| = |(0 −

√
x2)/(0 − x2)| = |1/

√
x2|. This value is unbounded in any

neighbourhood of 0.

The previous examples show that it is possible to interpret the mean-

ing of the existence of Lipschitz continuity as the fact that the slopes

(f (x1)−f(x2))/(x1−x2) of line pieces supported by the function must

not increase too fast. This means also that the slopes of the tangents

must be bounded. We can see that again in another example.
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Figure 587. We have drawn the function f(x) = 1 − √−x if x < 0 and

f(x) = 1−√x if x ≥ 0. The graph of this function has a vertical tangent

in x = 0. The slopes f(x1)−f(x2) are unbounded in any neighbourhood

of x = 0. This function cannot be Lipschitz on the interval [−1,1].

Lipschitz continuity in several variables

It is clear that Lipschitz continuity can also be defined in R2. We have

then that the following inequality must be satisfied.

|f(x1, y1)− f(x2, y2)| ≤ L
∥

∥(x1, y1)− (x2, y2)
∥

∥.

The rest of the definition holds word by word by analogy.
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Figure 588. We see here the plot of the function f(x,y) = x2+y2 on the

set S = [−1,1]× [−1,1]. Lipschitz continuity with Lipschitz constant L
on a set S ⊆ R2 can be interpreted graphically as follows. Take a cone

with equation L2 z2 = (x2 + y2). Move this cone to any point on the

surface by translating the origin to that point. See the figure. If the

interior of these cones do not contain points of the surface, then the

function f is Lipschitz continuous with Lipschitz constant L on the set

S.

We end by remarking that Lipschitz continuity implies continuity in ev-

ery point. We have used this fact frequently in the text. Much more can

be said. We refer the reader to www.wikipedia.org.

Alternative proof of differentiability

Suppose we have done some research on the continuity and the direc-

tional derivatives. These investigations do almost the job of proving

differentiability if there is continuity and if the directional derivatives

exist and are linear in a certain way. Suppose we do not want to inves-

tigate differentiability by using the definition. We are looking for a tiny

piece of further evidence that can show differentiability. It turns out

that having also Lipschitz continuity in a neighbourhood of (a, b) would

do the job of proving differentiability. This is a possible alternative way

that is applicable in some circumstances. Remark that the following is

an implication and not an equivalence.
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Lemma

Suppose U ⊆ R2 is an open set containing the point (a, b). Let f : U →
R : (x,y)֏ f(x,y). Suppose also that

1. the function is locally Lipschitz continuous in (a, b);

2. the partial first order derivatives in (0,0), ∂f∂x (0,0) and
∂f
∂y (0,0) ex-

ist;

3. for every unit direction vector (u,v), we have that the directional

derivative is of the form D(u,v)f(a, b) = ∂f
∂x (0,0)u+

∂f
∂y (0,0)v ,

then the function is differentiable in (a, b).

Proof.

Choose an arbitrary ϵ > 0. We have to prove that there exists a δ such

that if
∥

∥(x,y)− (a, b)
∥

∥ < δ, we have that

∣

∣

∣f(x,y)− f(a, b)−
(

∂f
∂x (0,0)h1 + ∂f

∂y (0,0)h2

)∣

∣

∣

∥(h1, h2)∥
< ϵ.

By subtracting f(a, b)+
(

∂f
∂x (0,0) (x − a)+

∂f
∂y (0,0) (y − b)

)

of f(x,y),

we can assume that f(a, b) = 0 and that
∂f
∂x (0,0) = 0 and

∂f
∂y (0,0) = 0.

Now let L be a Lipschitz constant that is valid in at least one neighbour-

hood of (a, b).

We cover the unit circle B around (a, b) with open disks with radius

ϵ/(2L) with their centre points on B. We take an finite sub cover of this

covering which is possible by the compactness of the unit circle. We de-

note the centre points of this finite sub cover by (ui, vi), i ∈ {1, . . . , n}.

We investigate now the n functions

gi(t) =
f ((a, b)+ t (ui, vi))

t
.

We assume that t is taken small enough so that these functions are de-

fined. Because all directional derivatives exist, we have for every every-

one of our n functions gi(t) continuity in t = 0. So for all ϵ/(2L), we

have a δi such that if |t| < δi, then |gi(t)| < ϵ/(2L). So by the definition

of the gi(t)

|f ((a, b)+ t(ui, vi)) | < |t| ϵ/(2L) if |t| < δi.
Let now δ be defined as follows
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δ = min
i∈{1,...,n}

δi.

We have to prove for differentiability that for all ϵ, there exists a δ such

that for all |t| < δ it holds for all unit vectors (u,v) then

|f ((a, b)+ t(u,v)) | < |t| ϵ.
We take any unit vector (u,v). We know by the construction of the

sub cover that there exists at least one i ∈ min{1, . . . , n} such that

|(ui, vi) − (u,v)| < ϵ/(2L). Then by the Lipschitz continuity, suppose

the Lipschitz constant is L,

|f
(

(a, b)+ t (u,v)
)

− f
(

(a, b)+ t (ui, vi)
)

|
≤ L |t| ∥(u,v)− (ui, vi)∥
< L |t| ϵ/(2L)
< |t| ϵ/2.

Now we use the triangle inequality

|f
(

(a, b)+ t (u,v)
)

|
≤
∣

∣f
(

(a, b)+ t (ui, vi)
)∣

∣+
∣

∣f
(

(a, b)+ t (u,v)
)

−
(

f
(

(a, b)+ t (ui, vi)
))∣

∣

< |t| ϵ/2+ |t| ϵ/2
= |t| ϵ.

Remark. We adapted this proof from a sketch made in the website

www.stackexchange.com by an anonymous author. We thank prof. Leoni

from Carnegie Mellon university for pointing this out to us.
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Contact the author

Comments are welcome. My email address is:

Dirk.Bollaerts@protonmail.com

mailto:Dirk.Bollaerts@protonmail.com

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	


