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Preface

We constructed these exercises in four different periods when we had
to provide students with assistance in solving Jordan normal form prob-
lems. These students encountered the Jordan normal form in a course
on differential equations, and some of them also encountered it when
they had to solve recursion equations.

The intention was to help students quickly handle Jordan normal form
problems so that they could promptly tackle problems in those other
branches of mathematics. This text reflects this objective. If one is seek-
ing a deeper theoretical understanding of the theory behind the Jordan
normal form, then we can only advise to use other websites and the-
oretical texts both on the web and in algebra books. There are many
algebra courses on the web that develop this theory exquisitely and ex-
tensively. The Jordan normal form theory offers various proofs with dis-
tinct flavours. We can work within pure matrix theory, explore it through
linear maps, or delve into it from another perspective by studying mod-
ules over principal ideal domains. All these approaches are readily avail-
able online. This text is however not suited for that purpose.

The students with which we worked had a very good theoretical and
practical background in general vector space theory. Linear indepen-
dence, generating vectors, basis, linear maps, matrices and eigenvectors
were very well known. And last but not least everyone of them could
solve very fluently systems of linear equations working against the clock.

Jordan theory usually occupies an awkward position in a typical linear
algebra course. It often comes at the end of the chapters of the gen-
eral theory of eigenvectors and their application to symmetric matrices.
Consequently, it is frequently covered by lack of time with only brief ex-
planations of the key concepts. This results in exercises being frequently
skipped, leaving students with limited practical knowledge in this area.

This is a typical how-to text with no pretence of a theoretical approach.
We designed the exercises assuming that the theory behind Jordan de-
composition is already known in skeleton or that the reader has some
familiarity with it. If there are doubts about the theory, we would readily
recommend consulting the excellent Wikipedia article on the theorem.

We worked with students as follows. Every group of students could
choose their favourite size of matrices, and we constructed these exer-
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cises to suit their flavours and needs. Every student was offered two
exercises on nilpotent matrices and two exercises on general matrices.
We kept one additional matrix for demonstration purposes. We strongly
advise current readers to follow this strategy. One could select arbitrar-
ily two exercises from part 2 on nilpotent matrices and similarly choose
two exercises from part 3 on general matrices. This should be sufficient;
doing more could be a bit of overkill.

This text is not intended to be read linearly from top to bottom. We
expect readers instead to immediately focus on the type and size of ma-
trices they are currently dealing with in homework or exercises. Conse-
quently, there is some repetition in the exercises. We originally planned
to include only six matrices in this text but abandoned that idea because
it was unclear which ones to omit and we wanted also to have Jordan
matrices with different normal form structure, and readers often have
strong preferences and their motivation is often based on their current
particular needs in their studies.

Great care is taken to ensure that each exercise can be solved manu-
ally with ease. This led us to keep the eigenvalues small to facilitate
the calculation of certain matrix powers. We do not use consequently a
wide range of values for the eigenvalues; they are frequently −1, 1, or 0.
However, this should not give the wrong impression that eigenvalues are
almost always small in this context. We experimented with eigenvalues
like λ = 3 and λ = 4, but for matrices of a substantial size (e.g., 7 × 7),
this often results in large numbers when calculating higher powers of
related matrices. We wanted to avoid this to ensure that the exercises
always remain manageable for manual computation.

We made an effort to provide sufficient intermediate results to facili-
tate the repetition of calculations if necessary. We hope that it will be
possible to check intermediate calculations in order to make exercise
work as fluent as possible. This also makes it easier for readers who
are allowed to experiment with a calculator. We worked with students
who had a solid understanding of the fundamentals of linear algebra,
assuming they could handle essential parts of the calculations easily. It
would have been impractical to solve systems of equations step by step
in this text, as it would have significantly increased the volume of this
text. We include intermediate results so that readers can check their
solutions at their convenience as much as it is possible. Additionally,
many instructors follow a similar practice of starting with intermediate
results, allowing students to fill in the gaps to avoid overwhelming them
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with extensive calculation work. Readers can consult their instructors to
determine which intermediate results will be provided in tests or home-
work and adapt to their instructor’s preferences.

Some instructors may insist that the vector spaces are defined over ei-
ther R or C. This does not affect the solutions presented in this text,
which remain valid as long as we are working in characteristic zero
fields. The situation differs for fields with characteristics other than
zero. One crucial point to note is that when selecting basis vectors,
larger fields offer a broader choice for these basis vectors. The matri-
ces P representing the change of basis can be defined over these larger
fields, such as R or C. We consistently work however with the field Q
and restrict ourselves to basis change matrices P over this field. This
restriction was chosen to simplify manual calculations.

If the instructor insists on using another field K of numbers, in most
cases it will be C, then our calculations and solutions remain invariably
correct if that field is of characteristic 0. We remark that if one works
over larger fields then Q, one is allowed to choose generating vectors for
the Jordan chains that are vectors in K. The matrix P in the answers can
be chosen in the larger field. Our choice remains valid however and will
be always easier to work with. We give a concrete example. Suppose we
have to choose a vector in K3 of the form (a,a,a) with a ≠ 0, then we
will choose (1,1,1) but if we work in C, one is also allowed to choose
(2 + 3 i,2 + 3 i,2 + 3 i). Let us summarise. Suppose we work in a larger
field then Q of characteristic 0 then our answers are also valid in that
field. But more answers are theoretically allowed. If one works in a finite
field then it is not true that one can use our answer entirely. Though we
can reuse many of our calculations we will see that we sometimes used
fractions with small denominators. Depending on our characteristic,
we have to be careful there. And when one encounters matrices from
which the kernel must be calculated, then the rank of that matrix can
be different from our rank because some elements of that matrix can be
zero in the finite field but are not zero in a field of characteristic 0.

There are many solutions for every exercise. This is an inherent disad-
vantage when working with matrices. Matrices almost never reflect the
fundamental mathematics because they are completely dependent on
making arbitrary choices when choosing bases. Other choices of a basis
give different matrices which are equally valid. This is also the case in
Jordan theory where the essence of the theory is reflected by the invari-
ants of certain vector spaces related to a linear map f . The choice of a



www.mathandphoto.eu. Exercise Notes Jordan 7

basis is in this theory dependent on choosing the generating vector of
Jordan chains.

There are often uncertainties about verifying linear independence when
constructing Jordan chains to build the basis. We have endeavoured to
clarify precisely what needs to be checked and which independencies are
theoretically implied automatically. An explanation of the procedure is
provided in the appendix, so readers with doubts should refer to it. We
have summarized it in the appendix, and it is advisable to consult it.

Some readers may wish to experiment with these matrices using calcu-
lators. We have listed all matrices at the end of the document, and pre-
sented them without any additional typographic formatting, making it
easy to copy and paste them into the text editor of your choice. One can
adjust if necessary the delimiters using the text editor’s replace func-
tion.

The solutions of these exercises are not unique. There are many ways in
which a basis can be chosen. The same holds for choosing a generating
vector of Jordan chains. We would urge the reader to explicitly check
their results as we did in our solutions. Notice that the resulting Jordan
normal form is unique. So it is perfectly possible to check the end result.

This text is provided to the reader as-is. After digitising our handwritten
notes, there was no external proofreading. While we made an effort to
check everything and the final results, we acknowledge that the law of
Murphy often plays a strong role in mathematics and that is especially
true in exercises of this nature. The culprit is frequently the copy and
paste procedure, which can be both a blessing and a source of errors. We
would appreciate it if users could point out any errors they encounter.



www.mathandphoto.eu. Exercise Notes Jordan 8

Content

1 Preface & Content 4

2 Notation 18

3 Nilpotent matrices 26
3.1 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Exercise 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 Exercise 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.6 Exercise 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.7 Exercise 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.8 Exercise 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.9 Exercise 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
3.10 Exercise 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
3.11 Exercise 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
3.12 Exercise 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
3.13 Exercise 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
3.14 Exercise 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
3.15 Exercise 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
3.16 Exercise 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
3.17 Exercise 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
3.18 Exercise 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
3.19 Exercise 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
3.20 Exercise 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

4 General matrices 375
4.21 Exercise 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
4.22 Exercise 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
4.23 Exercise 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
4.24 Exercise 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
4.25 Exercise 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
4.26 Exercise 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
4.27 Exercise 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
4.28 Exercise 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
4.29 Exercise 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
4.30 Exercise 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
4.31 Exercise 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
4.32 Exercise 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622



www.mathandphoto.eu. Exercise Notes Jordan 9

4.33 Exercise 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
4.34 Exercise 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650

5 Appendix 664

6 Copy & Paste 677



www.mathandphoto.eu. Exercise Notes Jordan 10

List of Exercises

We will use the notation Jn(λ) for an elementary Jordan block. The num-
ber n indicates the size of the elementary Jordan block, the number λ
indicates the eigenvalue associated to the elementary Jordan block. Note
that some exercises are deliberately skipped in this list.

Exercise 1. Jordan structure: (4× 4); (J4(0)).

B =


1 −2 3 1
4 −5 7 2
3 −3 4 1

−1 0 0 0

 .
Exercise 2. (4× 4); (J3(0), J1(0)).

B =


1 1 −2 0
1 0 −1 0
1 0 −1 0
0 1 −1 0

 .
Exercise 3. (4× 4); (J2(0), J2(0)).

B =


1 0 1 0
0 0 1 −1

−1 0 −1 0
−1 0 −1 0

 .
Exercise 4. (7× 7); (J3(0), J3(0), J1(0)).

B =



−2 1 0 −2 1 3 2
1 −1 0 1 −1 −2 −1
1 −1 0 1 −1 −2 −1
0 −1 0 2 2 1 −2
0 1 1 0 2 2 0

−1 0 −1 −1 −1 0 1
−1 1 1 1 5 5 −1


.

Exercise 5. (7× 7); (J3(0), J2(0), J2(0)).
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B =



3 3 −4 2 1 1 −1
−3 −3 3 −2 0 0 1
−1 −1 1 −1 0 0 1
−1 −1 3 −1 −2 −2 1
−5 −5 6 −4 0 0 3

4 4 −5 3 0 0 −2
0 0 1 0 −1 −1 0


.

Exercise 6. (7× 7); (J2(0), J2(0), J2(0), J1(0)).

B =



0 −1 0 −1 1 0 0
0 −1 −1 −4 3 −1 −1
0 −2 −1 −5 4 −1 −1
1 −1 −2 −5 4 −1 −1
1 −2 −3 −9 7 −2 −2

−1 −1 2 3 −2 1 1
0 2 −1 −1 0 −1 −1


.

Exercise 7. (6× 6); (J5(0), J1(0)).

B =


1 2 −1 0 2 1

−1 −1 1 0 −2 −1
0 1 0 0 0 0
1 1 −1 0 2 1
1 1 −1 0 0 0

−1 −1 1 0 1 0

 .
Exercise 8. (6× 6); (J4(0), J2(0)).

B =


2 −2 −1 2 1 1
4 −5 −3 5 1 2

−1 2 1 −3 1 0
1 −1 −1 1 1 1

−1 1 0 0 0 0
3 −4 −2 2 0 1

 .
Exercise 9. (6× 6); (J3(0), J3(0)).

B =


3 3 −1 2 2 1

−5 −5 1 −3 −3 −1
−12 −10 3 −8 −5 −3
−1 −1 1 −1 −1 −1

0 1 0 0 1 0
−4 −4 1 −3 −2 −1

 .
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Exercise 10. (5× 5); (J4(0), J1(0)).

B =


0 2 −1 −4 −2
0 1 0 −2 −1
0 −1 0 1 1
0 1 0 −1 −1
0 0 −1 −2 0

 .
Exercise 11. (5× 5); (J3(0), J2(0)).

B =


0 0 1 1 0
1 0 1 2 1
3 −1 1 3 2

−2 1 −1 −2 −1
2 −1 0 1 1

 .
Exercise 12. (5× 5); (J2(0), J2(0), J1(0)).

B =


1 0 1 −1 −2

−1 0 −1 1 2
1 −1 0 0 −2
0 −1 −1 1 0
1 0 1 −1 −2

 .
Exercise 13. (3× 3); (J2(0), J1(0)).

B =

 −1 −1 1
1 1 −1
0 0 0

 .
Exercise 14. (3× 3); (J3(0)).

B =

 −2 1 −2
−1 0 −1

2 −1 2

 .
Exercise 15. (2× 2); (J2(0)).

B =
(
−1 1
−1 1

)
.

Exercise 16. (8× 8); (J4(0), J2(0), J2(0)).



www.mathandphoto.eu. Exercise Notes Jordan 13

B =



10 −1 9 −11 6 3 −5 −9
20 0 19 −20 16 4 −15 −19
−5 0 −5 5 −4 −1 4 5

6 −1 5 −7 3 2 −2 −5
−3 0 −3 3 −2 −1 2 3
−23 1 −21 24 −15 −6 13 20

21 −1 19 −22 15 5 −13 −19
−25 1 −23 26 −18 −6 16 23


.

Exercise 17. (3× 3); (J3(0)).

B =

 3 2 −1
−3 −2 1

2 1 −1

 .
Exercise 18. (5× 5); (J3(0), J2(0)).

B =


2 1 1 −2 −1

−2 −1 0 1 2
−3 −1 −1 2 2
−1 0 0 0 1

1 0 1 −1 0

 .
Exercise 19. (4× 4); (J4(0)).

B =


−1 1 −1 0

7 −4 9 3
3 −2 4 1
3 −2 3 1

 .
Exercise 23. (7× 7); (J2(1), J2(1), J3(−1)).

B =



0 2 0 −2 −1 0 0
0 1 0 0 0 0 0
1 −1 1 2 1 0 0
0 −1 0 4 3 −1 0
1 0 0 −4 −4 2 0

−1 1 1 −3 −2 0 1
−1 1 −2 −2 −1 0 −1


.

Exercise 24. (7× 7); (J3(1), J2(1), J2(2)).
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B =



2 1 0 0 0 1 0
−2 0 1 1 1 −1 −2
−2 −2 3 1 −1 −3 −1

1 1 −1 1 1 2 1
−1 0 1 0 1 −1 −1

0 −1 0 0 −1 0 1
0 0 0 0 0 0 2


.

Exercise 25. (7× 7); (J2(2), J2(2), J1(2), J2(1)).

B =



1 0 0 0 0 0 0
−2 1 0 −2 1 2 1
−3 −1 2 −1 1 2 1

0 0 0 2 0 0 0
3 1 0 1 1 −2 −1
4 1 −1 1 −1 −1 −1

−15 −4 2 −5 4 10 6


.

Exercise 26. (7× 7); (J4(1), J1(1), J2(−1)).

B =



−2 1 −2 −1 0 0 −2
1 1 2 0 0 −1 1
2 0 2 1 0 −1 1
1 −1 0 2 0 2 0
1 0 2 0 1 −1 1
1 0 1 0 0 −2 1
0 −1 0 0 0 0 1


.

Exercise 27. (6× 6); (J3(−1), J1(−1), J2(1)).

B =


−1 −2 3 2 −4 2

0 −1 −4 −3 −2 −3
0 0 2 2 1 2
0 4 −2 −4 4 −3
0 0 3 2 0 2
0 −8 0 3 −10 2

 .

Exercise 28. (6× 6); (J2(−1), J2(−1), J2(1)).
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B =


−4 5 0 3 8 6
−8 5 2 −1 15 8
−6 8 −1 3 14 9

7 −3 −2 1 −11 −6
9 −5 −2 2 −16 −8

−13 9 2 0 23 13

 .
Exercise 29. (6× 6); (J3(−1), J1(−1), J2(1)).

B =


−7 7 1 2 13 8
−8 5 2 −1 15 8
−5 7 −1 3 12 8
10 −5 −3 2 −16 −8
9 −5 −2 2 −16 −8

−16 11 3 −1 28 15

 .
Exercise 30. (6× 6); (J2(−1), J2(−1), J2(1)).

B =


−4 5 0 3 8 6
−8 5 2 −1 15 8
−6 8 −1 3 14 9

7 −3 −2 1 −11 −6
9 −5 −2 2 −16 −8

−13 9 2 0 23 13

 .
Exercise 31. (5× 5); (J3(−1), J2(2)).

B =


−3 0 −5 4 1
−4 2 −4 −1 −1

2 1 3 −5 1
0 −1 1 1 −2
3 −2 5 0 −2

 .
Exercise 32. (4× 4); (J2(−2), J2(2)).

B =


10 5 3 4

−12 −7 −3 −4
−8 −5 −1 −4
−5 −1 −4 −2

 .
Exercise 33. (3× 3); (J3(−2)).

B =

 −4 0 1
−3 −3 2
−5 −1 1

 .
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Exercise 34. (3× 3); (J2(3), J1(−2)).

B =

 10 1 5
−14 1 −10
−12 −1 −7

 .



          Part 1
        Notation
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1. Elementary Jordan matrices or block matrices.

A matrix of the form  λ 1 0

0 λ 1

0 0 λ

 
is called an elementary Jordan matrix or an elementary Jordan block
with eigenvalue λ.

The eigenvalue can be any number of the field K in which we work. In
the exercises that follow we will always work in the field Q.

The eigenvalue is on all the diagonal cells of the matrix and the super-
diagonal consists of 1’s. Several sizes are possible but the matrices have
to be square matrices.

The colouring of the matrix is done to emphasise the position of the
elementary Jordan blocks in the matrix, see the following section. The
reader may drop this colouring mentally. We believe however that the
colouring makes the structure of Jordan matrices much clearer.

A 1× 1 block is also allowed. It has then the eigenvalue on the diagonal
and there is no superdiagonal in that case.

We will use the notation Jn(λ) for an elementary Jordan block. The num-
ber n indicates the size of the elementary Jordan block, the number λ
indicates the eigenvalue associated to the elementary Jordan block.
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Figure 1. This is a figure representing an elementary Jordan block. It
is the graphical representation of a 5 × 5 elementary Jordan block. Its
diagonal is represented by the red squares. The red cells contain the
eigenvalue λ. The superdiagonal is represented by the blue squares. The
blue cells all contain the number 1. All cells in the white area contain
the number 0.
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2. Large Jordan matrices or block matrices of one eigen-
value.

A matrix of the following form is a more general Jordan matrix. All
these matrices have elementary Jordan block matrices on their diagonal.
These matrices have all one and the same eigenvalue. The following
matrix is a large block Jordan matrix with only one eigenvalue λ = 3.
If all elementary blocks have the same eigenvalue, one calls this type of
matrix sometimes a large Jordan block with eigenvalue λ.


3 1 0 0 0

0 3 1 0 0

0 0 3 0 0

0 0 0 3 1

0 0 0 0 3



 
( ) .

We see that the matrix consists of two elementary Jordan blocks on the
diagonal of sizes 3×3 and 2×2. Other sizes or other numbers of Jordan
blocks are also allowed. We remark the eigenvalue 3 appearing on the
diagonals and the superdiagonals consisting of the number 1 in each of
the elementary Jordan blocks. Other eigenvalues are also allowed.

We have done the colouring and additional coloured brackets to empha-
sise the position of the elementary Jordan blocks.

Sometimes one uses in the literature the abbreviation

A =
(
J3(λ = 0) 0

0 J2(λ = 0)

)
.

This is a shorthand for the matrix
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 .
We will try to make the structure of the matrix more clear and colour
the positions of the elementary Jordan blocks
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0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0




( ) .

3. General Jordan matrices.

We look now at a Jordan matrix of the most general form. These are ma-
trices consisting of elementary Jordan submatrices on the diagonal with
possibly more then one eigenvalue. An example of this most general
form is the following.

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 2 1

0 0 0 0 0 0 2



 
( )

( ) .

This matrix consists of one elementary Jordan block of size 3 × 3 with
eigenvalue λ = 1, one elementary Jordan block of size 2 × 2 with eigen-
value λ = 1 and one elementary Jordan block of size 2×2 with eigenvalue
λ = 2.

In the literature one uses a shorthand for this

A =

 J3(λ = 1) 0 0
0 J2(λ = 1) 0
0 0 J2(λ = 2)

 .
In this notation, all cells are matrix blocks.

We remark that k elementary Jordan blocks on the diagonal are allowed,
and that the formats of these square matrices can be of any size ni. So
in general this is
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A =


Jn1(λ1)

Jn2(λ2)

Jnk(λk)

.
It is understood that in this notation empty cells have to be filled with
blocks of 0’s. The eigenvalues λi do not have to be different.

4. Notation for vectors.

We will write vectors in Kn with the shortcut v in bold letters. We write
the coordinates in two different styles. In full text, we will of course
write e.g. v = (1,2,3). In mathematical context we will write, if A is a
matrix, Av where v is then obviously written in column form. We believe
that this convention cannot lead to confusion. The explicit transposition
notation leads to possible notational overkill.

5. Linear transformations.

We call a linear map from a vector space V to the same vector space V
a linear transformation or a linear operator. We work exclusively in the
coordinate space relative to a basis. In that context we will even say that
the matrix A representing the linear map relative to a basis will map a
vector to another vector. We believe that this language cannot hurt the
reasoning though it is not optimal language from the theoretical point
of view.

6. Theorem of Jordan.

Theorem of Jordan. Let K be a field. Let B ∈ Kn×n. Assume that the
characteristic polynomial of B is a product of first degree polynomials
defined over K. Then there exists a Jordan matrix A and an invertible
matrix P ∈ Kn×n such that A = P−1 B P . This matrix is unique upon the
ordering of the elementary Jordan blocks.

Remark. Many readers will work in the field of complex numbers C. If
this is the case then we can drop the assumption that the characteristic
polynomial is a product of first degree polynomials. This condition is
satisfied for every polynomial defined over the field C.
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7. Nilpotency of matrices, Jordan chains and height of vec-
tors.

A matrix B is called a nilpotent matrix if there is some natural number
n0 such Bn0 = 0. The smallest n0 for which this is the case is called the
height of nilpotency of that matrix.

Let v be in a vector space V . Let A be a linear transformation on that
space that is nilpotent. Consider the set

{
An0−1 v, An0−2 v, An0−3 v, . . . , A2 v, Av,v

}
.

Suppose now that no vector in this set is a zero vector. Suppose also that
An0 v = 0. Then we call the set a Jordan chain of length n0 with respect
to the nilpotent operator. Because it is clear in every exercise which
operator is meant, we call it shortly a Jordan chain without mentioning
the nilpotent operator A.

We follow the tradition that we write the Jordan chain in reversed order.
The order seems at first glance to be rather strange. But it will be clear
in the exercises why this is done. It makes mistakes in constructing a
certain matrix almost impossible.

The vector v is called the generating vector of the chain. It is also called
sometimes the leading vector of the chain. Remark that this vector is
traditionally written at the back of the chain. The word “generating” has
two meanings. We can say that a vector is “generating for a Jordan chain”
and also that a vector “generates a vector space”. There are obviously
two different meanings for that word in these sentences. But we use this
term in this text almost always in the first meaning.

The height of a nonzero vector is equal to the length of the Jordan chain
generated by that vector which is in that case considered a finite chain.
It is thus the smallest natural number i for which Ai v = 0. The height of
a vector may not be confused with the height of nilpotency of a matrix.

8. Vector spaces.

We will invariably work in the vector spaces Kn. This is also the general
case by the isomorphism theorem of finite dimensional spaces. We will
use the traditional notation ei for the canonical basis vectors of Kn.
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9. About the span of vectors.

We have in this text taken the convention that the notation span is al-
ways used in the context of taking a minimal span. This means that the
vectors in a span are always carefully chosen to be also linearly indepen-
dent in these notes. The consequence is that the vectors in every span
are a basis for the subspace they span. We do not mention this fact
explicitly every time it is used.

10. About the name Jordan.

Camille Jordan was a French mathematician and is the discoverer of the
technique with which we will work in this text. He is sometimes confused
with two other German mathematicians. The first one is Wilhelm Jordan
who is famous for the Gauss-Jordan row reducing algorithm. The second
one is Pascual Jordan who is famous for the Jordan algebras. Note that
the French name and the German name have a different pronunciation
of the letter “J”. In French the “J” is pronounced in the same way as in
the English name “Jordan”. In German the “J” is pronounced like the “y”
in the English word “you”.



          Part 2
 Nilpotent matrices
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1 exercise. (4× 4); (J4(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B such that A is a matrix in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =


1 −2 3 1
4 −5 7 2
3 −3 4 1

−1 0 0 0

 .
Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I4| = λ4.

The eigenvalue λ = 0 has algebraic multiplicity 4. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 3 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 2. The solution will be completely independent from this
section.
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We want to investigate the endomorphism A associated with this Jordan
matrix. We compute also the powers of A.

A =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




 , A2 =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0




 ,

A3 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0




 , A4 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




 .

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the fourth power
of A. The matrix itself is already an elementary Jordan block. The small-
est exponent that makes the power of the matrix A the zero matrix, in
this case 4, is called the height of nilpotency of the matrix A.

It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A) = span
{
e1
}
;

ker(A2) = span
{
e1,e2

}
;

ker(A3) = span
{
e1,e2,e3

}
;

ker(A4) = span
{
e1,e2,e3,e4

}
.

After having investigated the kernels, we can look at the data we have
found in the following information table.



www.mathandphoto.eu. Exercise Notes Jordan 28

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 1 1 = dim(ker(A))

ker(A2) 2 1 = dim(ker(A2))− dim(ker(A))

ker(A3) 3 1 = dim(ker(A3))− dim(ker(A2))

ker(A4) 4 1 = dim(ker(A4))− dim(ker(A3))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the fourth
power onwards.

ker(A) ⊊ ker(A2) ⊊ ker(A3) ⊊ ker(A4) = ker(A5) = · · · .
This chain of inclusions stabilises from the fourth power onwards.
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We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:

n1 +n2 +n3 +n4 = 1 = dim(ker(A)),

n2 +n3 +n4 = 1 = dim(ker(A2))− dim(ker(A)),

n3 +n4 = 1 = dim(ker(A3))− dim(ker(A2)),

n4 = 1 = dim(ker(A4))− dim(ker(A3)).

Solving this system, we have n1 = 0, n2 = 0, n3 = 0, n4 = 1.

A consequence from this fact is that the numbers in the last column are
descending.

We remark by looking at the matrices Ai that we have the following
mappings 

Ae4 = e3,
Ae3 = e2,
Ae2 = e1,
Ae1 = 0,

or 

Ae4 = e3,

A2 e4 = e2,

A3 e4 = e1,

A4 e4 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{e1 = A3 e4,e2 = A2 e4,e3 = Ae4,e4}.
After we have found the first Jordan chain of length 4, we have then the
following table.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 1 e1 0

ker(A2) 2 e2 0

ker(A3) 3 e3 0

ker(A4) 4 e4 0

Because the last column consists now of 0’s, we are done with looking
for Jordan chains. We have found at this point a basis of V consisting
entirely of vectors in Jordan chains.

Let us express our findings in a more visual way that emphasises the
dimensions and positions of the elementary Jordan blocks in the matrix.
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(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3. (d) Visualisation of A4.

Figure 2

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
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into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.
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3. Calculation of the kernels of Bi.

Let us calculate the powers of the matrix B.

B =


1 −2 3 1

4 −5 7 2

3 −3 4 1

−1 0 0 0

 ; B2 =


1 −1 1 0

3 −4 5 1

2 −3 4 1

−1 2 −3 −1

 ;

B3 =


0 0 0 0

1 −1 1 0

1 −1 1 0

−1 1 −1 0

 ; B4 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation

1 −2 3 1
4 −5 7 2
3 −3 4 1

−1 0 0 0



z1

z2

z3

z4

 =


0
0
0
0

 .
This results in the following system of linear equations

z1 − 2z2 + 3z3 + z4 = 0,
4z1 − 5z2 + 7z3 + 2z4 = 0,
3z1 − 3z2 + 4z3 + z4 = 0,
− z1 = 0.

This system can be immediately solved and this gives us the solution set
or space

ker(B) = {(0, r2, r2,−r2) | r2 ∈ K} = span
{
(0,1,1,−1)

}
.

Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation

B2 =


1 −1 1 0
3 −4 5 1
2 −3 4 1

−1 2 −3 −1



z1

z2

z3

z4

 =


0
0
0
0

 .
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This results in the following system of linear equations
z1 − z2 + z3 = 0,

3z1 − 4z2 + 5z3 + z4 = 0,
2z1 − 3z2 + 4z3 + z4 = 0,

− z1 + 2z2 − 3z3 − z4 = 0.

This system can be immediately solved and this gives us the solution set
or space

ker(B2) =
{
(r1, r2,−r1 + r2,2 r1 − r2) | r1, r2 ∈ K

}
= span

{
(1,0,−1,2), (0,1,1,−1)

}
.

Kernel of B3.
We calculate the kernel of B3 and we have to solve the matrix equation

0 0 0 0
1 −1 1 0
1 −1 1 0

−1 1 −1 0



z1

z2

z3

z4

 =


0
0
0
0

 .
This results in the following system of linear equations

z1 − z2 + z3 = 0,
z1 − z2 + z3 = 0,
−z1 + z2 − z3 = 0.

This system can be immediately solved and this gives us the solutions
set

ker(B3) =
{
(r1, r2,−r1 + r2, r4) | r1, r2, r4 ∈ K

}
= span

{
(1,0,−1,0), (0,1,1,0), (0,0,0,1)

}
.

Kernel of B4.
We want to calculate the kernel of B4 and we observe first that

B4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
So the kernel is K4.
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We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B) 1 1 = dim(ker(B))

ker(B2) 2 1 = dim(ker(B2))− dim(ker(B))

ker(B3) 3 1 = dim(ker(B3))− dim(ker(B2))

ker(B4) 4 1 = dim(ker(B4))− dim(ker(B3))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

The last number in the last column is 1 and this gives the information
that there will be a Jordan chain of length 4. The first number 1 in the
last column is the dimension of the kernel of B. After we have calcu-
lated this chain, the last column will be {0,0,0,0}. There are no linearly
independent vectors left to be found. We have indeed at that moment
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already 4 linearly independent vectors which form a base for this vector
space.

4. Calculation of the Jordan chains.

The first Jordan chain.
We look for a linearly independent set of vectors {w1,w2,w3,w4} satis-
fying 

Bw1 = 0,
Bw2 = w1,
Bw3 = w2,
Bw4 = w3

or 
B4 w4 = 0,

B3 w4 = w1,

B2 w4 = w2,
Bw4 = w3

where w4 is in the vector space ker(B4) but not in ker(B3).

We look for a starting w4. We see from the information table that there
is a generating vector w4 for a chain of length 4.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B4). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B4).

2. The generating vector may not be in the ker(B3) because the length
of the chain must be exactly 4. So it has to be independent from
all vectors in ker(B3). It is sufficient that it is linearly independent
from a basis of ker(B3).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 4. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.
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4. We summarise: the generating vector in B4 together with the vec-
tors in ker(B3) and also the vectors, if any, of exactly height 4 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that the kernel ker(B4) is generated by the following set of
vectors.

ker(B4) = span
{
e1,e2,e3,e4

}
.

So the generating vector has the following generic form

ae1 + b e2 + c e3 + de4 = (a,b, c, d).

The kernel of B3.
We remember that the kernel ker(B3) is

ker(B3) = span
{
(1,0,−1,0), (0,1,1,0), (0,0,0,1)

}
.

Vectors chosen in previous Jordan chains.
We have previously not chosen any vector in a Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

1 0 −1 0
0 1 1 0
0 0 0 1
a b c d

 .
If we impose the condition a − b + c ≠ 0, then we can row reduce this
matrix to the matrix 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
We conclude that if we impose that a−b+ c ≠ 0, then these vectors are
certainly linearly independent.
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We can choose a = 1, b = 0, c = 0, d = 0 and we have the valid generat-
ing vector

w4 = (1,0,0,0).

We calculate B (1,0,0,0), B2 (1,0,0,0), B3 (1,0,0,0) and we know that the
set of vectors

{
w1 = B3 w4,w2 = B2 w4,w3 = Bw4,w4

}
is a Jordan chain of 4 linearly independent vectors and because B4 w4 =
0 we know that the length of the chain is exactly 4.

We calculate w3.

w3 = Bw4 =


1 −2 3 1
4 −5 7 2
3 −3 4 1

−1 0 0 0




1
0
0
0

 =


1
4
3

−1


and

w2 = B2 w4 =


1 −1 1 0
3 −4 5 1
2 −3 4 1

−1 2 −3 −1




1
0
0
0

 =


1
3
2

−1


and

w1 = B3 w4 =


0 0 0 0
1 −1 1 0
1 −1 1 0

−1 1 −1 0




1
0
0
0

 =


0
1
1

−1

 .
We have now found the Jordan chain

{
w1 = (0,1,1,−1),w2 = (1,3,2,−1),w3 = (1,4,3,−1),w4 = (1,0,0,0)

}
.

Let us take a look at our current information table.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 1 w1 = (0,1,1,−1) 0

ker(B2) 2 w2 = (1,3,2,−1) 0

ker(B3) 3 w3 = (1,4,3,−1) 0

ker(B4) 4 w4 = (1,0,0,0) 0

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =


0 1 1 1
1 3 4 0
1 2 3 0

−1 −1 −1 0

 .

A = P−1 B P

=


0 −1 1 −1
0 2 −3 −1
0 −1 2 1
1 −1 1 0




1 −2 3 1
4 −5 7 2
3 −3 4 1

−1 0 0 0




0 1 1 1
1 3 4 0
1 2 3 0

−1 −1 −1 0



=


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



=


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




 .
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Remark that the matrix A is itself an elementary Jordan block.
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2 exercise. (4× 4); (J3(0), J1(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B such that A is a matrix in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =


1 1 −2 0
1 0 −1 0
1 0 −1 0
0 1 −1 0

 .
Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I4| = λ4.

The eigenvalue λ = 0 has algebraic multiplicity 4. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
this subsection 2. The solution will be completely independent from this
section.
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We will investigate here the matrices Ai.

A =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .
We show the matrix in a way that emphasises the positions of the ele-
mentary Jordan blocks.

A =


0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0





( ) .

We see that we have a matrix consisting of an elementary Jordan three
block and an elementary Jordan one block.

We compute also the powers of A.

A =


0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0





( ) ; A2 =


0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0





( ) ;

A3 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





( ) .

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the third power of
A. The smallest exponent that makes the power of the matrix A the zero
matrix, in this case 3, is called the height of nilpotency of the matrix A.

It is interesting to observe how the kernels change. We can see almost
without calculation that
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ker(A) = span

{
e1,e4

}
,

ker(A2) = span
{
e1,e2,e4

}
,

ker(A3) = span
{
e1,e2,e3,e4

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 2 2 = dim(ker(A))

ker(A2) 3 1 = dim(ker(A2))− dim(ker(A))

ker(A3) 4 1 = dim(ker(A3))− dim(ker(A2))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.
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We see also that there is equality in the inclusion of sets from the third
power onwards.

ker(A) ⊊ ker(A2) ⊊ ker(A3) = ker(A4) = · · · .
The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:

n1 +n2 +n3 = 2 = dim(ker(A)),

n2 +n3 = 1 = dim(ker(A2))− dim(ker(A)),

n3 = 1 = dim(ker(A3))− dim(ker(A2)).

Solving this system, we have n1 = 1, n2 = 0, n3 = 1.

A consequence from this fact is that the numbers in the last column are
descending.

We remark by looking at the matrices Ai that the vector e3 satisfies
Ae3 = e2,
Ae2 = e1,
Ae1 = 0

or 
Ae3 = e2,

A2 e3 = e1,

A3 e3 = 0.

One sees that we have a Jordan chain of three linearly independent vec-
tors. We write a Jordan chain in reverse order.

{e1 = A2 e3,e2 = Ae3,e3}.
After we have found the first Jordan chain of length 3, we have then the
following table.



www.mathandphoto.eu. Exercise Notes Jordan 45

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 2 e1 1

ker(A2) 3 e2 0

ker(A3) 4 e3 0

We look at the last column and see now that we have a second Jordan
chain. It has length 1. We have the chain

{e4}.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(A) 2 e1 e4 0

ker(A2) 3 e2 0

ker(A3) 4 e3 0

The last column consists entirely out of 0’s and we have found a basis
for the vector space consisting of vectors in Jordan chains.

Let us express our findings in a way that emphasises the position of
the elementary Jordan blocks and their relation with the powers of the
matrix A.
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(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3.

Figure 3

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
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into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.

3. Calculation of the kernels of Bi.

B =


1 1 −2 0

1 0 −1 0

1 0 −1 0

0 1 −1 0

 ; B2 =


0 1 −1 0

0 1 −1 0

0 1 −1 0

0 0 0 0

 ;

B3 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .
Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation

1 1 −2 0
1 0 −1 0
1 0 −1 0
0 1 −1 0



z1

z2

z3

z4

 =


0
0
0
0

 .
This results in the following system of linear equations

z1 + z2 − 2z3 = 0,
z1 − z3 = 0,
z1 − z3 = 0,

z2 − z3 = 0.

We solve this system and find the solution set which is a subspace

ker(B) = {(r1, r1, r1, r4) | r1, r4 ∈ K} = span
{
(1,1,1,0), (0,0,0,1)

}
.
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Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation

0 1 −1 0
0 1 −1 0
0 1 −1 0
0 0 0 0



z1

z2

z3

z4

 =


0
0
0
0

 .
This results in the following system of linear equations

z2 − z3 = 0,
z2 − z3 = 0,
z2 − z3 = 0.

We solve this system and find the solution set which is a subspace

ker(B2) =
{
(r1, r2, r2, r4) | r1, r2, r4 ∈ K

}
= span

{
(1,0,0,0), (0,1,1,0), (0,0,0,1)

}
.

Kernel of B3.
We calculate the kernel of B3 and we have to solve the matrix equation

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



z1

z2

z3

z4

 =


0
0
0
0

 .
The solutions set is the space K4.

Keeping track of chains and dimensions.

dim remaining dim

ker(B) 2 2

ker(B2) 3 1

ker(B3) 4 1

We give some explanation about this information table.
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1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

4. Calculation of the Jordan chains.

We look for a linearly independent set of vectors {w1,w2,w3} satisfying
Bw1 = 0,
Bw2 = w1,
Bw3 = w2

or 
B3 w3 = 0,

B2 w3 = w1,
Bw3 = w2.

The first Jordan chain.
We look for a generating vector w3. We see from the information table
that there is a generating vector w3 for a chain of length 3.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B3). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B3).
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2. The generating vector may not be in the ker(B2) because the length
of the chain must be exactly 3. So it has to be independent from
all vectors in ker(B2). It is sufficient that it is linearly independent
from a basis of ker(B2).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 3. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B3 together with the vec-
tors in ker(B2) and also the vectors, if any, of exactly height 3 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that the kernel ker(B3) is generated by the following set of
vectors.

ker(B3) = span
{
e1,e2,e3,e4

}
.

So the generating vector has the following generic form

ae1 + b e2 + c e3 + de4 = (a,b, c, d).

The kernel of ker(B2).
We remember that the kernel ker(B2) is

ker(B2) = span
{
(1,0,0,0), (0,1,1,0), (0,0,0,1)

}
.

Vectors chosen in previous Jordan chains.
We have previously not chosen any vector in a Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 0 0
0 1 1 0
0 0 0 1
a b c d

 .



www.mathandphoto.eu. Exercise Notes Jordan 51

If we impose the condition b−c ≠ 0, then we can row reduce this matrix
to the matrix 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
We conclude that if we impose that b − c ≠ 0, then these vectors are
certainly linearly independent.

We can choose a = 0, b = 1, c = 0 and d = 0.
We have the valid generating vector

w3 = (0,1,0,0).

We calculate w2.

w2 = Bw3 =


1 1 −2 0
1 0 −1 0
1 0 −1 0
0 1 −1 0




0
1
0
0

 =


1
0
0
1


and

w1 = B2 w3 =


0 1 −1 0
0 1 −1 0
0 1 −1 0
0 0 0 0




0
1
0
0

 =


1
1
1
0

 .
We have found the first Jordan chain.

{w1 = (1,1,1,0),w2 = (1,0,0,1),w3 = (0,1,0,0)}.

Let us take a look at our current information table.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 2 w1 1

ker(B2) 3 w2 0

ker(B3) 4 w3 0

with

w1 = (1,1,1,0)

w2 = (1,0,0,1)

w3 = (0,1,0,0)

We know from the information table that we have one Jordan chain with
length 1 left.

The second Jordan chain.
We look for a generating vector w4 of height 1.

The last column in the information table tells us that there is still a chain
of length 1 left to be found. This is an eigenvector w4. We know that we
have in our previous Jordan chain found an eigenvector w1 = (1,1,1,0).
So we have to be careful when choosing another eigenvector.

The vector must be an eigenvector. It must be in the space

ker(B) = span
{
(1,1,1,0), (0,0,0,1)

}
.

The vector must be of the generic form

a (1,1,1,0)+ b (0,0,0,1) = (a,a,a, b).

We have at this point chosen in ker(B) already the following vector w1 of
height 1.

w1 = (1,1,1,0).

of height exactly height 1.
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We have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(

1 1 1 0
a a a b

)
.

We row reduce this matrix H and find then if we impose the condition
that b ≠ 0 (

1 1 1 0
0 0 0 1

)
.

We see that these vectors are independent if we impose the condition
b ≠ 0.

So we can choose a = 0, b = 1.

We have then generating vector

w4 = (0,0,0,1).

This vector forms a Jordan chain on its own. We have now found the
second Jordan chain

{w4 = (0,0,0,1)}.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(B) 2 w1 w4 0

ker(B2) 3 w2 0

ker(B3) 4 w3 0

with
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w1 = (1,1,1,0)

w2 = (1,0,0,1)

w3 = (0,1,0,0)

w4 = (0,0,0,1)

The last column tells us that there is nothing left to be found. We have
now a basis of vectors consisting of independent Jordan chains.

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =


1 1 0 0
1 0 1 0
1 0 0 0
0 1 0 1

 .
A = P−1 B P

=


0 0 1 0
1 0 −1 0
0 1 −1 0

−1 0 1 1




1 1 −2 0
1 0 −1 0
1 0 −1 0
0 1 −1 0




1 1 0 0
1 0 1 0
1 0 0 0
0 1 0 1



=


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0



=


0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0


 

( ) .
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3 exercise. (4× 4); (J2(0), J2(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B such that A is a matrix in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =


1 0 1 0
0 0 1 −1

−1 0 −1 0
−1 0 −1 0

 .
Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I4| = λ4.

The eigenvalue λ = 0 has algebraic multiplicity 4. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
this subsection 2. The solution will be completely independent from this
section.
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We will investigate here the matrices Ai.

A =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .
We show the matrix in a way that emphasises the positions of the ele-
mentary Jordan blocks.

A =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


( )

( ) .

We see that we have a matrix consisting of an elementary Jordan three
block and an elementary Jordan one block.

We compute also the powers of A.

A =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


( )

( ) ; A2 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


( )

( ) .

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the second power
of A. The smallest exponent that makes the power of the matrix A the
zero matrix, in this case 2, is called the height of nilpotency of the matrix
A.

It is interesting to observe how the kernels change. We can see almost
without calculation that{

ker(A) = span
{
e1,e3

}
,

ker(A2) = span
{
e1,e2,e3,e4

}
.
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After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 2 2 = dim(ker(A))

ker(A2) 4 2 = dim(ker(A2))− dim(ker(A))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A) ⊊ ker(A2) = ker(A3) = · · · .
The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:



www.mathandphoto.eu. Exercise Notes Jordan 58

{
n1 +n2 = 2 = dim(ker(A)),

n2 = 2 = dim(ker(A2))− dim(ker(A)).

Solving this system, we have n1 = 0, n2 = 2.

A consequence from this fact is that the numbers in the last column are
descending.

We remark by looking at the matrices Ai that we have{
Ae2 = e1,
Ae1 = 0

and {
Ae2 = e1,

A2 e2 = 0.

One sees that we have a Jordan chain of two linearly independent vec-
tors. We write a Jordan chain in reverse order.

{e1 = Ae2,e2}.
After we have found the first Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 2 e1 1

ker(A2) 4 e2 1

We look at the last column and see now that we have still one Jordan
chain of length 2.

We remark by looking at the matrices Ai that{
Ae4 = e3,
Ae3 = 0
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and {
Ae4 = e3,

A2 e4 = 0.

One sees that we have a second Jordan chain. It has two linearly inde-
pendent vectors. We write a Jordan chain in reverse order.

{e3 = Ae4,e4}.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(A) 2 e1 e3 0

ker(A2) 4 e2 e4 0

The last column consists entirely out of 0’s and we have found a basis
for the vector space consisting of vectors in Jordan chains.

Let us express our findings in a way that emphasises the position of
the elementary Jordan blocks and their relation with the powers of the
matrix A.

(a) Visualisation of A. (b) Visualisation of A2.

Figure 4
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We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.

3. Calculation of the kernels of Bi.

B =


1 0 1 0

0 0 1 −1

−1 0 −1 0

−1 0 −1 0

 ; B2 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation

1 0 1 0
0 0 1 −1

−1 0 −1 0
−1 0 −1 0



z1

z2

z3

z4

 =


0
0
0
0

 .
This results in the following system of linear equations
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z1 + z3 = 0,

z3 − z4 = 0,
−z1 − z3 = 0,
−z1 − z3 = 0.

We solve this system and find the solution set which is a subspace

ker(B) = {(r1, r2,−r1,−r1) | r1, r2 ∈ K} = span
{
(1,0,−1,−1), (0,1,0,0)

}
.

Kernel of B2.
We calculate the kernel of B2. This is the space

ker(B2) = K4.

Keeping track of chains and dimensions.

dim remaining dim

ker(B) 2 2

ker(B2) 4 2

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.
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5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

4. Calculation of the Jordan chains.

We see from the information table that there is a generating vector w2

for a chain of length 2.

We look for a linearly independent set of vectors {w1,w2} satisfying{
Bw1 = 0,
Bw2 = w1,

or {
B2 w2 = 0,
Bw2 = w1.

The first Jordan chain.
We look for a generating vector w2.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B2). So we can describe such a vector
as a linear combination of vectors of a basis of the subspace ker(B).

2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.
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Generic form of the generating vector.
We remember that the kernel ker(B2) is generated by the following set of
vectors.

ker(B2) = span
{
e1,e2,e3,e4

}
= K4.

So the generating vector has the following generic form

ae1 + b e2 + c e3 + de4 = (a,b, c, d).

The kernel of ker(B).
We remember that the kernel ker(B) is

ker(B) = span
{
(1,0,−1,−1), (0,1,0,0)

}
.

Vectors chosen in previous Jordan chains.
We have previously not chosen any vector in a Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =

 1 0 −1 −1
0 1 0 0
a b c d

 .
If we impose the condition a+c ≠ 0, then we can row reduce this matrix
to the matrix 

1 0 0 d−c
a+c

0 1 0 0

0 0 1 a+d
a+c

 .
We conclude that if we impose that a + c ≠ 0, then these vectors are
certainly linearly independent.

We can choose a = 1, b = 0, c = 0 and d = 0.
We have the valid generating vector

w2 = (1,0,0,0).

We calculate w1.
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w1 = Bw2 =


1 0 1 0
0 0 1 −1

−1 0 −1 0
−1 0 −1 0




1
0
0
0

 =


1
0

−1
−1

 .
We have now a Jordan chain

{w1 = (1,0,−1,−1),w2 = (1,0,0,0)}.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 2 w1 1

ker(B2) 4 w2 1

with

w1 = (1,0,−1,−1)

w2 = (1,0,0,0)

We know from the information table that we have one Jordan chain with
length 2 left.

The second Jordan chain.
We look for a generating vector w4 of height 2.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B2). So we can describe such a vector
as a linear combination of vectors of a basis of the subspace ker(B).

2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).
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3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that the kernel ker(B2) is generated by the following set of
vectors.

ker(B2) = span
{
e1,e2,e3,e4

}
.

So the generating vector has the following generic form

ae1 + b e2 + c e3 + de4 = (a,b, c, d).

The kernel of ker(B).
We remember that the kernel ker(B) is

ker(B) = span
{
(1,0,−1,−1), (0,1,0,0)

}
.

Vectors chosen in previous Jordan chains.
We have previously chosen a vector w2 = (1,0,0,0) of exactly height 2 in
a Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 −1 −1
0 1 0 0
1 0 0 0
a b c d

 .
If we impose the condition c−d ≠ 0, then we can row reduce this matrix
to the matrix
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1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
We conclude that if we impose that c − d ≠ 0, then these vectors are
certainly linearly independent.

So we can choose a = 0, b = 0, c = 0 and d = 1.

We have then generating vector

w4 = (0,0,0,1).

We calculate w3.

w3 = Bw4 =


1 0 1 0
0 0 1 −1

−1 0 −1 0
−1 0 −1 0




0
0
0
1

 =


0

−1
0
0

 .
We have now a second Jordan chain. It has length 2.

{w3 = (0,−1,0,0),w4 = (0,0,0,1)}.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(B) 2 w1 w3 0

ker(B2) 3 w2 w4 0

with
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w1 = (1,0,−1,−1)

w2 = (1,0,0,0)

w3 = (0,−1,0,0)

w4 = (0,0,0,1)

The last column tells us that there is nothing left to be found. We have
now a basis of vectors consisting of independent Jordan chains.

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =


1 1 0 0
0 0 −1 0

−1 0 0 0
−1 0 0 1

 .
A = P−1 B P

=


0 0 −1 0
1 0 1 0
0 −1 0 0
0 0 −1 1




1 0 1 0
0 0 1 −1

−1 0 −1 0
−1 0 −1 0




1 1 0 0
0 0 −1 0

−1 0 0 0
−1 0 0 1



=


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



=


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


( )

( ) .
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4 exercise. (7× 7); (J3(0), J3(0), J1(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B such that A is a matrix in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =



−2 1 0 −2 1 3 2
1 −1 0 1 −1 −2 −1
1 −1 0 1 −1 −2 −1
0 −1 0 2 2 1 −2
0 1 1 0 2 2 0
−1 0 −1 −1 −1 0 1
−1 1 1 1 5 5 −1


.

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I7| = −λ7.

The eigenvalue λ = 0 has algebraic multiplicity 7. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
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solution from that subsection onwards will make no reference at all to
this subsection 2. The solution will be completely independent from this
section.

We want to investigate that endomorphism A. We compute the powers
of A.

We can show these matrices as follows.

A =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



 
 

( )
,

A2 =



0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



 
 

( )
,

A3 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



 
 

( )
.

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the third power of
A. The smallest exponent that makes the power of the matrix A the zero
matrix, in this case 3, is called the height of nilpotency of the matrix A.
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It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A) = span
{
e1,e4,e7

}
;

ker(A2) = span
{
e1,e2,e4,e5,e7

}
;

ker(A3) = K7.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 3 3 = dim(ker(A))

ker(A2) 5 2 = dim(ker(A2))− dim(ker(A))

ker(A3) 7 2 = dim(ker(A3))− dim(ker(A2))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.
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5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the third
power onwards.

ker(A) ⊊ ker(A2) ⊊ ker(A3) = ker(A4) = · · · .
The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:

n1 +n2 +n3 = 3 = dim(ker(A)),

n2 +n3 = 2 = dim(ker(A2))− dim(ker(A)),

n3 = 2 = dim(ker(A3))− dim(ker(A2)).

Solving this system, we have n1 = 1, n2 = 0, n3 = 2.

A consequence from this fact is that the numbers in the last column are
descending.

We remark by looking at the matrices Ai that the vector e3 satisfies
Ae3 = e2,

A2 e3 = e1,

A3 e3 = 0.

One sees that we have a Jordan chain with length three of three linearly
independent vectors. We write a Jordan chain in reverse order.

{e1 = A2 e3,e2 = Ae3,e3}.
After we have found the first Jordan chain of length 2, we have then the
following table.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 3 e1 2

ker(A2) 5 e2 1

ker(A3) 7 e3 1

We remark by looking at the matrices Ai that the vector e6 satisfies
Ae6 = e5,

A2 e6 = e4,

A3 e6 = 0.
One sees that we have a Jordan chain with length three of three linearly
independent vectors. We write a Jordan chain in reverse order.

{e4 = A2 e6,e5 = Ae6,e6}.
We have found our second Jordan chain and we have the following in-
formation table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(A) 3 e1 e4 1

ker(A2) 5 e2 e5 0

ker(A3) 7 e3 e6 0

Because the last column consists now of at least one not 0, we are not
done with looking for Jordan chains. We see that we find another Jordan
chain with length 1. We are looking for a classical eigenvector. We find
a third chain. It has length 1.

{e7}.
Let us note this in the new information table.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 rem dim

ker(A) 3 e1 e4 e7 0

ker(A2) 5 e2 e5 0

ker(A3) 7 e3 e6 0

Now all cells in the last column are zero. This means that we are done
looking for a basis of vectors containing vectors from Jordan chains.

Let us express our findings in a way that emphasises the position of
the elementary Jordan blocks and their relation with the powers of the
matrix A.
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(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A2.

Figure 5

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
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into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.
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3. Calculation of the kernels of Bi.

Let us calculate the powers of the matrix B.

B =



−2 1 0 −2 1 3 2

1 −1 0 1 −1 −2 −1

1 −1 0 1 −1 −2 −1

0 −1 0 2 2 1 −2

0 1 1 0 2 2 0

−1 0 −1 −1 −1 0 1

−1 1 1 1 5 5 −1


; B2 =



0 2 0 0 2 2 0

0 −1 0 0 −1 −1 0

0 −1 0 0 −1 −1 0

0 −1 −1 0 −2 −2 0

0 0 0 0 0 0 0

0 1 0 0 1 1 0

0 0 −1 0 −1 −1 0


;

B3 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


.

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation

−2 1 0 −2 1 3 2
1 −1 0 1 −1 −2 −1
1 −1 0 1 −1 −2 −1
0 −1 0 2 2 1 −2
0 1 1 0 2 2 0

−1 0 −1 −1 −1 0 1
−1 1 1 1 5 5 −1





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in the following system of linear equations

−2z1 + z2 − 2z4 + z5 + 3z6 + 2z7 = 0,
z1 − z2 + z4 − z5 − 2z6 − z7 = 0,
z1 − z2 + z4 − z5 − 2z6 − z7 = 0,
− z2 + 2z4 + 2z5 + z6 − 2z7 = 0,
+ z2 + z3 + 2z5 + 2z6 = 0,

− z1 − z3 − z4 − z5 + z7 = 0,
− z1 + z2 + z3 + z4 + 5z5 + 5z6 − z7 = 0.



www.mathandphoto.eu. Exercise Notes Jordan 77

We solve this system and find the solution set which is a subspace

ker(B)

= {(r1, r2, r2, r4,−2 r1 − 4 r2,2 r1 + 3 r2,−r1 − 3 r2 + r4) | r1, r2, r4 ∈ K}
= span

{
(1,0,0,0,−2,2,−1), (0,1,1,0,−4,3,−3), (0,0,0,1,0,0,1)

}
.

Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation

0 2 0 0 2 2 0
0 −1 0 0 −1 −1 0
0 −1 0 0 −1 −1 0
0 −1 −1 0 −2 −2 0
0 0 0 0 0 0 0
0 1 0 0 1 1 0
0 0 −1 0 −1 −1 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in the following system of linear equations

2z2 + 2z5 + 2z6 = 0,
− z2 − z5 − z6 = 0,
− z2 − z5 − z6 = 0,
− z2 − z3 − 2z5 − 2z6 = 0,

z2 + z5 + z6 = 0,
− z3 − z5 − z6 = 0.

We solve this system and find the solution set which is a subspace

ker(B2)

=
{
(r1, r2, r2, r4, r5,−r2 − r5, r7) | r1, r2, r4, r5, r7 ∈ K

}
= span

{
(1,0,0,0,0,0,0), (0,1,1,0,0,−1,0), (0,0,0,1,0,0,0),

(0,0,0,0,1,−1,0), (0,0,0,0,0,0,1)
}
.

Kernel of B3.
We have of course also ker(B3) = K7.

We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B) 3 3 = dim(ker(B))

ker(B2) 5 2 = dim(ker(B2))− dim(ker(B))

ker(B3) 7 2 = dim(ker(B3))− dim(ker(B2))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

The last number in the last column is 2 and this says that there will be
two Jordan chains of length 3. The first number 1 in the last column is 3
and this gives the information that there will be three elementary Jordan
chains. After we have calculated the chain with length 3, the last column
will be from top to bottom {2,1,1}. There are still linearly independent
vectors left to be found. We see that we can calculate again a Jordan
chain with length 3. We have at this moment 6 linearly independent
vectors. The last column will then be from top to bottom {1,0,0}. We
calculate then the remaining eigenvector which is a chain on its own.
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Please consult the tables in subsection 2 of this exercise for a full view
of the situation. Then the procedure will stop because all entries in the
last column are 0’s. We will have at that stage a basis for V consisting
entirely out of linearly independent vectors in Jordan chains.

4. Calculation of the Jordan chains.

The first Jordan chain.
We look for a linearly independent set of vectors {w1,w2,w3} satisfying

B3 w3 = 0,

B2 w3 = w1,
Bw3 = w2,

where w3 is in the vector space ker(B3) but not in ker(B2) in order to
guarantee that this is a chain of length 3.

We look for a starting w3. We see from the information table that there
is a generating vector w3 for a chain of length 3.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B3). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B3).

2. The generating vector may not be in the ker(B2) because the length
of the chain must be exactly 3. So it has to be independent from
all vectors in ker(B2). It is sufficient that it is linearly independent
from a basis of ker(B2).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 3. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B3 together with the vec-
tors in ker(B2) and also the vectors, if any, of exactly height 3 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.
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Generic form of the generating vector.
We remember that the kernel ker(B3) is generated by the following set of
vectors.

ker(B2) = span
{
e1,e2,e3,e4,e5,e6,e7

}
= K7.

So the generating vector has the following generic form

(a,b, c, d, e, f , g).

The kernel of B2.
We remember that the kernel ker(B2) is

ker(B2) = span
{
(1,0,0,0,0,0,0), (0,1,1,0,0,−1,0), (0,0,0,1,0,0,0),

(0,0,0,0,1,−1,0), (0,0,0,0,0,0,1)
}
.

Vectors chosen in previous Jordan chains.
We have previously not chosen a vector in a Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 0 0 0 0 0
0 1 1 0 0 −1 0
0 0 0 1 0 0 0
0 0 0 0 1 −1 0
0 0 0 0 0 0 1
a b c d e f g

 .
If we impose the condition b−c ≠ 0, then we can row reduce this matrix
to the matrix 

1 0 0 0 0 0 0

0 1 0 0 0 c+e+f
b−c 0

0 0 1 0 0 −b−e−f
b−c 0

0 0 0 1 0 0 0

0 0 0 0 1 −1 0

0 0 0 0 0 0 1


.
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We see that these vectors are independent if we impose the condition
b − c ≠ 0. So we can choose a = 0, b = 1, c = 0, d = 0, e = 0, f = 0,
g = 0.

So we have the valid generating vector

w3 = (0,1,0,0,0,0,0).

We calculate B (0,1,0,0,0,0,0) and B2 (0,1,0,0,0,0,0) and we know that
the vectors

{w1 = B2 w3,w2 = Bw3,w3}
are a Jordan chain of 3 linearly independent vectors and because B3 w3 =
0 we know that the length of the chain is exactly 3.

We calculate w2.

w2 = Bw3 =



−2 1 0 −2 1 3 2
1 −1 0 1 −1 −2 −1
1 −1 0 1 −1 −2 −1
0 −1 0 2 2 1 −2
0 1 1 0 2 2 0

−1 0 −1 −1 −1 0 1
−1 1 1 1 5 5 −1





0
1
0
0
0
0
0


=



1
−1
−1
−1

1
0
1


.

We find w2 = (1,−1,−1,−1,1,0,1).

We calculate now w1.

w1 = B2 w3 =



0 2 0 0 2 2 0
0 −1 0 0 −1 −1 0
0 −1 0 0 −1 −1 0
0 −1 −1 0 −2 −2 0
0 0 0 0 0 0 0
0 1 0 0 1 1 0
0 0 −1 0 −1 −1 0





0
1
0
0
0
0
0


=



2
−1
−1
−1

0
1
0


.

We find w1 = (2,−1,−1,−1,0,1,0).

These vectors w3, w2 and w1 can be checked to be linearly independent
though this is not necessary. They are automatically linearly indepen-
dent, see the appendix.
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We have now found our first Jordan chain. It has length 3.

{
w1 = (2,−1,−1,−1,0,1,0),w2 = (1,−1,−1,−1,1,0,1),

w3 = (0,1,0,0,0,0,0)
}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 3 w1 2

ker(B2) 5 w2 1

ker(B3) 7 w3 1

with

w1 = (2,−1,−1,−1,0,1,0)

w2 = (1,−1,−1,−1,1,0,1)

w3 = (0,1,0,0,0,0,0)

We see that we have one Jordan chain with length 3 left.

The second Jordan chain.
The last information table tells us that we have to find a generating
vector w6 ∈ ker(B3) satisfying

1. It has to be in the kernel ker(B3). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B3).

2. The generating vector may not be in the ker(B2) because the length
of the chain must be exactly 3. So it has to be independent from
all vectors in ker(B2). It is sufficient that it is linearly independent
from a basis of ker(B2).
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3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 3. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B3 together with the vec-
tors in ker(B2) and also the vectors, if any, of exactly height 3 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

We have then the chain

{w4 = B2 w6,w5 = Bw6,w6.}
We look for a starting w6. We see from the information table that there
is a generating vector w6 for a chain of length 3.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B3). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B3).

2. The generating vector may not be in the ker(B2) because the length
of the chain must be exactly 3. So it has to be independent from
all vectors in ker(B2). It is sufficient that it is linearly independent
from a basis of ker(B2).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 3. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B3 together with the vec-
tors in ker(B2) and also the vectors, if any, of exactly height 3 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that the kernel ker(B3) is generated by the following set of
vectors.
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ker(B3) = span
{
e1,e2,e3,e4,e5,e6,e7

}
.

So the generating vector has the following generic form

(a,b, c, d, e, f , g).

The kernel of B2.
We remember that the kernel ker(B2) is

ker(B2) = span
{
(1,0,0,0,0,0,0), (0,1,1,0,0,−1,0), (0,0,0,1,0,0,0),

(0,0,0,0,1,−1,0), (0,0,0,0,0,0,1)
}
.

Vectors chosen in previous Jordan chains.
We have previously chosen the vector w3 = (0,1,0,0,0,0,0) of exactly
height 3 in the ker(B3) in a previous Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =



1 0 0 0 0 0 0
0 1 1 0 0 −1 0
0 0 0 1 0 0 0
0 0 0 0 1 −1 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
a b c d e f g


.

If we impose the condition c + e + f ≠ 0, then we can row reduce this
matrix to the matrix 

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.
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We see that these vectors are independent if we impose the condition
c + e + f ≠ 0. We can choose a = 0, b = 0, c = 1, d = 0, e = 0, f = 0,
g = 0.

We have the generating vector

w6 = (0,0,1,0,0,0,0).

We calculate w5.

w5 = Bw6 =



−2 1 0 −2 1 3 2
1 −1 0 1 −1 −2 −1
1 −1 0 1 −1 −2 −1
0 −1 0 2 2 1 −2
0 1 1 0 2 2 0

−1 0 −1 −1 −1 0 1
−1 1 1 1 5 5 −1





0
0
1
0
0
0
0


=



0
0
0
0
1

−1
1


.

We have w5 = (0,0,0,0,1,−1,1).

We calculate w4.

w4 = B2 w6 =



0 2 0 0 2 2 0
0 −1 0 0 −1 −1 0
0 −1 0 0 −1 −1 0
0 −1 −1 0 −2 −2 0
0 0 0 0 0 0 0
0 1 0 0 1 1 0
0 0 −1 0 −1 −1 0





0
0
1
0
0
0
0


=



0
0
0

−1
0
0

−1


.

We have w4 = (0,0,0,−1,0,0,−1).

These vectors w4 and w5 and w6 can be checked to be linearly inde-
pendent, though this is not necessary. They are automatically linearly
independent, see the appendix.

We have now found our second Jordan chain. It has length 3.

{
w4 = (0,0,0,−1,0,0,−1),w5 = (0,0,0,0,1,−1,1),w6 = (0,0,1,0,0,0,0)

}
.

Let us take a look at our current information table.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(B) 3 w1 w4 1

ker(B2) 5 w2 w5 0

ker(B3) 7 w3 w6 0

with

w1 = (2,−1,−1,−1,0,1,0)

w2 = (1,−1,−1,−1,1,0,1)

w3 = (0,1,0,0,0,0,0)

w4 = (0,0,0,−1,0,0,−1)

w5 = (0,0,0,0,1,−1,1)

w6 = (0,0,1,0,0,0,0)

The third chain.
The last column in the information table tells us that there is still a chain
of length 1 left to be found. This is an eigenvector w7. We know that we
have in our two previous Jordan chains found two eigenvectors which
have automatically height 1. So we have to be careful when choosing an
eigenvector.

The vector must be an eigenvector. It must be in the space

ker(B)

= span
{
(1,0,0,0,−2,2,−1), (0,1,1,0,−4,3,−3), (0,0,0,1,0,0,1)

}
.

The vector must be of the generic form
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a (1,0,0,0,−2,2,−1)+ b (0,1,1,0,−4,3,−3)+ c (0,0,0,1,0,0,1)

= (a,b, b, c,−2a− 4b,2a+ 3b,−a− 3b + c).

We have at this point chosen in ker(B) already the vectors{
w1 = (2,−1,−1,−1,0,1,0),
w4 = (0,0,0,−1,0,0,−1)

of height exactly 1. They must be linearly independent from the vector
w7 we have to choose.

We have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =

 2 −1 −1 −1 0 1 0
0 0 0 −1 0 0 −1
a b b c −2a− 4b 2a+ 3b −a− 3b + c

 .
We row reduce this matrix H and find then if we impose the condition
that a+ 2b ≠ 0  1 0 0 0 −2 2 −1

0 1 1 0 −4 3 −3
0 0 0 1 0 0 1

 .
We see that these vectors are independent if we impose the condition
a+ 2b ≠ 0.

We can choose a = 1, b = 0, c = 0.

We have the valid generating vector

w7 = (1,0,0,0,−2,2,−1).

We have found our third Jordan chain. It has length 1.

{w7 = (1,0,0,0,−2,2,−1)}.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 rem dim

ker(B) 3 w1 w4 w7 0

ker(B2) 5 w2 w5 0

ker(B3) 7 w3 w6 0

with

w1 = (2,−1,−1,−1,0,1,0)

w2 = (1,−1,−1,−1,1,0,1)

w3 = (0,1,0,0,0,0,0)

w4 = (0,0,0,−1,0,0,−1)

w5 = (0,0,0,0,1,−1,1)

w6 = (0,0,1,0,0,0,0)

w7 = (1,0,0,0,−2,2,−1)

The last line consists only 0’s and we are done. We have now a basis of
vectors consisting of independent Jordan chains.

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =



2 1 0 0 0 0 1
−1 −1 1 0 0 0 0
−1 −1 0 0 0 1 0
−1 −1 0 −1 0 0 0

0 1 0 0 1 0 −2
1 0 0 0 −1 0 2
0 1 0 −1 1 0 −1


.

We check now.
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A = P−1 B P

=



1 0 0 1 1 0 −1
−1 0 0 −1 0 1 1

0 1 0 0 1 1 0
0 0 0 −1 −1 −1 0
1 0 0 −1 −3 −3 1
0 0 1 0 1 1 0
0 0 0 −1 −2 −1 1



×



−2 1 0 −2 1 3 2
1 −1 0 1 −1 −2 −1
1 −1 0 1 −1 −2 −1
0 −1 0 2 2 1 −2
0 1 1 0 2 2 0

−1 0 −1 −1 −1 0 1
−1 1 1 1 5 5 −1



×



2 1 0 0 0 0 1
−1 −1 1 0 0 0 0
−1 −1 0 0 0 1 0
−1 −1 0 −1 0 0 0

0 1 0 0 1 0 −2
1 0 0 0 −1 0 2
0 1 0 −1 1 0 −1


.
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A = P−1 B P

=



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



=



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



 
 

( )
.
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5 exercise. (7× 7); (J3(0), J2(0), J2(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B such that A is a matrix in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =



3 3 −4 2 1 1 −1
−3 −3 3 −2 0 0 1
−1 −1 1 −1 0 0 1
−1 −1 3 −1 −2 −2 1
−5 −5 6 −4 0 0 3

4 4 −5 3 0 0 −2
0 0 1 0 −1 −1 0


.

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial.

pC-H(λ) = |B − λ I7| = −λ7.

The eigenvalue λ = 0 has algebraic multiplicity 7. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
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solution from that subsection onwards will make no reference at all to
this subsection 2. The solution will be completely independent from this
section.

We want to investigate the endomorphism A associated with this Jordan
block. We compute also the powers of A.

A =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


.

We show this matrix in a way that emphasises the position of the ele-
mentary Jordan blocks.
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A =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0



 
( )

( ) ,

A2 =



0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



 
( )

( ) ,

A3 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



 
( )

( ) .

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the third power of
A. The smallest exponent that makes the power of the matrix A the zero
matrix, in this case 3, is called the height of nilpotency of the matrix A.

It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A) = span
{
e1,e4,e6

}
;

ker(A2) = span
{
e1,e2,e4,e5,e6,e7

}
;

ker(A3) = K7.
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After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 3 3 = dim(ker(A))

ker(A2) 6 3 = dim(ker(A2))− dim(ker(A))

ker(A3) 7 1 = dim(ker(A3))− dim(ker(A2))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the third
power onwards

ker(A) ⊊ ker(A2) ⊊ ker(A3) = ker(A4) = · · · .
The dimensions of the kernels increase until they stabilise.
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We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:

n1 +n2 +n3 = 3 = dim(ker(A)),

n2 +n3 = 3 = dim(ker(A2))− dim(ker(A)),

n3 = 1 = dim(ker(A3))− dim(ker(A2)).

Solving this system, we have n1 = 0, n2 = 2, n3 = 1.

A consequence from this fact is that the numbers in the last column are
descending.

We remark by looking at the matrices Ai that the vector e3 satisfies
Ae3 = e2,

A2 e3 = e1,

A3 e3 = 0.

We see that we have a first Jordan chain. It has length three. We write a
Jordan chain in reverse order.

{e1 = A2 e3,e2 = Ae3,e3}.
After we have found the first Jordan chain of length 2, we have the fol-
lowing table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 3 e1 2

ker(A2) 6 e2 2

ker(A3) 7 e3 0

Because the last column consists now of at least one number that is not
0, we are not done with looking for Jordan chains. We see that we find
another Jordan chain with length 2.

We remark by looking at the matrices Ai that the vector e5 satisfies
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{
Ae5 = e4,

A2 e5 = 0.
We see that we have found a second Jordan chain. It has length two. We
write a Jordan chain traditionally in reverse order.

{e4 = Ae5,e5}.
Let us note this in the new information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(A) 3 e1 e4 1

ker(A2) 6 e2 e5 1

ker(A3) 7 e3 0

We remark by looking at the matrices Ai that the vector e7 satisfies{
Ae7 = e6,

A2 e7 = 0.
One sees that we have a Jordan chain with length two of linearly inde-
pendent vectors. We write a Jordan chain traditionally in reverse order.

{e6 = Ae7,e7}.
We have found a third Jordan chain. It has length 2. We have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 rem dim

ker(A) 3 e1 e4 e6 0

ker(A2) 6 e2 e5 e7 0

ker(A3) 7 e3 0
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Let us express our findings in a way that emphasises the position of
the elementary Jordan blocks and their relation with the powers of the
matrix Ai.

(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3.

Figure 6

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.
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2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.
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3. Calculation of the kernels of Bi.

Let us calculate the powers of the matrix B.

B =



3 3 −4 2 1 1 −1

−3 −3 3 −2 0 0 1

−1 −1 1 −1 0 0 1

−1 −1 3 −1 −2 −2 1

−5 −5 6 −4 0 0 3

4 4 −5 3 0 0 −2

0 0 1 0 −1 −1 0


;

B2 =



1 1 −1 1 0 0 −1

−1 −1 1 −1 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

−2 −2 2 −2 0 0 2

2 2 −2 2 0 0 −2

0 0 0 0 0 0 0


;

B3 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


.

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation

3 3 −4 2 1 1 −1
−3 −3 3 −2 0 0 1
−1 −1 1 −1 0 0 1
−1 −1 3 −1 −2 −2 1
−5 −5 6 −4 0 0 3

4 4 −5 3 0 0 −2
0 0 1 0 −1 −1 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in the following system of linear equations
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3z1 + 3z2 − 4z3 + 2z4 + z5 + z6 − z7 = 0,
−3z1 − 3z2 + 3z3 − 2z4 + z7 = 0,
− z1 − z2 + z3 − z4 + z7 = 0,
− z1 − z2 + 3z3 − z4 − 2z5 − 2z6 + z7 = 0,
−5z1 − 5z2 + 6z3 − 4z4 + 3z7 = 0,

4z1 + 4z2 − 5z3 + 3z4 − 2z7 = 0,
z3 − z5 − z6 = 0.

We solve this system and find the solution set which is a subspace

ker(B)

= {(r1, r2,0,−2 r1 − 2 r2, r5,−r5,−r1 − r2) | r1, r2, r5 ∈ K}
= span

{
(1,0,0,−2,0,0,−1), (0,1,0,−2,0,0,−1), (0,0,0,0,1,−1,0)

}
.

Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation

1 1 −1 1 0 0 −1
−1 −1 1 −1 0 0 1

0 0 0 0 0 0 0
0 0 0 0 0 0 0

−2 −2 2 −2 0 0 2
2 2 −2 2 0 0 −2
0 0 0 0 0 0 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in the following system of linear equations
z1 + z2 − z3 + z4 − z7 = 0,

− z1 − z2 + z3 − z4 + z7 = 0,
−2z1 − 2z2 + 2z3 − 2z4 + 2z7 = 0,

2z1 + 2z2 − 2z3 + 2z4 − 2z7 = 0.
This system can be solved and this gives us the solutions set

ker(B2)

=
{
(r1, r2, r3, r4, r5, r6, r1 + r2 − r3 + r4) | r1, r2, r3, r4, r5, r6 ∈ K

}
= span

{
(1,0,0,0,0,0,1), (0,1,0,0,0,0,1), (0,0,1,0,0,0,−1),

(0,0,0,1,0,0,1), (0,0,0,0,1,0,0), (0,0,0,0,0,1,0)
}
.
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We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B) 3 3 = dim(ker(B))

ker(B2) 6 3 = dim(ker(B2))− dim(ker(B))

ker(B3) 7 1 = dim(ker(B3))− dim(ker(B2))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

The last number in the last column is 1 and this gives the information
that there will be a Jordan chain of length 3. The first number 3 in the
last column is the dimension of the kernel of B. This number says that
there are three elementary Jordan chains to be found. After we have
calculated the chain with length 3, the last column will be from top to
bottom {2,2,0}. There are still linearly independent vectors left to be
found. We see that we can calculate again a Jordan chain with length
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2. We have at this moment 5 linearly independent vectors. The last
column will then be from top to bottom {1,1,0}. There are still linearly
independent vectors left to be found. We see that we can calculate again
a Jordan chain with length 2.

The last column will then be from top to bottom {0,0,0}. We have at
this moment 7 linearly independent vectors which form a base for this
vector space.

Then the procedure will stop because all entries in the last column are
0’s.

The first Jordan chain.
We look for a linearly independent set of vectors {w1,w2,w3} satisfying

B3 w3 = 0,

B2 w3 = w1,
Bw3 = w2,

where w3 is in the vector space ker(B3) but not in ker(B2).

We look for a generating vector w3. We see from the information table
that there is a generating vector w3 for a chain of length 3.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B3). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B3).

2. The generating vector may not be in the ker(B2) because the length
of the chain must be exactly 3. So it has to be independent from
all vectors in ker(B2). It is sufficient that it is linearly independent
from a basis of ker(B2).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 3. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B3 together with the vec-
tors in ker(B2) and also the vectors, if any, of exactly height 3 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.
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Generic form of the generating vector.
We remember that the kernel ker(B3) is generated by the following set of
vectors.

ker(B3) = span
{
e1,e2,e3,e4,e5,e6,e7

}
.

So the generating vector has the following generic form

(a,b, c, d, e, f , g).

The kernel of B2.
We remember that the kernel ker(B2) is

ker(B2)

= span
{
(1,0,0,0,0,0,1), (0,1,0,0,0,0,1), (0,0,1,0,0,0,−1),

(0,0,0,1,0,0,1), (0,0,0,0,1,0,0), (0,0,0,0,0,1,0)
}
.

Vectors chosen in previous Jordan chains.
We have previously not chosen a vector in a Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =



1 0 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 0 −1
0 0 0 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
a b c d e f g


.

If we impose the condition a+b−c+d−g ≠ 0, then we can row reduce
this matrix to the matrix
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1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

We see that these vectors are independent if we impose the condition
a + b − c + d − g ≠ 0. We can choose a = 1, b = 0, c = 0, d = 0, e = 0,
f = 0, g = 0.

We have the generating vector

w3 = (1,0,0,0,0,0,0).

We calculate then Bw3, B2 w3 and we know that the vectors

{w1 = B2 w3,w2 = Bw3,w3}.
are a Jordan chain of 3 linearly independent vectors. Because B3 e3 = 0
we know that the length of the chain is exactly 3.

We calculate w2.

w2 = Bw3 =



3 3 −4 2 1 1 −1
−3 −3 3 −2 0 0 1
−1 −1 1 −1 0 0 1
−1 −1 3 −1 −2 −2 1
−5 −5 6 −4 0 0 3

4 4 −5 3 0 0 −2
0 0 1 0 −1 −1 0





1
0
0
0
0
0
0


=



3
−3
−1
−1
−5

4
0


.

We calculate now w1.

w1 = B2 w3 =



3 3 −4 2 1 1 −1
−3 −3 3 −2 0 0 1
−1 −1 1 −1 0 0 1
−1 −1 3 −1 −2 −2 1
−5 −5 6 −4 0 0 3

4 4 −5 3 0 0 −2
0 0 1 0 −1 −1 0





3
−3
−1
−1
−5

4
0


=



1
−1

0
0

−2
2
0


.
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We have now the first chain.

{w1 = B2 w3 = (1,−1,0,0,−2,2,0),w2 = Bw3 = (3,−3,−1,−1,−5,4,0),
w3 = (1,0,0,0,0,0,0)}.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 3 w1 2

ker(B2) 6 w2 2

ker(B3) 7 w3 0

with

w1 = (1,−1,0,0,−2,2,0)

w2 = (3,−3,−1,−1,−5,4,0)

w3 = (1,0,0,0,0,0,0)

We see that we have two Jordan chains with both length 2 left.

The second Jordan chain.
So we have to find a generating vector w5 ∈ ker(B2) satisfying

1. It has to be in the kernel ker(B2). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B2).

2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).
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3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that the kernel ker(B2) is generated by the following set of
vectors.

ker(B2)

= span
{
(1,0,0,0,0,0,1), (0,1,0,0,0,0,1), (0,0,1,0,0,0,−1),

(0,0,0,1,0,0,1), (0,0,0,0,1,0,0), (0,0,0,0,0,1,0)
}
.

So the generating vector has the following generic form

a (1,0,0,0,0,0,1)+ b (0,1,0,0,0,0,1)+ c (0,0,1,0,0,0,−1)

+ d (0,0,0,1,0,0,1)+ e (0,0,0,0,1,0,0)+ f (0,0,0,0,0,1,0)

= (a,b, c, d, e, f , a+ b − c + d).

The kernel of B.
We remember that the kernel ker(B) is

ker(B)

= span
{
(1,0,0,−2,0,0,−1), (0,1,0,−2,0,0,−1), (0,0,0,0,1,−1,0)

}
.

Vectors chosen in previous Jordan chains.
We have previously chosen a vector of exactly height 2 in a previous
Jordan chain. This is
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w2 = (3,−3,−1,−1,−5,4,0).

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 0 −2 0 0 −1
0 1 0 −2 0 0 −1
0 0 0 0 1 −1 0
3 −3 −1 −1 −5 4 0
a b c d e f a+ b − c + d

 .
If we impose the condition 2a+ 2b− c +d ≠ 0, then we can row reduce
this matrix to the matrix

1 0 0 0 0 − 2(c−e−f )
2a+2b−c+d 1

0 1 0 0 0 − 2(c−e−f )
2a+2b−c+d 1

0 0 1 0 0 2a+2b+d−e−f
2a+2b−c+d −1

0 0 0 1 0 −c+e+f
2a+2b−c+d 1

0 0 0 0 1 −1 0


.

We see that these vectors are independent if we impose the condition
2a + 2b − c + d ≠ 0. We can choose a = 1, b = 0, c = 0, d = 0, e = 0,
f = 0.

We have the valid generating vector

w5 = (1,0,0,0,0,0,1).

We calculate w4.

w4 = Bw5 =



3 3 −4 2 1 1 −1
−3 −3 3 −2 0 0 1
−1 −1 1 −1 0 0 1
−1 −1 3 −1 −2 −2 1
−5 −5 6 −4 0 0 3

4 4 −5 3 0 0 −2
0 0 1 0 −1 −1 0





1
0
0
0
0
0
1


=



2
−2

0
0

−2
2
0


.
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We have now w4 = (2,−2,0,0,−2,2,0).

We have now the second chain. It has length 2.

{w4 = Bw5 = (2,−2,0,0,−2,2,0),w5 = (1,0,0,0,0,0,1)}.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(B) 3 w1 w4 1

ker(B2) 6 w2 w5 1

ker(B3) 7 w3 0

with

w1 = (1,−1,0,0,−2,2,0)

w2 = (3,−3,−1,−1,−5,4,0)

w3 = (1,0,0,0,0,0,0)

w4 = (2,−2,0,0,−2,2,0)

w5 = (1,0,0,0,0,0,1)

The last column tells us that there is still a chain of length 2 left to be
found.

The third Jordan chain.
We have to find a generating vector w7 ∈ ker(B2) satisfying

1. It has to be in the kernel ker(B2). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B2).
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2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that the kernel ker(B2) is generated by the following set of
vectors.

ker(B2)

= span
{
(1,0,0,0,0,0,1), (0,1,0,0,0,0,1), (0,0,1,0,0,0,−1),

(0,0,0,1,0,0,1), (0,0,0,0,1,0,0), (0,0,0,0,0,1,0)
}
.

So the generating vector has the following generic form

a (1,0,0,0,0,0,1)+ b (0,1,0,0,0,0,1)+ c (0,0,1,0,0,0,−1)

+ d (0,0,0,1,0,0,1)+ e (0,0,0,0,1,0,0)+ f (0,0,0,0,0,1,0)

= (a,b, c, d, e, f , a+ b − c + d).

The kernel of B.
We remember that the kernel ker(B) is

ker(B)

= span
{
(1,0,0,−2,0,0,−1), (0,1,0,−2,0,0,−1), (0,0,0,0,1,−1,0)

}
.
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Vectors chosen in previous Jordan chains.
We have previously chosen two vectors of exactly height 2 in previous
Jordan chains. These are{

w2 = (3,−3,−1,−1,−5,4,0),
w5 = (1,0,0,0,0,0,1).

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 0 −2 0 0 −1
0 1 0 −2 0 0 −1
0 0 0 0 1 −1 0
3 −3 −1 −1 −5 4 0
1 0 0 0 0 0 1
a b c d e f a+ b − c + d

 .

If we impose the condition c − e − f ≠ 0, then we can row reduce this
matrix to the matrix 

1 0 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 0 −1
0 0 0 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0

 .

We see that these vectors are independent if we impose the condition
c − e− f ≠ 0. So we can choose a = 0, b = 0, c = 0, d = 0, e = 0, f = 1.

We can choose the generating vector

w7 = (0,0,0,0,0,1,0).

We make the choice w7 = (0,0,0,0,0,1,0).

We calculate w6.
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w6 = Bw7 =



3 3 −4 2 1 1 −1
−3 −3 3 −2 0 0 1
−1 −1 1 −1 0 0 1
−1 −1 3 −1 −2 −2 1
−5 −5 6 −4 0 0 3

4 4 −5 3 0 0 −2
0 0 1 0 −1 −1 0





0
0
0
0
0
1
0


=



1
0
0

−2
0
0

−1


.

We have now w6 = (1,0,0,−2,0,0,−1).

We have now found the third Jordan chain. It has length 2.

{w6 = (1,0,0,−2,0,0,−1),w7 = (0,0,0,0,0,1,0)}.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 rem dim

ker(B) 3 w1 w4 w6 0

ker(B2) 6 w2 w5 w7 0

ker(B3) 7 w3 0

with

w1 = (1,−1,0,0,−2,2,0)

w2 = (3,−3,−1,−1,−5,4,0)

w3 = (1,0,0,0,0,0,0)

w4 = (2,−2,0,0,−2,2,0)

w5 = (1,0,0,0,0,0,1)

w6 = (1,0,0,−2,0,0,−1)

w7 = (0,0,0,0,0,1,0)
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The last column consists only 0’s and we are done. We have now a basis
of vectors consisting of independent Jordan chains.

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =



1 3 1 2 1 1 0
−1 −3 0 −2 0 0 0

0 −1 0 0 0 0 0
0 −1 0 0 0 −2 0

−2 −5 0 −2 0 0 0
2 4 0 2 0 0 1
0 0 0 0 1 −1 0


.

A = P−1 B P

=



0 1 2 0 −1 0 0
0 0 −1 0 0 0 0
1 1 −1 1 0 0 −1
0 −1 1/2 0 1/2 0 0
0 0 1/2 −1/2 0 0 1
0 0 1/2 −1/2 0 0 0
0 0 −1 0 1 1 0



×



3 3 −4 2 1 1 −1
−3 −3 3 −2 0 0 1
−1 −1 1 −1 0 0 1
−1 −1 3 −1 −2 −2 1
−5 −5 6 −4 0 0 3

4 4 −5 3 0 0 −2
0 0 1 0 −1 −1 0



×



1 3 1 2 1 1 0
−1 −3 0 −2 0 0 0

0 −1 0 0 0 0 0
0 −1 0 0 0 −2 0

−2 −5 0 −2 0 0 0
2 4 0 2 0 0 1
0 0 0 0 1 −1 0


.
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A = P−1 B P

=



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0



=



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0



 
( )

( ) .
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6 exercise. (7× 7); (J2(0), J2(0), J2(0), J1(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B such that A is a matrix in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =



0 −1 0 −1 1 0 0
0 −1 −1 −4 3 −1 −1
0 −2 −1 −5 4 −1 −1
1 −1 −2 −5 4 −1 −1
1 −2 −3 −9 7 −2 −2

−1 −1 2 3 −2 1 1
0 2 −1 −1 0 −1 −1


.

Solution.

1. Eigenvalues and the characteristic polynomial.

pC-H(λ) = |B − λ I7| = −λ7.

The eigenvalue λ = 0 has algebraic multiplicity 7. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
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this subsection 2. The solution will be completely independent from this
section.

We want to investigate the endomorphism A associated with this Jordan
block. We compute also the powers of A.

A =



0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

We show this matrix in a way that emphasises the position of the ele-
mentary Jordan blocks.

A =



0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



( )
( )

( )
( )

.

We compute also the powers of A.
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A =



0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



( )
( )

( )
( )

,

A2 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



( )
( )

( )
( )

.

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the second power
of A. The smallest exponent that makes the power of the matrix A the
zero matrix, in this case 2, is called the height of nilpotency of the matrix
A.

It is interesting to observe how the kernels change. We can see almost
without calculation that ker(A) = span

{
e1,e3,e5,e7

}
. We have ker(A2) =

K7.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 4 4 = dim(ker(A))

ker(A2) 7 3 = dim(ker(A2))− dim(ker(A))
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We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A) ⊊ ker(A2) = ker(A3) = · · · .
The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:{

n1 +n2 = 4 = dim(ker(A)),

n2 = 3 = dim(ker(A2))− dim(ker(A)).

Solving this system, we have n1 = 1, n2 = 3.

A consequence from this fact is that the numbers in the last column are
descending.

We remark by looking at the matrices Ai that the vector e2 satisfies{
Ae2 = e1,

A2 e2 = 0.
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We see that we have a first Jordan chain. It has length two. We write a
Jordan chain in reverse order.

{e1 = Ae2,e2}.
After we have found the first Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 4 e1 3

ker(A2) 7 e2 2

Because the last column consists now of at least one number that is not
0, we are not done with looking for Jordan chains. We see that we find
another Jordan chain with length 2.

We remark by looking at the matrices Ai that we have{
Ae4 = e3,

A2 e4 = 0.

We have a second Jordan chain. It has length two. We write a Jordan
chain in reverse order.

{e3 = Ae4,e4}.
Let us note this in the new information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(A) 3 e1 e3 2

ker(A2) 6 e2 e4 1
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We remark by looking at the matrices Ai that the vector e6 satisfies{
Ae6 = e5,

A2 e6 = 0.

We see that we have a third Jordan chain. It has length two. We write a
Jordan chain in reverse order.

{e5 = Ae6,e6}.

Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 rem dim

ker(A) 4 e1 e3 e5 1

ker(A2) 7 e2 e4 e6 0

Now we have one vector e7 left that is an eigenvector. We have now our
fourth Jordan chain. It has length 1.

{e7}.

Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 chain 4 rem dim

ker(A) 4 e1 e3 e5 e7 0

ker(A2) 7 e2 e4 e6 0

Let us express our findings in a way that emphasises the position of
the elementary Jordan blocks and their relation with the powers of the
matrix A.
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(a) Visualisation of A. (b) Visualisation of A2.

Figure 7

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.
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3. Calculation of the kernels of Bi.

Let us calculate the powers of the matrix B.

B =



0 −1 0 −1 1 0 0

0 −1 −1 −4 3 −1 −1

0 −2 −1 −5 4 −1 −1

1 −1 −2 −5 4 −1 −1

1 −2 −3 −9 7 −2 −2

−1 −1 2 3 −2 1 1

0 2 −1 −1 0 −1 −1


;

B2 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


.

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation

0 −1 0 −1 1 0 0
0 −1 −1 −4 3 −1 −1
0 −2 −1 −5 4 −1 −1
1 −1 −2 −5 4 −1 −1
1 −2 −3 −9 7 −2 −2

−1 −1 2 3 −2 1 1
0 2 −1 −1 0 −1 −1





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in the following system of linear equations

− z2 − z4 + z5 = 0,
− z2 − z3 − 4z4 + 3z5 − z6 − z7 = 0,
− 2z2 − z3 − 5z4 + 4z5 − z6 − z7 = 0,

z1 − z2 − 2z3 − 5z4 + 4z5 − z6 − z7 = 0,
z1 − 2z2 − 3z3 − 9z4 + 7z5 − 2z6 − 2z7 = 0,
−z1 − z2 + 2z3 + 3z4 − 2z5 + z6 + z7 = 0,

+ 2z2 − z3 − z4 − z6 − z7 = 0.
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We solve this system and find the solution set which is a subspace

ker(B)

=
{
(r1, r2, r1 + r2, r4, r2 + r4, r6,−r1 + r2 − r4 − r6)

| r1, r2, r4, r6 ∈ K
}

= span
{
(1,0,1,0,0,0,−1), (0,1,1,0,1,0,1),

(0,0,0,1,1,0,−1), (0,0,0,0,0,1,−1)
}
.

Kernel of B2.
The kernel of B2 is K7.

We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B) 4 4 = dim(ker(B))

ker(B2) 7 3 = dim(ker(B2))− dim(ker(B))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.
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5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

The last number in the last column is 3 and this gives the information
that there will be three Jordan chains of length 2. The first number 4
in the last column is the dimension of the kernel of B. This number
says that there will be 4 Jordan elementary block matrices. After we
have calculated the chain with length 2, the last column will be from top
to bottom {3,2}. There will still be a chain of length 2. After we have
found that chain the last column will be from top to bottom {2,1} We
see that we can calculate again a Jordan chain with length 2. After we
have found that chain the last column will be from top to bottom {1,0}.
We see that we can calculate again a Jordan chain with length 1. After
this calculation, the last column will be from top to bottom {0,0}. We
have at that moment 7 linearly independent vectors which form a basis
for this vector space. There are no chains left to look for.

4. Calculation of the Jordan chains.

The first Jordan chain.
We look for a linearly independent set of vectors {w1,w2} satisfying

Bw2 = w1,

where w2 is in the vector space ker(B2) but not in ker(B).

We choose a vector w2 that is in the kernel ker(B2) but not in the kernel
of ker(B).

We look for a starting w2. We see from the information table that there
is a generating vector w2 for a chain of length 2.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B2). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B2).

2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).
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3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that ker(B2) = K7. So the generating vector has the follow-
ing generic form

(a,b, c, d, e, f , g).

The kernel of B.
We remember that the kernel ker(B) is

ker(B) = span
{
(1,0,1,0,0,0,−1), (0,1,1,0,1,0,1),

(0,0,0,1,1,0,−1), (0,0,0,0,0,1,−1)
}
.

Vectors chosen in previous Jordan chains.
We have previously not chosen a vector in a previous Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 1 0 0 0 −1
0 1 1 0 1 0 1
0 0 0 1 1 0 −1
0 0 0 0 0 1 −1
a b c d e f g

 .
If we impose the condition a + b − c ≠ 0, then we can row reduce this
matrix to the matrix
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1 0 0 0 −b−d+e
a+b−c 0 −2b+c+d+f+g

a+b−c

0 1 0 0 a−c−d+e
a+b−c 0 2a−c+d+f+g

a+b−c

0 0 1 0 b+d−e
a+b−c 0 −a+b−d−f−g

a+b−c

0 0 0 1 1 0 −1

0 0 0 0 0 1 −1


.

We see that these vectors are independent if we impose the condition
a+ b − c ≠ 0.

So we can choose a = 1, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0.

We have the valid generating vector

w2 = (1,0,0,0,0,0,0).

We calculate then B (1,0,0,0,0,0,0), and we know that the vectors

{w1 = Bw2,w2}
are a Jordan chain of 2 linearly independent vectors and because B2 w2 =
0, we know that the length of the chain is exactly 2.

We calculate w1.

w1 = Bw2 =



0 −1 0 −1 1 0 0
0 −1 −1 −4 3 −1 −1
0 −2 −1 −5 4 −1 −1
1 −1 −2 −5 4 −1 −1
1 −2 −3 −9 7 −2 −2

−1 −1 2 3 −2 1 1
0 2 −1 −1 0 −1 −1





1
0
0
0
0
0
0


=



0
0
0
1
1

−1
0


.

We have now found the first Jordan chain. It has length 2.

{w1 = (0,0,0,1,1,−1,0),w2 = (1,0,0,0,0,0,0)}.
Let us take a look at our current information table.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 4 w1 3

ker(B2) 7 w2 2

with

w1 = (0,0,0,1,1,−1,0)

w2 = (1,0,0,0,0,0,0)

We see that we have two Jordan chains with both length 2 left.

The second Jordan chain.
So we have to find a generating vector w4 ∈ ker(B2) satisfying

1. It has to be in the kernel ker(B2). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B2).

2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that ker(B2) = K7.
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So the generating vector has the following generic form

(a,b, c, d, e, f , g).

The kernel of B.
We remember that the kernel ker(B) is

ker(B) = span
{
(1,0,1,0,0,0,−1), (0,1,1,0,1,0,1),

(0,0,0,1,1,0,−1), (0,0,0,0,0,1,−1)
}
.

Vectors chosen in previous Jordan chains.
We have previously chosen a vector w2 = (1,0,0,0,0,0,0) of exactly
height 2 in a previous Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 1 0 0 0 −1
0 1 1 0 1 0 1
0 0 0 1 1 0 −1
0 0 0 0 0 1 −1
1 0 0 0 0 0 0
a b c d e f g

 .

If we impose the condition b + d − e ≠ 0, then we can row reduce this
matrix to the matrix

1 0 0 0 0 0 0

0 1 0 0 0 0 c+3d−2 e+f+g
b+d−e

0 0 1 0 0 0 −1

0 0 0 1 0 0 −3b+c+e+f+g
b+d−e

0 0 0 0 1 0 2b−c−d−f−g
b+d−e

0 0 0 0 0 1 −1


.
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We see that these vectors are independent if we impose the condition
b + d − e ≠ 0. We can choose a = 0, b = 1, c = 0, d = 0, e = 0, f = 0,
g = 0.

We have now the generating vector

w4 = (0,1,0,0,0,0,0).

We calculate w3.

w3 = Bw4 =



0 −1 0 −1 1 0 0
0 −1 −1 −4 3 −1 −1
0 −2 −1 −5 4 −1 −1
1 −1 −2 −5 4 −1 −1
1 −2 −3 −9 7 −2 −2

−1 −1 2 3 −2 1 1
0 2 −1 −1 0 −1 −1





0
1
0
0
0
0
0


=



−1
−1
−2
−1
−2
−1

2


.

We have now w3 = (−1,−1,−2,−1,−2,−1,2).

We have now found a second Jordan chain. It has length 2.

{w3 = (−1,−1,−2,−1,−2,−1,2),w4 = (0,1,0,0,0,0,0)}.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(B) 4 w1 w3 2

ker(B2) 7 w2 w4 1

w1 = (0,0,0,1,1,−1,0)

w2 = (1,0,0,0,0,0,0)

w3 = (−1,−1,−2,−1,−2,−1,2)

w4 = (0,1,0,0,0,0,0)
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The last column tells us that there is still a chain of length 2 remaining
left to be found.

The third Jordan chain.
We look for a starting w6. We see from the information table that there
is a generating vector w6 for a chain of length 2.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B2). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B2).

2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that ker(B2) = K7.

So the generating vector has the following generic form

(a,b, c, d, e, f , g).

The kernel of B.
We remember that the kernel ker(B) is

ker(B) = span
{
(1,0,1,0,0,0,−1), (0,1,1,0,1,0,1),

(0,0,0,1,1,0,−1), (0,0,0,0,0,1,−1)
}
.
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Vectors chosen in previous Jordan chains.
We have previously chosen two vectors{

w2 = (1,0,0,0,0,0,0),
w4 = (0,1,0,0,0,0,0)

of exactly height 2 in a previous Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

1 0 1 0 0 0 −1
0 1 1 0 1 0 1
0 0 0 1 1 0 −1
0 0 0 0 0 1 −1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
a b c d e f g


.

If we impose the condition c + 3d − 2 e + f + g ≠ 0, then we can row
reduce this matrix to the matrix

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

We see that these vectors are independent if we impose the condition
c+3d−2 e+f +g ≠ 0. We can choose a = 0, b = 0, c = 0, d = 1, e = 0,
f = 0, g = 0.

So we can choose the generating vector

w6 = (0,0,0,1,0,0,0).

We calculate w5.
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w5 = Bw6 =



0 −1 0 −1 1 0 0
0 −1 −1 −4 3 −1 −1
0 −2 −1 −5 4 −1 −1
1 −1 −2 −5 4 −1 −1
1 −2 −3 −9 7 −2 −2

−1 −1 2 3 −2 1 1
0 2 −1 −1 0 −1 −1





0
0
0
1
0
0
0


=



−1
−4
−5
−5
−9

3
−1


.

We have now w5 = (−1,−4,−5,−5,−9,3,−1).

We have now found the third Jordan chain. It has length 2.

{w5 = (−1,−4,−5,−5,−9,3,−1),w6 = (0,0,0,1,0,0,0)}.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 rem dim

ker(B) 4 w1 w3 w5 1

ker(B2) 7 w2 w4 w6 0

with

w1 = (0,0,0,1,1,−1,0)

w2 = (1,0,0,0,0,0,0)

w3 = (−1,−1,−2,−1,−2,−1,2)

w4 = (0,1,0,0,0,0,0)

w5 = (−1,−4,−5,−5,−9,3,−1)

w6 = (0,0,0,1,0,0,0)

The last column consists not entirely of 0’s and we are not done.
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The fourth Jordan chain.
The last column in the information table tells us that there is still a chain
of length 1 left to be found. This is an eigenvector w7. We know that we
have in our three previous Jordan chains found three eigenvectors which
have height 1. So we have to be careful when choosing an eigenvector.

The vector must be an eigenvector. It must be in the space

ker(B) = span
{
(1,0,1,0,0,0,−1), (0,1,1,0,1,0,1),

(0,0,0,1,1,0,−1), (0,0,0,0,0,1,−1)
}
.

The vector must be of the generic form

a (1,0,1,0,0,0,−1)+ b (0,1,1,0,1,0,1)+ c (0,0,0,1,1,0,−1)

+ d (0,0,0,0,0,1,−1) = (a,b,a+ b, c, b + c,d,−a+ b − c − d).

We have at this point chosen in ker(B) already the vectors
w1 = (0,0,0,1,1,−1,0),
w3 = (−1,−1,−2,−1,−2,−1,2),
w5 = (−1,−4,−5,−5,−9,3,−1)

of height exactly height 1. They must be linearly independent from the
vector w7 we have to choose.

We have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =


0 0 0 1 1 −1 0
−1 −1 −2 −1 −2 −1 2
−1 −4 −5 −5 −9 3 −1
a b a+ b c b + c d −a+ b − c − d

 .
We row reduce this matrix H and find then if we impose the condition
that 2a− c − d ≠ 0 

1 0 1 0 0 0 −1
0 1 1 0 1 0 1
0 0 0 1 1 0 −1
0 0 0 0 0 1 −1

 .
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We see that these vectors are independent if we impose the condition
2a− c − d ≠ 0.

We can choose a = 0, b = 0, c = 0, d = 1, e = 0, f = 0, g = 0.

With this choice we have now the generating vector

w7 = (0,0,0,0,0,1,−1).

We have now the last Jordan chain. It has length 1.

{w7 = (0,0,0,0,0,1,−1)}.
Our table is now

Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 chain 4 rem dim

ker(B) 4 w1 w3 w5 w7 0

ker(B2) 7 w2 w4 w6 0

with

w1 = (0,0,0,1,1,−1,0)

w2 = (1,0,0,0,0,0,0)

w3 = (−1,−1,−2,−1,−2,−1,2)

w4 = (0,1,0,0,0,0,0)

w5 = (−1,−4,−5,−5,−9,3,−1)

w6 = (0,0,0,1,0,0,0)

w7 = (0,0,0,0,0,1,−1)

We have now a basis of vectors consisting of independent vectors in
Jordan chains.
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5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =



0 1 −1 0 −1 0 0
0 0 −1 1 −4 0 0
0 0 −2 0 −5 0 0
1 0 −1 0 −5 1 0
1 0 −2 0 −9 0 0

−1 0 −1 0 3 0 1
0 0 2 0 −1 0 −1


.

A = P−1 B P

=



0 0 −5/9 0 1/9 −8/9 −8/9
1 0 −2/3 0 1/3 1/3 1/3
0 0 −7/9 0 5/9 5/9 5/9
0 1 −1/3 0 −1/3 −1/3 −1/3
0 0 1/9 0 −2/9 −2/9 −2/9
0 0 1/3 1 −2/3 1/3 1/3
0 0 −5/3 0 4/3 4/3 1/3



×



0 −1 0 −1 1 0 0
0 −1 −1 −4 3 −1 −1
0 −2 −1 −5 4 −1 −1
1 −1 −2 −5 4 −1 −1
1 −2 −3 −9 7 −2 −2

−1 −1 2 3 −2 1 1
0 2 −1 −1 0 −1 −1



×



0 1 −1 0 −1 0 0
0 0 −1 1 −4 0 0
0 0 −2 0 −5 0 0
1 0 −1 0 −5 1 0
1 0 −2 0 −9 0 0

−1 0 −1 0 3 0 1
0 0 2 0 −1 0 −1


.
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A = P−1 B P

=



0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



=



0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



( )
( )

( )
( )

.
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7 exercise. (6× 6); (J5(0), J1(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B such that A is a matrix in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =


1 2 −1 0 2 1

−1 −1 1 0 −2 −1
0 1 0 0 0 0
1 1 −1 0 2 1
1 1 −1 0 0 0

−1 −1 1 0 1 0

 .

Solution.

1. Eigenvalues and the characteristic polynomial.

We compute the Cayley-Hamilton polynomial.

pC-H(λ) = |B − λ I6| = λ6.

The eigenvalue λ = 0 has algebraic multiplicity 6. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
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this subsection 2. The solution will be completely independent from this
section.

We want to investigate the endomorphism A associated with this Jordan
block. We compute also the powers of A.

A =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

We show this in a way that emphasises the position of the elementary
Jordan blocks. We compute also the powers of A.
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A =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0






( )

;

A2 =



0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0






( )

;

A3 =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0






( )

;

A4 =



0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0






( )

;

A5 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0






( )

.

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
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A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the fifth power of
A. The smallest exponent that makes the power of the matrix A the zero
matrix, in this case 5, is called the height of nilpotency of the matrix A.

It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A) = span
{
e1,e6

}
,

ker(A2) = span
{
e1,e2,e6

}
,

ker(A3) = span
{
e1,e2,e3,e6

}
,

ker(A4) = span
{
e1,e2,e3,e4,e6

}
,

ker(A5) = span
{
e1,e2,e3,e4,e5,e6

}
.

We have then ker(A5) = K6.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 2 2 = dim(ker(A))

ker(A2) 3 1 = dim(ker(A2))− dim(ker(A))

ker(A3) 4 1 = dim(ker(A3))− dim(ker(A2))

ker(A4) 5 1 = dim(ker(A4))− dim(ker(A3))

ker(A5) 6 1 = dim(ker(A5))− dim(ker(A4))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.
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3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the fifth
power onwards.

ker(A) ⊊ ker(A2) ⊊ ker(A3) ⊊ ker(A4) ⊊ ker(A5) = ker(A6) = · · · .
The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:

n1 +n2 +n3 +n4 +n5 = 2 = dim(ker(A)),

n2 +n3 +n4 +n5 = 1 = dim(ker(A2))− dim(ker(A)),

n3 +n4 +n5 = 1 = dim(ker(A3))− dim(ker(A2)),

n4 +n5 = 1 = dim(ker(A4))− dim(ker(A3)),

n5 = 1 = dim(ker(A5))− dim(ker(A4)).
Solving this system, we have n1 = 1, n2 = 0, n3 = 0, n4 = 0, n5 = 1.

A consequence from this fact is that the numbers in the last column are
descending.

We remark by looking at the matrices Ai that the vector e5 satisfies

Ae5 = e4,
Ae4 = e3,
Ae3 = e2,
Ae2 = e1,
Ae1 = 0.
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or 

Ae5 = e4,

A2 e5 = e3,

A3 e5 = e2,

A4 e5 = e1,

A5 e5 = 0.

One sees that we have a Jordan chain with length five of linearly inde-
pendent vectors. We write a Jordan chain in reverse order.

{A4 e5 = e1, A3 e5 = e2, A2 e5 = e3, Ae5 = e4,e5}.
After we have found the first Jordan chain of length 5, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 2 e1 1

ker(A2) 3 e2 0

ker(A3) 4 e3 0

ker(A4) 5 e4 0

ker(A5) 6 e5 0

Because the last column consists now of at least one number that is not
0, we are not done with looking for Jordan chains. We see that we find
another Jordan chain with length 1.

We have the eigenvector e6. This vector gives us another elementary
Jordan chain with length 1.

{e6}.
Let us note this in the new information table.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(A) 2 e1 e6 0

ker(A2) 3 e2 0

ker(A3) 4 e3 0

ker(A4) 5 e4 0

ker(A5) 6 e5 0

The last column consists of only 0’s and this ends the search for Jordan
chains. We have indeed found 6 linearly independent vectors and these
form a basis for K6.

Let us express our findings in a way that emphasises the position of
the elementary Jordan blocks and their relation with the powers of the
matrix A.
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(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3. (d) Visualisation of A4.

(e) Visualisation of A5.
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We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.
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3. Calculation of the kernels of Bi.

Let us calculate the powers of the matrix B.

B =



1 2 −1 0 2 1

−1 −1 1 0 −2 −1

0 1 0 0 0 0

1 1 −1 0 2 1

1 1 −1 0 0 0

−1 −1 1 0 1 0

 ;

B2 =



0 0 0 0 −1 −1

−1 −1 1 0 −1 0

−1 −1 1 0 −2 −1

1 1 −1 0 1 0

0 0 0 0 0 0

1 1 −1 0 0 0

 ;

B3 =



0 0 0 0 −1 0

−1 −1 1 0 0 0

−1 −1 1 0 −1 0

1 1 −1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 ;

B4 =



−1 −1 1 0 0 0

0 0 0 0 0 0

−1 −1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 ;
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B5 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation

1 2 −1 0 2 1
−1 −1 1 0 −2 −1

0 1 0 0 0 0
1 1 −1 0 2 1
1 1 −1 0 0 0
−1 −1 1 0 1 0




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in the following system of linear equations

z1 + 2z2 − z3 + 2z5 + z6 = 0,
−z1 − z2 + z3 − 2z5 − z6 = 0,

+ z2 = 0,
z1 + z2 − z3 + 2z5 + z6 = 0,
z1 + z2 − z3 = 0,

−z1 − z2 + z3 + z5 = 0.

We solve this system and find the solution set which is a subspace

ker(B) = {(r1,0, r1, r4,0,0) | r1, r4 ∈ K}
= span

{
(1,0,1,0,0,0), (0,0,0,1,0,0)

}
.

Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation
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0 0 0 0 −1 −1

−1 −1 1 0 −1 0
−1 −1 1 0 −2 −1

1 1 −1 0 1 0
0 0 0 0 0 0
1 1 −1 0 0 0




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in the following system of linear equations

− z5 − z6 = 0,
−z1 − z2 + z3 − z5 = 0,
−z1 − z2 + z3 − 2z5 − z6 = 0,
z1 + z2 − z3 + z5 = 0,
z1 + z2 − z3 = 0.

We solve this system and find the solution set which is a subspace

ker(B2) = {(r1, r2, r1 + r2, r4,0,0) | r1, r2, r4 ∈ K}
= span

{
(1,0,1,0,0,0), (0,1,1,0,0,0), (0,0,0,1,0,0)

}
.

Kernel of B3.
We calculate the kernel of B3 and we have to solve the matrix equation

0 0 0 0 −1 0
−1 −1 1 0 0 0
−1 −1 1 0 −1 0

1 1 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in the following system of linear equations
− z5 = 0,

−z1 − z2 + z3 = 0,
−z1 − z2 + z3 − z5 = 0,
z1 + z2 − z3 = 0.

We solve this system and find the solution set which is a subspace
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ker(B3) =
{
(r1, r2, r1 + r2, r4,0, r6) | r1, r2, r4, r6 ∈ K

}
= span

{
(1,0,1,0,0,0), (0,1,1,0,0,0), (0,0,0,1,0,0),
(0,0,0,0,0,1)

}
.

Kernel of B4.
We calculate the kernel of B4 and we have to solve the matrix equation

−1 −1 1 0 0 0
0 0 0 0 0 0

−1 −1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in the following system of linear equations{
−z1 − z2 + z3 = 0,
−z1 − z2 + z3 = 0.

We solve this system and find the solution set which is a subspace

ker(B4) =
{
(r1, r2, r1 + r2, r4, r5, r6) | r1, r2, r4, r5, r6 ∈ K

}
= span

{
(1,0,1,0,0,0), (0,1,1,0,0,0), (0,0,0,1,0,0),
(0,0,0,0,1,0), (0,0,0,0,0,1)

}
.

Kernel of B5.
This is the vector space K6.

We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B) 2 2 = dim(ker(B))

ker(B2) 3 1 = dim(ker(B2))− dim(ker(B))

ker(B3) 4 1 = dim(ker(B3))− dim(ker(B2))

ker(B4) 5 1 = dim(ker(B4))− dim(ker(B3))

ker(B5) 6 1 = dim(ker(B5))− dim(ker(B4))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

The last number in the last column and fifth line is 1 and this gives the
information that there will be one Jordan chain of length 5. The first
number 2 in the last column the dimension of the kernel of B. After
we have calculated the chain with length 5, the last column will be from
top to bottom {1,0,0,0,0,0}. There is still one linearly independent
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vector left to be found. After this calculation, the last column will be
from top to bottom {0,0,0,0,0,0}. We have at that moment 6 linearly
independent vectors which form a basis for this vector space.

4. Calculation of the Jordan chains.

We look for a linearly independent set of vectors {w1,w2,w3,w4,w5}
satisfying 

Bw5 = w4,
Bw4 = w3,
Bw3 = w2,
Bw2 = w1,
Bw1 = 0

or 

Bw5 = w4,

B2 w5 = w3,

B3 w5 = w2,

B4 w5 = w1,

B5 w5 = 0.

The first Jordan chain.
We look for a starting w5. We see from the information table that there
is a generating vector w5 for a chain of length 5.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B5). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B5).

2. The generating vector may not be in the ker(B4) because the length
of the chain must be exactly 5. So it has to be independent from
all vectors in ker(B4). It is sufficient that it is linearly independent
from a basis of ker(B4).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 5. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.
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4. We summarise: the generating vector in B5 together with the vec-
tors in ker(B4) and also the vectors, if any, of exactly height 5 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that ker(B5) = K6.
So the generating vector has the following generic form

(a,b, c, d, e, f ).

The kernel of B4.
We remember that the kernel ker(B4) is

ker(B4) = span
{
(1,0,1,0,0,0), (0,1,1,0,0,0), (0,0,0,1,0,0),

(0,0,0,0,1,0), (0,0,0,0,0,1)
}
.

Vectors chosen in previous Jordan chains.
We have previously chosen no vector of exactly height 5 in a previous
Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
a b c d e f


If we impose the condition a + b − c ≠ 0, then we can row reduce this
matrix to the matrix



www.mathandphoto.eu. Exercise Notes Jordan 152


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

We see that these vectors are independent if we impose the condition
a+ b − c ≠ 0.

So we can choose a = 1, b = 0, c = 0, d = 0, e = 0 and f = 0.

Then we have the valid generating vector

w5 = (1,0,0,0,0,0).

We calculate then Bi (1,0,0,0,0,0) from i = 1 to i = 4, and we know that
the vectors

{w1 = B4 w5,w2 = B3 w5,w3 = B2 w5,w4 = Bw5,w5}
are a Jordan chain of 5 linearly independent vectors and because B5 w5 =
0, we know that the length of the chain is exactly 5.

We calculate w4.

w4 = Bw5 =


1 2 −1 0 2 1

−1 −1 1 0 −2 −1
0 1 0 0 0 0
1 1 −1 0 2 1
1 1 −1 0 0 0

−1 −1 1 0 1 0




1
0
0
0
0
0

 =


1

−1
0
1
1

−1

 .

We calculate now w3.

w3 = B2 w5 =


0 0 0 0 −1 −1

−1 −1 1 0 −1 0
−1 −1 1 0 −2 −1

1 1 −1 0 1 0
0 0 0 0 0 0
1 1 −1 0 0 0




1
0
0
0
0
0

 =


0

−1
−1

1
0
1

 .
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We calculate now w2.

w2 = B3 w5 =


0 0 0 0 −1 0

−1 −1 1 0 0 0
−1 −1 1 0 −1 0

1 1 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




1
0
0
0
0
0

 =


0

−1
−1

1
0
0

 .

We calculate now w1.

w1 = B4 w5 =


−1 −1 1 0 0 0

0 0 0 0 0 0
−1 −1 1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




1
0
0
0
0
0

 =


−1

0
−1

0
0
0

 .

We have now found the Jordan chain

{w1 = (−1,0,−1,0,0,0),w2 = (0,−1,−1,1,0,0),w3 = (0,−1,−1,1,0,1),
w4 = (1,−1,0,1,1,−1),w5 = (1,0,0,0,0,0)}.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 2 w1 1

ker(B2) 3 w2 0

ker(B3) 4 w3 0

ker(B4) 5 w4 0

ker(B5) 6 w5 0
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with

w1 = (−1,0,−1,0,0,0)

w2 = (0,−1,−1,1,0,0)

w3 = (0,−1,−1,1,0,1)

w4 = (1,−1,0,1,1,−1)

w5 = (1,0,0,0,0,0)

We see at the number 1 at the top of the last column that we have still
to find a chain of length 1.

The second Jordan chain.
The last column in the information table tells us that there is still a chain
of length 1 left to be found. This is an eigenvector w6. We know that
we have in our previous Jordan chain found an eigenvector which have
height 1. So we have to be careful when choosing an eigenvector.

The vector must be an eigenvector. It must be in the space

ker(B) = span
{
(1,0,1,0,0,0), (0,0,0,1,0,0)

}
.

The vector must be of the generic form

a (1,0,1,0,0,0)+ b (0,0,0,1,0,0) = (a,0, a, b,0,0).

We have at this point chosen in ker(B) already the vector

w1 = (−1,0,−1,0,0,0)

of height exactly 1. This vector must be linearly independent from the
vector w6 we have to choose.

We have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(
−1 0 −1 0 0 0
a 0 a b 0 0

)
.
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We row reduce this matrix H and find then if we impose the condition
that b ≠ 0 (

1 0 1 0 0 0
0 0 0 1 0 0

)
.

We see that these vectors are independent if we impose the condition
b ≠ 0.

So we can choose a = 0 and b = 1.

We have then generating vector

w6 = (0,0,0,1,0,0).

This vector forms a second Jordan chain on its own.

{(0,0,0,1,0,0)}.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(B) 2 w1 w6 0

ker(B2) 3 w2 0

ker(B3) 4 w3 0

ker(B4) 5 w4 0

ker(B5) 6 w5 0

with
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w1 = (−1,0,−1,0,0,0)

w2 = (0,−1,−1,1,0,0)

w3 = (0,−1,−1,1,0,1)

w4 = (1,−1,0,1,1,−1)

w5 = (1,0,0,0,0,0)

w6 = (0,0,0,1,0,0)

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =


−1 0 0 1 1 0

0 −1 −1 −1 0 0
−1 −1 −1 0 0 0

0 1 1 1 0 1
0 0 0 1 0 0
0 0 1 −1 0 0

 .

We check this solution.
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A = P−1 B P

=


0 1 −1 0 1 0
0 −1 0 0 −2 −1
0 0 0 0 1 1
0 0 0 0 1 0
1 1 −1 0 0 0
0 1 0 1 0 0



×


1 2 −1 0 2 1

−1 −1 1 0 −2 −1
0 1 0 0 0 0
1 1 −1 0 2 1
1 1 −1 0 0 0

−1 −1 1 0 1 0



×


−1 0 0 1 1 0

0 −1 −1 −1 0 0
−1 −1 −1 0 0 0

0 1 1 1 0 1
0 0 0 1 0 0
0 0 1 −1 0 0



=


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0



=



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0






( )

.
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8 exercise. (6× 6); (J4(0), J2(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B such that A is a matrix in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =


2 −2 −1 2 1 1
4 −5 −3 5 1 2

−1 2 1 −3 1 0
1 −1 −1 1 1 1

−1 1 0 0 0 0
3 −4 −2 2 0 1

 .

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I6| = λ6.

The eigenvalue λ = 0 has algebraic multiplicity 6. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
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this subsection 2. The solution will be completely independent from this
section.

We want to investigate the endomorphism A. We compute also the pow-
ers of A.

A =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 .

We show this matrix in a way that emphasises the position of the ele-
mentary Jordan blocks.

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0





( ) .

We compute also the powers of A.
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A =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0





( ) ;

A2 =



0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





( ) ;

A3 =



0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





( ) ;

A4 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





( ) .

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the fourth power
of A. The smallest exponent that makes the power of the matrix A the
zero matrix, in this case 4, is called the height of nilpotency of the matrix
A.
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ker(A) = span
{
e1,e5

}
,

ker(A2) = span
{
e1,e2,e5,e6

}
,

ker(A3) = span
{
e1,e2,e3,e5,e6

}
,

ker(A4) = K6.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 2 2 = dim(ker(A))

ker(A2) 4 2 = dim(ker(A2))− dim(ker(A))

ker(A3) 5 1 = dim(ker(A3))− dim(ker(A2))

ker(A4) 6 1 = dim(ker(A4))− dim(ker(A3))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.
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5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the fourth
power onwards.

ker(A) ⊊ ker(A2) ⊊ ker(A3) ⊊ ker(A4) = ker(A5) = · · · .
The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:

n1 +n2 +n3 +n4 = 2 = dim(ker(A)),

n2 +n3 +n4 = 2 = dim(ker(A2))− dim(ker(A)),

n3 +n4 = 1 = dim(ker(A3))− dim(ker(A2)),

n4 = 1 = dim(ker(A4))− dim(ker(A3)).

Solving this system, we have n1 = 0, n2 = 1, n3 = 0, n4 = 1.

A consequence from this fact is that the numbers in the last column are
descending.

We observe from the figures that
Ae4 = e3,
Ae3 = e2,
Ae2 = e1,
Ae1 = 0.

or 

Ae4 = e3,

A2 e4 = e2,

A3 e4 = e1,

A4 e4 = 0.

One sees that we have a Jordan chain with length four of linearly inde-
pendent vectors. We write a Jordan chain in reverse order.

{A3 e4 = e1, A2 e4 = e2, Ae4 = e3,e4}.
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After we have found the first Jordan chain of length 4, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 2 e1 1

ker(A2) 4 e2 1

ker(A3) 5 e3 0

ker(A4) 6 e4 0

One sees that we have still left a Jordan chain with length two of 2 lin-
early independent vectors. We write a Jordan chain in reverse order. We
take the vector e6 linearly independent from e2 in the the kernel of A2

and not in the kernel of A.

{Ae6 = e5,e6}.
We have found a second Jordan chain. It has length 2.

Let us note this in the new information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(A) 2 e1 e5 0

ker(A2) 4 e2 e6 0

ker(A3) 5 e3 0

ker(A4) 6 e4 0

The last column consists of only 0’s and this ends the search for Jordan
chains. We have indeed found 6 linearly independent vectors and these
form a basis for K6.
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Let us express our findings in a way that emphasises the position of
the elementary Jordan blocks and their relation with the powers of the
matrix A.

(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3. (d) Visualisation of A4.

Figure 9

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.
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2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.
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3. Calculation of the kernels of Bi.

Let us calculate the powers of the matrix B.

B =


2 −2 −1 2 1 1
4 −5 −3 5 1 2

−1 2 1 −3 1 0
1 −1 −1 1 1 1

−1 1 0 0 0 0
3 −4 −2 2 0 1

 ;

B2 =


1 −1 −1 1 1 1
1 −1 −1 1 1 1
1 −2 −1 2 −1 0
2 −3 −2 3 0 1
2 −3 −2 3 0 1

−3 4 3 −4 −1 −2

 ;

B3 =


2 −3 −2 3 0 1
2 −3 −2 3 0 1

−2 3 2 −3 0 −1
0 0 0 0 0 0
0 0 0 0 0 0

−2 3 2 −3 0 −1

 ;

B4 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation

2 −2 −1 2 1 1
4 −5 −3 5 1 2

−1 2 1 −3 1 0
1 −1 −1 1 1 1

−1 1 0 0 0 0
3 −4 −2 2 0 1




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in the following system of linear equations
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2z1 − 2z2 − z3 + 2z4 + z5 + z6 = 0,
4z1 − 5z2 − 3z3 + 5z4 + z5 + 2z6 = 0,
− z1 + 2z2 + z3 − 3z4 + z5 = 0,
z1 − z2 − z3 + z4 + z5 + z6 = 0,

− z1 + z2 = 0,
3z1 − 4z2 − 2z3 + 2z4 + z6 = 0.

We solve this system and find the solution set which is a subspace

ker(B) =
{
(r1, r1, r3,0,−r1 − r3, r1 + 2 r3) | r1, r3 ∈ K

}
= span

{
(1,1,0,0,−1,1), (0,0,1,0,−1,2)

}
.

Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation

1 −1 −1 1 1 1
1 −1 −1 1 1 1
1 −2 −1 2 −1 0
2 −3 −2 3 0 1
2 −3 −2 3 0 1

−3 4 3 −4 −1 −2




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in the following system of linear equations

z1 − z2 − z3 + z4 + z5 + z6 = 0,
z1 − z2 − z3 + z4 + z5 + z6 = 0,
z1 − 2z2 − z3 + 2z4 − z5 = 0,

2z1 − 3z2 − 2z3 + 3z4 + z6 = 0,
2z1 − 3z2 − 2z3 + 3z4 + z6 = 0,

−3z1 + 4z2 + 3z3 − 4z4 − z5 − 2z6 = 0.

We solve this system and find the solution set which is a subspace

ker(B2) =
{
(r1, r2, r3, r4, r1 − 2 r2 − r3 + 2 r4,−2 r1 + 3 r2 + 2 r3 − 3 r4)

| r1, r2, r3, r4 ∈ K
}

= span
{
(1,0,0,0,1,−2), (0,1,0,0,−2,3), (0,0,1,0,−1,2),
(0,0,0,1,2,−3)

}
.

Kernel of B3.
We calculate the kernel of B3 and we have to solve the matrix equation
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2 −3 −2 3 0 1
2 −3 −2 3 0 1

−2 3 2 −3 0 −1
0 0 0 0 0 0
0 0 0 0 0 0

−2 3 2 −3 0 −1




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in the following system of linear equations
2z1 − 3z2 − 2z3 + 3z4 + z6 = 0,
2z1 − 3z2 − 2z3 + 3z4 + z6 = 0,
−2z1 + 3z2 + 2z3 − 3z4 − z6 = 0,
−2z1 + 3z2 + 2z3 − 3z4 − z6 = 0.

We solve this system and find the solution set which is a subspace

ker(B3) =
{
(r1, r2, r3, r4, r5,−2 r1 + 3 r2 + 2 r3 − 3 r4)

| r1, r2, r3, r4, r5 ∈ K
}

= span
{
(1,0,0,0,0,−2), (0,1,0,0,0,3), (0,0,1,0,0,2),
(0,0,0,1,0,−3), (0,0,0,0,1,0)

}
.

Kernel of B4.
We calculate the kernel of B4 and we have to solve the matrix equation

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This is the vector space K6.

We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B) 2 2 = dim(ker(B))

ker(B2) 4 2 = dim(ker(B2))− dim(ker(B))

ker(B3) 5 1 = dim(ker(B3))− dim(ker(B2))

ker(B4) 6 1 = dim(ker(B4))− dim(ker(B3))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

The last number in the last column and fourth line is 1 and this gives
the information that there will be a Jordan chain of length 4. The first
number 2 in the last column is the dimension of the kernel of B. Af-
ter we have calculated the chain with length 4, the last column will be
from top to bottom {1,1,0,0}. There is still one chain of length 2 with
two linearly independent vectors left to be found. After this calculation,
the last column will be from top to bottom {0,0,0,0,0,0}. We have at
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this moment 6 linearly independent vectors which form a basis for this
vector space.

4. Calculation of the Jordan chains.

We look for a linearly independent set of vectors {w1,w2,w3,w4} satis-
fying 

Bw4 = w3,
Bw3 = w2,
Bw3 = w1,
Bw1 = 0

or 

Bw4 = w3,

B2 w4 = w2,

B3 w4 = w1,

B4 w4 = 0.

The first Jordan chain.
We look for a generating vector w4. We see from the information table
that there is a generating vector w4 for a chain of length 4.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B4). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B4).

2. The generating vector may not be in the ker(B3) because the length
of the chain must be exactly 4. So it has to be independent from
all vectors in ker(B3). It is sufficient that it is linearly independent
from a basis of ker(B3).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 4. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.
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4. We summarise: the generating vector in B4 together with the vec-
tors in ker(B3) and also the vectors, if any, of exactly height 4 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that ker(B4) = K6.

The generating vector has the following generic form

(a,b, c, d, e, f ).

The kernel of B3.
We remember that the kernel ker(B3) is

ker(B3) = span
{
(1,0,0,0,0,−2), (0,1,0,0,0,3), (0,0,1,0,0,2),

(0,0,0,1,0,−3), (0,0,0,0,1,0)
}
.

Vectors chosen in previous Jordan chains.
We have previously chosen no vector of exactly height 4 in a previous
Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 0 0 0 −2
0 1 0 0 0 3
0 0 1 0 0 2
0 0 0 1 0 −3
0 0 0 0 1 0
a b c d e f

 .

If we impose the condition 2a− 3b− 2 c + 3d+ f ≠ 0, then we can row
reduce this matrix to the matrix
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1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

We see that these vectors are independent if we impose the condition
2a− 3b − 2 c + 3d+ f ≠ 0.

So we can choose a = 1, b = 0, c = 0, d = 0, e = 0, f = 0.

We can choose the generating vector of the chain as follows

w4 = (1,0,0,0,0,0).

We calculate then Bi (1,0,0,0,0,0) from i = 1 to i = 4, and we know that
the vectors

{w1 = B3 w4,w2 = B2 w4,w3 = Bw4,w4}
are a Jordan chain of 4 linearly independent vectors and because B4 w4 =
0 we know that the length of the chain is exactly 4.

We calculate w3.

w3 = Bw4 =


2 −2 −1 2 1 1
4 −5 −3 5 1 2

−1 2 1 −3 1 0
1 −1 −1 1 1 1

−1 1 0 0 0 0
3 −4 −2 2 0 1




1
0
0
0
0
0

 =


2
4

−1
1

−1
3

 .

We calculate w2.

w2 = B2 w4 =


1 −1 −1 1 1 1
1 −1 −1 1 1 1
1 −2 −1 2 −1 0
2 −3 −2 3 0 1
2 −3 −2 3 0 1

−3 4 3 −4 −1 −2




1
0
0
0
0
0

 =


1
1
1
2
2

−3

 .
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We calculate w1.

w1 = B3 w4 =


2 −3 −2 3 0 1
2 −3 −2 3 0 1

−2 3 2 −3 0 −1
0 0 0 0 0 0
0 0 0 0 0 0

−2 3 2 −3 0 −1




1
0
0
0
0
0

 =


2
2

−2
0
0

−2

 .

We have now found the first Jordan chain. It has length 4.

{w1 = (2,2,−2,0,0,−2),w2 = (1,1,1,2,2,−3),
w3 = (2,4,−1,1,−1,3),w4 = (1,0,0,0,0,0)}.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 2 w1 1

ker(B2) 4 w2 1

ker(B3) 5 w3 0

ker(B4) 6 w4 0

with

w1 = (2,2,−2,0,0,−2)

w2 = (1,1,1,2,2,−3)

w3 = (2,4,−1,1,−1,3)

w4 = (1,0,0,0,0,0)



www.mathandphoto.eu. Exercise Notes Jordan 175

We see at the number 1 at the second line of the last column that we
have still a chain left of length 2.

We look for a generating vector w6. We see from the information table
that there is a generating vector w6 for a chain of length 2.

The second Jordan chain.
The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B2). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B2).

2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B2) = span
{
(1,0,0,0,1,−2), (0,1,0,0,−2,3), (0,0,1,0,−1,2),

(0,0,0,1,2,−3)
}
.

So the generating vector has the following generic form

a (1,0,0,0,1,−2)+ b (0,1,0,0,−2,3)+ c (0,0,1,0,−1,2)

+ d (0,0,0,1,2,−3)

= (a,b, c, d,a− 2b − c + 2d,−2a+ 3b + 2 c − 3d).
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The kernel of B.
We remember that the kernel ker(B) is

ker(B) = span
{
(1,1,0,0,−1,1), (0,0,1,0,−1,2)

}
.

Vectors chosen in previous Jordan chains.
We have previously chosen the vector w2 = (1,1,1,2,2,−3) of exactly
height 2 in a Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 1 0 0 −1 1
0 0 1 0 −1 2
1 1 1 2 2 −3
a b c d a− 2b − c + 2d −2a+ 3b + 2 c − 3d

 .
If we impose the condition a−b ≠ 0, then we can row reduce this matrix
to the matrix 

1 0 0 0 1 −2
0 1 0 0 −2 3
0 0 1 0 −1 2
0 0 0 1 2 −3

 .
We see that these vectors are independent if we impose the condition
a− b ≠ 0.

So we can choose a = 0, b = 1, c = 0, d = 0. We have now the valid
generating vector

w6 = (0,1,0,0,−2,3).

We calculate now our chain with length 2.

{Bw6,w6}.
We calculate w5.
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w5 = Bw6 =


2 −2 −1 2 1 1
4 −5 −3 5 1 2

−1 2 1 −3 1 0
1 −1 −1 1 1 1

−1 1 0 0 0 0
3 −4 −2 2 0 1




0
1
0
0

−2
3

 =


−1
−1

0
0
1

−1

 .

We have now found the second Jordan chain. It has length 2.

{
w5 = (−1,−1,0,0,1,−1),w6 = (0,1,0,0,−2,3)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(B) 2 w1 w5 0

ker(B2) 4 w2 w6 0

ker(B3) 5 w3 0

ker(B4) 6 w4 0

with

w1 = (2,2,−2,0,0,−2)

w2 = (1,1,1,2,2,−3)

w3 = (2,4,−1,1,−1,3)

w4 = (1,0,0,0,0,0)

w5 = (−1,−1,0,0,1,−1)

w6 = (0,1,0,0,−2,3)
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5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =


2 1 2 1 −1 0
2 1 4 0 −1 1

−2 1 −1 0 0 0
0 2 1 0 0 0
0 2 −1 0 1 −2

−2 −3 3 0 −1 3

 .

We check this solution.
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A = P−1 B P

=


0 −3/16 −1/2 7/16 −3/8 −3/16
0 −1/8 0 5/8 −1/4 −1/8
0 1/4 0 −1/4 1/2 1/4
1 −3/2 −1 3/2 0 1/2
0 −3/2 −2 5/2 0 1/2
0 −1 −1 2 −1 0



×


2 −2 −1 2 1 1
4 −5 −3 5 1 2

−1 2 1 −3 1 0
1 −1 −1 1 1 1

−1 1 0 0 0 0
3 −4 −2 2 0 1



×


2 1 2 1 −1 0
2 1 4 0 −1 1

−2 1 −1 0 0 0
0 2 1 0 0 0
0 2 −1 0 1 −2

−2 −3 3 0 −1 3



=


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0



=



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0





( ) .



www.mathandphoto.eu. Exercise Notes Jordan 180



www.mathandphoto.eu. Exercise Notes Jordan 181

9 exercise. (6× 6); (J3(0), J3(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B so that A is in Jordan normal form. Find explicitly
a matrix P that is invertible and represents the base change: A = P−1 B P .
Find explicitly Jordan chains that are necessary to construct the matrix
P .

B =


3 3 −1 2 2 1

−5 −5 1 −3 −3 −1
−12 −10 3 −8 −5 −3
−1 −1 1 −1 −1 −1

0 1 0 0 1 0
−4 −4 1 −3 −2 −1

 .

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I6| = λ6.

The eigenvalue λ = 0 has algebraic multiplicity 6. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
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this subsection 2. The solution will be completely independent from this
section.

We want to investigate the endomorphism A associated with this Jordan
block.

A =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 .

We show this in a way that emphasises the position of the elementary
Jordan blocks.

A =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0








.

We compute also the powers of A.
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A =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0








;

A2 =



0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0








;

A3 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0








.

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the third power of
A. The smallest exponent that makes the power of the matrix A the zero
matrix, in this case 3, is called the height of nilpotency of the matrix A.

It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A) = span
{
e1,e4

}
,

ker(A2) = span
{
e1,e2,e4,e5

}
,

ker(A3) = span
{
e1,e2,e3,e2,e3,e5,e6

}
= K6.
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After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 2 2 = dim(ker(A))

ker(A2) 4 2 = dim(ker(A2))− dim(ker(A))

ker(A3) 6 2 = dim(ker(A3))− dim(ker(A2))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the third
power onwards.

ker(A) ⊊ ker(A2) ⊊ ker(A3) = ker(A4) = · · · .
The dimensions of the kernels increase until they stabilise.
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We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:

n1 +n2 +n3 = 2 = dim(ker(A)),

n2 +n3 = 2 = dim(ker(A2))− dim(ker(A)),

n3 = 2 = dim(ker(A3))− dim(ker(A2)).

Solving this system, we have n1 = 0, n2 = 0, n3 = 2.

A consequence from this fact is that the numbers in the last column are
descending.

One sees that we have two Jordan chains with length three of linearly
independent vectors.

Let us start with the first chain.

We observe from the matrices that
Ae3 = e2,
Ae2 = e1,
Ae1 = 0.

or 
Ae3 = e2,

A2 e3 = e1,

A3 e3 = 0.

One sees that we have a Jordan chain with length three of linearly inde-
pendent vectors. We write a Jordan chain in reverse order.

{A2 e3 = e1, Ae3 = e2,e3}.
After we have found the first Jordan chain of length 3, we have then the
following table.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 2 e1 1

ker(A2) 4 e2 1

ker(A3) 6 e3 1

One sees that we have now a Jordan chain left with length three of 3
linearly independent vectors.

We observe from the matrices that
Ae6 = e5,
Ae5 = e4,
Ae4 = 0.

or 
Ae6 = e5,

A2 e6 = e4,

A3 e6 = 0.
We write a Jordan chain in reverse order.

{A2 e6 = e4, Ae6 = e5,e6}.
We have found the second Jordan chain. It has length 3. We have now
the following table.

Let us note this in the new information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(A) 2 e1 e4 0

ker(A2) 4 e2 e5 0

ker(A3) 5 e3 e6 0
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Because the last column consists now of 0’s, we are done with looking
for Jordan chains. We have found at this point a basis of V consisting
entirely of vectors in Jordan chains.

Let us express our findings in a way that emphasises the position of
the elementary Jordan blocks and their relation with the powers of the
matrix A.

(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3.

Figure 10

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
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and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.
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3. Calculation of the kernels of Bi.

Let us calculate the powers of the matrix B.

B =


3 3 −1 2 2 1

−5 −5 1 −3 −3 −1
−12 −10 3 −8 −5 −3
−1 −1 1 −1 −1 −1

0 1 0 0 1 0
−4 −4 1 −3 −2 −1

 ;

B2 =


0 0 0 0 0 0
5 4 −1 3 2 1

−2 −1 0 −1 0 0
−5 −4 1 −3 −2 −1
−5 −4 1 −3 −2 −1

3 3 −1 2 2 1

 ;

B3 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation

3 3 −1 2 2 1
−5 −5 1 −3 −3 −1
−12 −10 3 −8 −5 −3
−1 −1 1 −1 −1 −1

0 1 0 0 1 0
−4 −4 1 −3 −2 −1




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in the following system of linear equations

3 z1 + 3 z2 − z3 + 2z4 + 2z5 + z6 = 0,
− 5 z1 − 5 z2 + z3 − 3z4 − 3z5 − z6 = 0,
−12z1 − 10z2 + 3z3 − 8z4 − 5z5 − 3z6 = 0,
− z1 − z2 + z3 − z4 − z5 − z6 = 0,

z2 + z5 = 0,
− 4 z1 − 4 z2 + z3 − 3z4 − 2z5 − z6 = 0.
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We solve this system and find the solution set which is a subspace

ker(B) =
{
(0, r2, r3,−r2,−r2, r2 + r3) | r2, r3 ∈ K

}
= span

{
(0,1,0,−1,−1,1), (0,0,1,0,0,1)

}
.

Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation

0 0 0 0 0 0
5 4 −1 3 2 1

−2 −1 0 −1 0 0
−5 −4 1 −3 −2 −1
−5 −4 1 −3 −2 −1

3 3 −1 2 2 1




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in the following system of linear equations

5z1 + 4z2 − z3 + 3z4 + 2z5 + z6 = 0,
−2z1 − z2 − z4 = 0,
−5z1 − 4z2 + z3 − 3z4 − 2z5 − z6 = 0,
−5z1 − 4z2 + z3 − 3z4 − 2z5 − z6 = 0,

3z1 + 3z2 − z3 + 2z4 + 2z5 + z6 = 0.
We solve this system and find the solution set which is a subspace

ker(B2) =
{
(r1, r2, r3,−2 r1 − r2, r5, r1 − r2 + r3 − 2 r5) | r1, r2, r3, r5 ∈ K

}
= span

{
(1,0,0,−2,0,1), (0,1,0,−1,0,−1),

(0,0,1,0,0,1), (0,0,0,0,1,−2)
}
.

Kernel of B3.
We calculate the kernel of B3 and we have to solve the matrix equation

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This is the vector space K6.

We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B) 2 2 = dim(ker(B))

ker(B2) 4 2 = dim(ker(B2))− dim(ker(B))

ker(B3) 6 2 = dim(ker(B3))− dim(ker(B2))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

The last number in the last column is 2 and this gives the information
that there will be two Jordan chains of length 3. The first number 2
in the last column is the dimension of the kernel of B. After we have
calculated the chain with length 3, the last column will be from top to
bottom {1,1,1}. There is still one chain with three linearly independent
vectors left to be found. After we have found these three vectors, the
last column will be from top to bottom {0,0,0}. We have at that moment
6 linearly independent vectors which form a basis for this vector space.
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4. Calculation of the Jordan chains.

We look for a linearly independent set of vectors {w1,w2,w3} satisfying
Bw3 = w2,

B2 w3 = w1,

B3 w3 = 0.

The first Jordan chain.
We look for a starting w3. We see from the information table that there
is a generating vector w3 for a chain of length 3.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B3). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B3).

2. The generating vector may not be in the ker(B2) because the length
of the chain must be exactly 3. So it has to be independent from
all vectors in ker(B2). It is sufficient that it is linearly independent
from a basis of ker(B2).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 3. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B3 together with the vec-
tors in ker(B2) and also the vectors, if any, of exactly height 3 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B3) = K6.

So the generating vector has the following generic form

(a,b, c, d, e, f ).
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The kernel of B2.
We remember that the kernel ker(B2) is

ker(B2) = span
{
(1,0,0,−2,0,1), (0,1,0,−1,0,−1),

(0,0,1,0,0,1), (0,0,0,0,1,−2)
}
.

Vectors chosen in previous Jordan chains.
We have previously not chosen a vector of exactly height 3 in a Jordan
chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 0 −2 0 1
0 1 0 −1 0 −1
0 0 1 0 0 1
0 0 0 0 1 −2
a b c d e f

 .
If we impose the condition 2a+ b + d ≠ 0, then we can row reduce this
matrix to the matrix

1 0 0 0 0 3b−2c+d+4e+2f
2a+b+d

0 1 0 0 0 −3a−c−d+2 e+f
2a+b+d

0 0 1 0 0 1

0 0 0 1 0 −a+b−c+2 e+f
2a+b+d

0 0 0 0 1 −2

 .

We see that these vectors are independent if we impose the condition
2a+ b + d ≠ 0.

So we can choose a = 1, b = 0, c = 0, d = 0, e = 0, f = 0. We can choose
a valid generating vector of the chain as follows

w3 = (1,0,0,0,0,0).

We calculate then Bi (1,0,0,0,0,0) from i = 1 to i = 2, and we know that
the vectors
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{w1 = B2 w3,w2 = Bw3,w3}
are a Jordan chain of 3 linearly independent vectors and because B3 w4 =
0, we know that the length of the chain is exactly 3.

We calculate w2

w2 = Bw3 =


3 3 −1 2 2 1

−5 −5 1 −3 −3 −1
−12 −10 3 −8 −5 −3
−1 −1 1 −1 −1 −1

0 1 0 0 1 0
−4 −4 1 −3 −2 −1




1
0
0
0
0
0

 =


3

−5
−12
−1

0
−4

 .

We calculate w1

w1 = B2 w3 =


0 0 0 0 0 0
5 4 −1 3 2 1

−2 −1 0 −1 0 0
−5 −4 1 −3 −2 −1
−5 −4 1 −3 −2 −1

3 3 −1 2 2 1




1
0
0
0
0
0

 =


0
5

−2
−5
−5

3

 .

We have now found the Jordan chain

{w1 = (0,5,−2,−5,−5,3),w2 = (3,−5,−12,−1,0,−4),
w3 = (1,0,0,0,0,0)}.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 2 w1 1

ker(B2) 4 w2 1

ker(B3) 6 w3 1
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with

w1 = (0,5,−2,−5,−5,3)

w2 = (3,−5,−12,−1,0,−4)

w3 = (1,0,0,0,0,0)

We see at the number 1 at the third row of the last column that there is
still a Jordan chain of length 3 left to be found.

The second Jordan chain.
We look for a starting w6. We see from the information table that there
is a generating vector w6 for a chain of length 3.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B3). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B3).

2. The generating vector may not be in the ker(B2) because the length
of the chain must be exactly 3. So it has to be independent from
all vectors in ker(B2). It is sufficient that it is linearly independent
from a basis of ker(B2).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 3. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B3 together with the vec-
tors in ker(B2) and also the vectors, if any, of exactly height 3 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B3) = K6.

So the generating vector has the following generic form
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(a,b, c, d, e, f ).

The kernel of B2.
We remember that the kernel ker(B2) is

ker(B2) = span
{
(1,0,0,−2,0,1), (0,1,0,−1,0,−1),

(0,0,1,0,0,1), (0,0,0,0,1,−2)
}
.

Vectors chosen in previous Jordan chains.
We have previously chosen the vector w3 = (1,0,0,0,0,0) of exactly
height 3 in a Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 0 −2 0 1
0 1 0 −1 0 −1
0 0 1 0 0 1
0 0 0 0 1 −2
1 0 0 0 0 0
a b c d e f

 .

If we impose the condition 3b− 2 c +d+ 4 e+ 2f ≠ 0, then we can row
reduce this matrix to the matrix

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

We see that these vectors are independent if we impose the condition
3b − 2 c + d+ 4 e+ 2f ≠ 0.

So we can choose a = 0, b = 0, c = 0, d = 0. e = 0 and f = 1.

We can choose a valid generating vector of the chain as follows

w6 = (0,0,0,0,0,1).
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We calculate now our chain with length 3.

{B2 w6, Bw6,w6}.
We calculate w5.

w5 = Bw6 =


3 3 −1 2 2 1

−5 −5 1 −3 −3 −1
−12 −10 3 −8 −5 −3
−1 −1 1 −1 −1 −1

0 1 0 0 1 0
−4 −4 1 −3 −2 −1




0
0
0
0
0
1

 =


1

−1
−3
−1

0
−1

 .

We calculate w4

w4 = Bw5 =


3 3 −1 2 2 1

−5 −5 1 −3 −3 −1
−12 −10 3 −8 −5 −3
−1 −1 1 −1 −1 −1

0 1 0 0 1 0
−4 −4 1 −3 −2 −1




1

−1
−3
−1

0
−1

 =


0
1
0

−1
−1

1

 .

We have now found the second Jordan chain. It has length 3.

{
w4 = (0,1,0,−1,−1,1),w5 = (1,−1,−3,−1,0,−1),w6 = (0,0,0,0,0,1)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(B) 2 w1 w4 0

ker(B2) 4 w2 w5 0

ker(B3) 6 w3 w6 0

with
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w1 = (0,5,−2,−5,−5,3)

w2 = (3,−5,−12,−1,0,−4)

w3 = (1,0,0,0,0,0)

w4 = (0,1,0,−1,−1,1)

w5 = (1,−1,−3,−1,0,−1)

w6 = (0,0,0,0,0,1)

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =


0 3 1 0 1 0
5 −5 0 1 −1 0

−2 −12 0 0 −3 0
−5 −1 0 −1 −1 0
−5 0 0 −1 0 0

3 −4 0 1 −1 1

 .

We check this solution.
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A = P−1 B P

=


0 9/8 −1/2 3/8 3/4 0
0 −1/4 0 1/4 −1/2 0
1 1/2 0 1/2 0 0
0 −45/8 5/2 −15/8 −19/4 0
0 1/4 0 −5/4 3/2 0
0 3/2 −1 1/2 2 1



×


3 3 −1 2 2 1

−5 −5 1 −3 −3 −1
−12 −10 3 −8 −5 −3
−1 −1 1 −1 −1 −1

0 1 0 0 1 0
−4 −4 1 −3 −2 −1



×


0 3 1 0 1 0
5 −5 0 1 −1 0

−2 −12 0 0 −3 0
−5 −1 0 −1 −1 0
−5 0 0 −1 0 0

3 −4 0 1 −1 1



=


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0



=



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0



 
  .
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10 exercise. (5× 5); (J4(0), J1(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B so that A is in Jordan normal form. Find explicitly
a matrix P that is invertible and represents the base change: A = P−1 B P .
Find explicitly Jordan chains that are necessary to construct the matrix
P .

B =


0 2 −1 −4 −2
0 1 0 −2 −1
0 −1 0 1 1
0 1 0 −1 −1
0 0 −1 −2 0

 .

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I5| = −λ5.

The eigenvalue λ = 0 has algebraic multiplicity 5. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
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this subsection 2. The solution will be completely independent from this
section.

Before trying to find a solution of this exercise, let us try to see what is
going on with a particular related type of a Jordan matrix. We want to
investigate the endomorphism A associated with this Jordan block.

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 .
We show this in a way that emphasises the position of the elementary
Jordan blocks.

A =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0




( ) .

We compute also the powers of A.
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A =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0




( ) ;

A2 =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




( ) ;

A3 =


0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




( ) ;

A4 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




( ) .

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the fourth power
of A. The smallest exponent that makes the power of the matrix A the
zero matrix, in this case 4, is called the height of nilpotency of the matrix
A.

It is interesting to observe how the kernels change. We have ker(A4) =
K5. 

ker(A) = span
{
e1,e5

}
,

ker(A2) = span
{
e1,e2,e5

}
,

ker(A3) = span
{
e1,e2,e3,e5

}
,

ker(A4) = span
{
e1,e2,e3,e4,e5

}
.
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After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 2 2 = dim(ker(A))

ker(A2) 3 1 = dim(ker(A2))− dim(ker(A))

ker(A3) 4 1 = dim(ker(A3))− dim(ker(A2))

ker(A4) 5 1 = dim(ker(A4))− dim(ker(A3))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see that there is equality in the inclusion of sets from the fourth
power onwards.

ker(A) ⊊ ker(A2) ⊊ ker(A3) ⊊ ker(A4) = ker(A5) = · · · .
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The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:

n1 +n2 +n3 +n4 = 2 = dim(ker(A)),

n2 +n3 +n4 = 1 = dim(ker(A2))− dim(ker(A)),

n3 +n4 = 1 = dim(ker(A3))− dim(ker(A2)),

n4 = 1 = dim(ker(A4))− dim(ker(A3)).

Solving this system, we have n1 = 1, n2 = 0, n3 = 0, n4 = 1.

A consequence from this fact is that the numbers in the last column are
descending.

One sees by looking at the matrices Ai that we have two Jordan chains.
Let us start with the first chain.

We observe from the matrices that
Ae4 = e3,
Ae3 = e2,
Ae2 = e1,
Ae1 = 0,

or 

Ae4 = e3,

A2 e4 = e2,

A3 e4 = e1,

A4 e4 = 0.

One sees that we have a Jordan chain with length four of linearly inde-
pendent vectors. We write a Jordan chain in reverse order.

{A3 e4 = e1, A2 e4 = e2, Ae4 = e3,e4}.
After we have found the first Jordan chain of length 4, we have then the
following table.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 2 e1 1

ker(A2) 3 e2 0

ker(A3) 4 e3 0

ker(A4) 5 e4 0

Because the last column consists now of at least one number that is not
0, we are not done with looking for Jordan chains. We see that we can
find another Jordan chain with length 1.

We have found the eigenvector e5. This vector is an elementary Jordan
chain on its own. It has length 1.

{e5}.
Let us note this in the new information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 rem dim

ker(A) 2 e1 e5 0

ker(A2) 3 e2 0

ker(A3) 4 e3 0

ker(A4) 5 e4 0

The last column consists of only 0’s and this ends the search for Jordan
chains. We have indeed found 5 linearly independent vectors and these
form a basis for K5.
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Let us express our findings in a way that emphasises the position of
the elementary Jordan blocks and their relation with the powers of the
matrix A.

(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3. (d) Visualisation of A4.

Figure 11

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.
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2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.
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3. Calculation of the kernels of Bi.

Let us calculate the powers of the matrix B.

B =


0 2 −1 −4 −2

0 1 0 −2 −1

0 −1 0 1 1

0 1 0 −1 −1

0 0 −1 −2 0

 ;

B2 =


0 −1 2 3 1

0 −1 1 2 1

0 0 −1 −1 0

0 0 1 1 0

0 −1 0 1 1

 ;

B3 =


0 0 −1 −1 0

0 0 −1 −1 0

0 0 0 0 0

0 0 0 0 0

0 0 −1 −1 0

 ;

B4 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 .

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation

0 2 −1 −4 −2
0 1 0 −2 −1
0 −1 0 1 1
0 1 0 −1 −1
0 0 −1 −2 0



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This results in the following system of linear equations
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2z2 − z3 − 4z4 − 2z5 = 0,
z2 − 2z4 − z5 = 0,

− z2 + z4 + z5 = 0,
z2 − z4 − z5 = 0,
− z3 − 2z4 = 0.

We solve this system and find the solution set which is a subspace

ker(B) =
{
(r1, r2,0,0, r2) | r1, r2 ∈ K

}
= span

{
(1,0,0,0,0), (0,1,0,0,1)

}
.

Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation

0 −1 2 3 1
0 −1 1 2 1
0 0 −1 −1 0
0 0 1 1 0
0 −1 0 1 1



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This results in the following system of linear equations

− z2 + 2z3 + 3z4 + z5 = 0,
− z2 + z3 + 2z4 + z5 = 0,

− z3 − z4 = 0,
+ z3 + z4 = 0,

− z2 + z4 + z5 = 0.

We solve this system and find the solution set which is a subspace

ker(B2) =
{
(r1, r2, r3,−r3, r2 + r3) | r1, r2, r3 ∈ K

}
= span

{
(1,0,0,0,0), (0,1,0,0,1), (0,0,1,−1,1)

}
.

Kernel of B3.
We calculate the kernel of B3 and we have to solve the matrix equation

0 0 −1 −1 0
0 0 −1 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 −1 0



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
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This results in the following system of linear equations
− z3 − z4 = 0,
− z3 − z4 = 0,
− z3 − z4 = 0.

We solve this system and find the solution set which is a subspace

ker(B3) =
{
(r1, r2, r3,−r3, r5) | r1, r2, r3, r5 ∈ K

}
= span

{
(1,0,0,0,0), (0,1,0,0,0),

(0,0,1,−1,0), (0,0,0,0,1)
}
.

Kernel of B4.
We calculate the kernel of B4 and we have to solve the matrix equation

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
The solution set is the vector space K5.

We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B) 2 2 = dim(ker(B))

ker(B2) 3 1 = dim(ker(B2))− dim(ker(B))

ker(B3) 4 1 = dim(ker(B3))− dim(ker(B2))

ker(B4) 5 1 = dim(ker(B4))− dim(ker(B3))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.
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2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

The last number in the last column and fourth line is 1 and this gives
the information that there will be a Jordan chain of length 4. The first
number 2 in the last column is the dimension of the kernel of B. After
we have calculated the chain with length 4, the last column will be from
top to bottom {1,0,0,0,0}. There is still one linearly independent vector
left to be found. After this calculation, the last column will be from top
to bottom {0,0,0,0,0}. We have at that moment 5 linearly independent
vectors which form a basis for this vector space.

4. Calculation of the Jordan chains.

We look for a linearly independent set of vectors {w1,w2,w3,w4} satis-
fying 

Bw4 = w3,

B2 w4 = w2,

B3 w4 = w1,

B4 w4 = 0.

where w4 is in the vector space ker(B4) but not in ker(B3).

We look for a starting w4. We see from the information table that there
is a generating vector w4 for a chain of length 4.

The generating vector has to satisfy the following conditions.
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1. It has to be in the kernel ker(B4). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B4).

2. The generating vector may not be in the ker(B3) because the length
of the chain must be exactly 4. So it has to be independent from
all vectors in ker(B3). It is sufficient that it is linearly independent
from a basis of ker(B3).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 4. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B4 together with the vec-
tors in ker(B3) and also the vectors, if any, of exactly height 4 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B4) = K5.
So the generating vector has the following generic form

(a,b, c, d, e).
The kernel of B3.
We remember that the kernel ker(B3) is

ker(B3) = span
{
(1,0,0,0,0), (0,1,0,0,0),

(0,0,1,−1,0), (0,0,0,0,1)
}
.

Vectors chosen in previous Jordan chains.
We have previously chosen no vector of exactly height 4 in a Jordan
chain.

Condition of linear independency of the vectors.

We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.
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H =


1 0 0 0 0
0 1 0 0 0
0 0 1 −1 0
0 0 0 0 1
a b c d e

 .
If we impose the condition c+d ≠ 0, then we can row reduce this matrix
to the matrix 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

We see that these vectors are independent if we impose the condition
c + d ≠ 0.

So we can choose a = 0, b = 0, c = 1, d = 0, e = 0.

We can choose a valid generating vector of the chain as follows

w4 = (0,0,1,0,0).

We calculate then Bi (0,0,1,0,0) from i = 1 to i = 3, and we know that
the vectors

{w1 = B3 w4,w2 = B2 w4,w3 = Bw4,w4}
are a Jordan chain of 4 linearly independent vectors and because B4 w4 =
0, we know that the length of the chain is exactly 4.

We calculate w3.

w3 = Bw4 =


0 2 −1 −4 −2
0 1 0 −2 −1
0 −1 0 1 1
0 1 0 −1 −1
0 0 −1 −2 0




0
0
1
0
0

 =


−1

0
0
0

−1

 .

We calculate w2.
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w2 = B2 w4 =


0 −1 2 3 1
0 −1 1 2 1
0 0 −1 −1 0
0 0 1 1 0
0 −1 0 1 1




0
0
1
0
0

 =


2
1

−1
1
0

 .

We calculate w1.

w1 = B3 w4 =


0 0 −1 −1 0
0 0 −1 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 −1 0




0
0
1
0
0

 =


−1
−1

0
0

−1

 .

We have now found the Jordan chain

{
w1 = (−1,−1,0,0,−1),w2 = (2,1,−1,1,0),

w3 = (−1,0,0,0,−1),w4 = (0,0,1,0,0)
}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 2 w1 1

ker(B2) 3 w2 0

ker(B3) 4 w3 0

ker(B4) 5 w4 0

with
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w1 = (−1,−1,0,0,−1)

w2 = (2,1,−1,1,0)

w3 = (−1,0,0,0,−1)

w4 = (0,0,1,0,0)

The last column in the information table tells us that there is still a
chain of length 1 left to be found. This is an eigenvector w5. We know
that we have in our previous Jordan chain found an eigenvector w1 =
(−1,−1,0,0,−1) which has height 1. So we have to be careful when
choosing an eigenvector.

The vector must be an eigenvector. It must be in the space

ker(B) = span
{
(1,0,0,0,0), (0,1,0,0,1)

}
.

The vector must be of the generic form

a (1,0,0,0,0)+ b (0,1,0,0,1) = (a,b,0,0, b).

We have at this point chosen in ker(B) already the vector

w1 = (−1,−1,0,0,−1)

of height exactly height 1.

We have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(
−1 −1 0 0 −1
a b 0 0 b

)
.

We row reduce this matrix H and find then if we impose the condition
that a− b ≠ 0 (

1 0 0 0 0
0 1 0 0 1

)
.

We see that these vectors are independent if we impose the condition
a− b ≠ 0.
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So we can choose a = 0, b = 1.

We have then the generating vector for the chain

w5 = (0,1,0,0,1).

This vector is an eigenvector. It forms a Jordan chain on its own. It has
length 1.

{
w5 = (0,1,0,0,1)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(B) 2 w1 w5 0

ker(B2) 3 w2 0

ker(B3) 4 w3 0

ker(B4) 5 w4 0

with

w1 = (−1,−1,0,0,−1)

w2 = (2,1,−1,1,0)

w3 = (−1,0,0,0,−1)

w4 = (0,0,1,0,0)

w5 = (0,1,0,0,1)

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now
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P =


−1 2 −1 0 0
−1 1 0 0 1

0 −1 0 1 0
0 1 0 0 0

−1 0 −1 0 1

 .
We check our calculations.

A = P−1 B P

=


−1 −1 0 3 1

0 0 0 1 0
0 1 0 −1 −1
0 0 1 1 0

−1 0 0 2 1



×


0 2 −1 −4 −2
0 1 0 −2 −1
0 −1 0 1 1
0 1 0 −1 −1
0 0 −1 −2 0



×


−1 2 −1 0 0
−1 1 0 0 1

0 −1 0 1 0
0 1 0 0 0

−1 0 −1 0 1



=


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0



=


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0




( ) .
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11 exercise. (5× 5); (J3(0), J2(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B so that A is in Jordan normal form. Find explicitly
a matrix P that is invertible and represents the base change: A = P−1 B P .
Find explicitly Jordan chains that are necessary to construct the matrix
P .

B =


0 0 1 1 0
1 0 1 2 1
3 −1 1 3 2

−2 1 −1 −2 −1
2 −1 0 1 1

 .

Solution.

1. Eigenvalues and the characteristic polynomial.

pC-H(λ) = |B − λ I5| = −λ5.

The eigenvalue λ = 0 has algebraic multiplicity 5. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
this subsection 2. The solution will be completely independent from this
section.
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Before trying to find a solution of this exercise, let us try to see what is
going on with a particular type of an elementary Jordan block. We want
to investigate the endomorphism A associated with this Jordan block.

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 .
We show this in a way that emphasises the position of the elementary
Jordan blocks.

A =


0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0



 
( ) .

We compute also the powers of A.

A =


0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0



 
( ) ;

A2 =


0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



 
( ) ;

A3 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



 
( ) .
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We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the third power of
A. The smallest exponent that makes the power of the matrix A the zero
matrix, in this case 3, is called the height of nilpotency of the matrix A.

It is interesting to observe how the kernels change.
ker(A) = span

{
e1,e4

}
,

ker(A2) = span
{
e1,e2,e4,e5

}
,

ker(A3) = span
{
e1,e2,e3,e4,e5

}
= K5.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 2 2 = dim(ker(A))

ker(A2) 4 2 = dim(ker(A2))− dim(ker(A))

ker(A3) 5 1 = dim(ker(A3))− dim(ker(A2))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
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that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the third
power onwards.

ker(A) ⊊ ker(A2) ⊊ ker(A3) = ker(A4) = · · · .
The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:

n1 +n2 +n3 = 2 = dim(ker(A)),

n2 +n3 = 2 = dim(ker(A2))− dim(ker(A)),

n3 = 1 = dim(ker(A3))− dim(ker(A2)).

Solving this system, we have n1 = 0, n2 = 1, n3 = 1.

A consequence from this fact is that the numbers in the last column are
descending.

One sees by looking at the matrices Ai that we have two Jordan chains.

Let us start with the first chain.

We observe from the matrices that
Ae3 = e2,
Ae2 = e1,
Ae1 = 0,

or 
Ae3 = e2,

A2 e3 = e1,

A3 e3 = 0.

One sees that we have a Jordan chain with length three of linearly inde-
pendent vectors. We write a Jordan chain in reverse order.
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{A2 e3 = e1, Ae3 = e2,e3}.
After we have found the first Jordan chain of length 4, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 2 e1 1

ker(A2) 4 e2 1

ker(A3) 5 e3 0

Because the last column consists now of at least one number that is not
0, we are not done with looking for Jordan chains.

Let us start with the second chain.

We observe from the matrices that{
Ae5 = e4,
Ae4 = 0,

or {
Ae5 = e4,

A2 e5 = 0.

One sees that we have a Jordan chain with length two of linearly inde-
pendent vectors. We write a Jordan chain in reverse order.

{e4 = Ae5,e5}.

Let us note this in the new information table.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(A) 2 e1 e4 0

ker(A2) 4 e2 e5 0

ker(A3) 5 e3 0

The last column consists of only 0’s and this ends the search for Jordan
chains. We have indeed found 5 linearly independent vectors and these
form a basis for K5.

Let us express our findings in a way that emphasises the position of
the elementary Jordan blocks and their relation with the powers of the
matrix A.
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(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3.

Figure 12

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
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into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.
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3. Calculation of the kernels of Bi.

Let us calculate the powers of the matrix B.

B =


0 0 1 1 0
1 0 1 2 1
3 −1 1 3 2

−2 1 −1 −2 −1
2 −1 0 1 1

 ;

B2 =


1 0 0 1 1
1 0 0 1 1
0 0 0 0 0
0 0 0 0 0

−1 0 0 −1 −1

 ;

B3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation

0 0 1 1 0
1 0 1 2 1
3 −1 1 3 2

−2 1 −1 −2 −1
2 −1 0 1 1



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This results in the following system of linear equations

z3 + z4 = 0,
z1 + z3 + 2z4 + z5 = 0,

3z1 − z2 + z3 + 3z4 + 2z5 = 0,
−2z1 + z2 − z3 − 2z4 − z5 = 0,

2z1 − z2 + z4 + z5 = 0.

We solve this system and find the solution set which is a subspace
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ker(B) =
{
(r1, r1, r3,−r3,−r1 + r3) | r1, r3 ∈ K

}
= span

{
(1,1,0,0,−1), (0,0,1,−1,1)

}
.

Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation

1 0 0 1 1
1 0 0 1 1
0 0 0 0 0
0 0 0 0 0

−1 0 0 −1 −1



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This results in the following system of linear equations

z1 + z4 + z5 = 0,
z1 + z4 + z5 = 0,

−z1 − z4 − z5 = 0.

We solve this system and find the solution set which is a subspace

ker(B2) =
{
(r1, r2, r3, r4,−r1 − r4) | r1, r2, r3, r4 ∈ K

}
= span

{
(1,0,0,0,−1), (0,1,0,0,0),
(0,0,1,0,0), (0,0,0,1,−1)

}
.

Kernel of B3.
We calculate the kernel of B3 and we have to solve the matrix equation

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
The solution is the vector space K5.

We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B) 2 2 = dim(ker(B))

ker(B2) 4 2 = dim(ker(B2))− dim(ker(B))

ker(B3) 5 1 = dim(ker(B3))− dim(ker(B2))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

The last number in the last column on the third line is 1 and this gives
the information that there will be one Jordan chain of length 3. The first
number 2 in the last column is the dimension of the kernel of B. After
we have calculated the chain with length 3, the last column will be from
top to bottom {1,1,0}. There is still one chain of length two left to be
found. After this calculation, the last column will be from top to bottom
{0,0,0}. We have at that moment 5 linearly independent vectors which
form a basis for this vector space.
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4. Calculation of the Jordan chains.

We look for a linearly independent set of vectors {w1,w2,w3} satisfying
Bw3 = w2,

B2 w3 = w1

B3 w3 = 0.

where w3 is in the vector space ker(B3) but not in ker(B2).

The first Jordan chain.
We look for a starting w3. We see from the information table that there
is a generating vector w3 for a chain of length 3.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B3). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B3).

2. The generating vector may not be in the ker(B2) because the length
of the chain must be exactly 3. So it has to be independent from
all vectors in ker(B2). It is sufficient that it is linearly independent
from a basis of ker(B2).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 3. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B3 together with the vec-
tors in ker(B2) and also the vectors, if any, of exactly height 3 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B3) = K5.

The generating vector has the following generic form

(a,b, c, d, e).
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The kernel of B2.
We remember that the kernel ker(B2) is

ker(B2) = span
{
(1,0,0,0,−1), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,−1)

}
.

Vectors chosen in previous Jordan chains.
We have previously chosen no vector of exactly height 3 in a Jordan
chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 0 0 −1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 −1
a b c d e

 .
If we impose the condition a + d + e ≠ 0, then we can row reduce this
matrix to the matrix 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

We see that these vectors are independent if we impose the condition
a+ d+ e ≠ 0. So we can choose a = 1, b = 0, c = 0, d = 0, e = 0.

We can choose a valid generating vector of the chain as follows

w3 = (1,0,0,0,0).

We calculate then Bi (1,0,0,0,0) from i = 1 to i = 2, and we know that
the vectors

{w1 = B2 w3,w2 = Bw3,w3}
are a Jordan chain of 3 linearly independent vectors and because B3 w3 =
0, we know that the length of the chain is exactly 3.
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We calculate w2.

w2 = Bw3 =


0 0 1 1 0
1 0 1 2 1
3 −1 1 3 2

−2 1 −1 −2 −1
2 −1 0 1 1




1
0
0
0
0

 =


0
1
3
−2

2

 .

We calculate w1.

w1 = B2 w3 =


1 0 0 1 1
1 0 0 1 1
0 0 0 0 0
0 0 0 0 0

−1 0 0 −1 −1




1
0
0
0
0

 =


1
1
0
0

−1

 .

We have now found the Jordan chain

{
w1 = (1,1,0,0,−1),w2 = (0,1,3,−2,2),w3 = (1,0,0,0,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 2 w1 1

ker(B2) 4 w2 1

ker(B3) 5 w3 0

with

w1 = (1,1,0,0,−1)

w2 = (0,1,3,−2,2)

w3 = (1,0,0,0,0)
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We see at the number 1 in the second row of the last column that we
have still to find a vector w5.

The second Jordan chain.
We look for a starting w5. We see from the information table that there
is a generating vector w5 for a chain of length 2.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B2). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B2).

2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B2) = span
{
(1,0,0,0,−1), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,−1)

}
.

So the generating vector has the following generic form

a (1,0,0,0,−1)+ b (0,1,0,0,0)+ c (0,0,1,0,0)+ d (0,0,0,1,−1)

= (a,b, c, d,−a− d).

The kernel of B.
We remember that the kernel ker(B) is
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ker(B) = span
{
(1,1,0,0,−1), (0,0,1,−1,1)

}
.

Vectors chosen in previous Jordan chains.
We have previously chosen the vector w2 = (0,1,3,−2,2) of exactly
height 2 in a Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 1 0 0 −1
0 0 1 −1 1
0 1 3 −2 2
a b c d −a− d

 .
If we impose the condition a − b + c + d ≠ 0, then we can row reduce
this matrix to the matrix

1 0 0 0 −1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 −1

 .
We see that these vectors are independent if we impose the condition
a− b + c + d ≠ 0. So we can choose a = 0, b = 1, c = 0, d = 0.

We can choose a valid generating vector of the chain as follows

w5 = (0,1,0,0,0).

We calculate then B (0,1,0,0,0), and we know that the vectors

{Bw5,w5}
form a Jordan chain of two linearly independent vectors.

We calculate w4.

w4 = Bw5 =


0 0 1 1 0
1 0 1 2 1
3 −1 1 3 2

−2 1 −1 −2 −1
2 −1 0 1 1




0
1
0
0
0

 =


0
0

−1
1

−1

 .
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We have now found the second Jordan chain. It has length 2.

{
w4 = (0,0,−1,1,−1),w5 = (0,1,0,0,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(B) 2 w1 w4 0

ker(B2) 4 w2 w5 0

ker(B3) 5 w3 0

with

w1 = (1,1,0,0,−1)

w2 = (0,1,3,−2,2)

w3 = (1,0,0,0,0)

w4 = (0,0,−1,1,−1)

w5 = (0,1,0,0,0)

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =


1 0 1 0 0
1 1 0 0 1
0 3 0 −1 0
0 −2 0 1 0

−1 2 0 −1 0

 .
We check our calculations.
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A = P−1 B P

=


0 0 0 −1 −1
0 0 1 1 0
1 0 0 1 1
0 0 2 3 0
0 1 −1 0 1



×


0 0 1 1 0
1 0 1 2 1
3 −1 1 3 2

−2 1 −1 −2 −1
2 −1 0 1 1



×


1 0 1 0 0
1 1 0 0 1
0 3 0 −1 0
0 −2 0 1 0

−1 2 0 −1 0



=


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0



=


0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0



 
( ) .
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12 exercise. (5× 5); (J2(0), J2(0), J1(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B so that A is in Jordan normal form. Find explicitly
a matrix P that is invertible and represents the base change: A = P−1 B P .
Find explicitly Jordan chains that are necessary to construct the matrix
P .

B =


1 0 1 −1 −2

−1 0 −1 1 2
1 −1 0 0 −2
0 −1 −1 1 0
1 0 1 −1 −2

 .

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I5| = −λ5.

The eigenvalue λ = 0 has algebraic multiplicity 5. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
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this subsection 2. The solution will be completely independent from this
section.

We want to investigate the endomorphism A associated with this Jordan
block.

A =


0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 .
We show this matrix in a way that emphasises the position of the ele-
mentary Jordan blocks. We compute also the powers of A.

A =


0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0



( )
( )

( ) ,

A2 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



( )
( )

( ) .

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the second power
of A. The smallest exponent that makes the power of the matrix A the
zero matrix, in this case 2, is called the height of nilpotency of the matrix
A.

It is interesting to observe how the kernels change.{
ker(A) = span

{
e1,e3,e5

}
,

ker(A2) = span
{
e1,e2,e3,e4,e5

}
= K5.
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After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 3 3 = dim(ker(A))

ker(A2) 5 2 = dim(ker(A2))− dim(ker(A))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A) ⊊ ker(A2) = ker(A3) = · · · .
The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:
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{
n1 +n2 = 3 = dim(ker(A)),

n2 = 2 = dim(ker(A2))− dim(ker(A)).

Solving this system, we have n1 = 1, n2 = 2.

A consequence from this fact is that the numbers in the last column are
descending.

Let us start with the first chain.

We observe from the matrices that{
Ae2 = e1,
Ae1 = 0,

or {
Ae2 = e1,

A2 e2 = 0.

We have the first Jordan chain

{Ae2 = e1,e2}.
After we have found the first Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 3 e1 2

ker(A2) 5 e2 1

Because the last column consists now of at least one number that is not
0, we are not done with looking for Jordan chains. One sees that we have
another Jordan chain with length two of linearly independent vectors.
Let us start with the second chain.

We observe from the matrices that{
Ae4 = e3,
Ae3 = 0,
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or {
Ae4 = e3,

A2 e4 = 0.

We write a Jordan chain in reverse order.

{e3 = Ae4,e4}.

Let us note this in the new information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(A) 3 e1 e3 1

ker(A2) 5 e2 e4 0

The last column does not consist of only 0’s and we are not finished with
the search for Jordan chains. We have indeed a third Jordan chain with
length 1. It consists of a single eigenvector.

{
e5
}
.

Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 remaining dim

ker(A) 3 e1 e3 e5 0

ker(A2) 5 e2 e4 0

Let us express our findings in a way that emphasises the position of
the elementary Jordan blocks and their relation with the powers of the
matrix A.
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(a) Visualisation of A. (b) Visualisation of A2.

Figure 13

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.
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3. Calculation of the kernels of Bi.

Let us calculate the powers of the matrix B.

B =


1 0 1 −1 −2

−1 0 −1 1 2
1 −1 0 0 −2
0 −1 −1 1 0
1 0 1 −1 −2

 ;

B2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation

1 0 1 −1 −2
−1 0 −1 1 2

1 −1 0 0 −2
0 −1 −1 1 0
1 0 1 −1 −2



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This results in the following system of linear equations

z1 + z3 − z4 − 2z5 = 0,
−z1 − z3 + z4 + 2z5 = 0,
z1 − z2 − 2z5 = 0,
− z2 − z3 + z4 = 0,

z1 + z3 − z4 − 2z5 = 0.

We solve this system and find the solution set which is a subspace

ker(B) =
{
(r1, r2, r3, r2 + r3, r1/2− r2/2) | r1, r2, r3 ∈ K

}
= span

{
(1,0,0,0,1/2), (0,1,0,1,−1/2), (0,0,1,1,0)

}
.

Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation



www.mathandphoto.eu. Exercise Notes Jordan 245


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This is the vector space K5.

We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B) 3 3 = dim(ker(B))

ker(B2) 5 2 = dim(ker(B2))− dim(ker(B))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.
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The last number in the last column and on the second line is 2 and this
gives the information that there will be two Jordan chains of length 2.
The first number 3 in the last column is the dimension of the kernel of
B. After we have calculated the chain with length 2, the last column will
be from top to bottom {2,1}. There is still one two chain of independent
vectors left to be found. After this calculation, the last column will be
from top to bottom {1,0}. So there is one chain with length 1 left. We
have at that moment 5 linearly independent vectors which form a basis
for this vector space.

4. Calculation of the Jordan chains.

The first Jordan chain.
We look for a linearly independent set of vectors {w1,w2} satisfying{

Bw2 = w1,
Bw1 = 0

or {
Bw2 = w1,

B2 w2 = 0

where w2 is in the vector space ker(B2) but not in ker(B).

We look for a starting w2. We see from the information table that there
is a generating vector w2 for a chain of length 2.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B2). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B2).

2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.
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4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B2) = K5.

So the generating vector has the following generic form

(a,b, c, d, e).

The kernel of B.
We remember that the kernel ker(B) is

ker(B) = span
{
(2,0,0,0,1), (0,2,0,2,−1), (0,0,1,1,0)

}
.

Vectors chosen in previous Jordan chains.
We have previously not chosen a vector of exactly height 2 in a Jordan
chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


2 0 0 0 1
0 2 0 2 −1
0 0 1 1 0
a b c d e

 .
If we impose the condition b + c − d ≠ 0, then we can row reduce this
matrix to the matrix

1 0 0 0 1
2

0 1 0 0 −a−c+d+2 e
2 (b+c−d)

0 0 1 0 −a+b+2 e
2 (b+c−d)

0 0 0 1 a−b−2 e
2 (b+c−d)


We see that these vectors are independent if we impose the condition
b + c − d ≠ 0.
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So we can choose a = 0, b = 1, c = 0, d = 0, e = 0.

We can choose a valid generating vector of the chain as follows

w2 = (0,1,0,0,0).

We calculate then B (0,1,0,0,0) and we know that the vectors

{w1 = Bw2,w2}
are a Jordan chain of 2 linearly independent vectors and because B2 w2 =
0 we know that the length of the chain is exactly 2.

We calculate w1.

w1 = Bw2 =


1 0 1 −1 −2

−1 0 −1 1 2
1 −1 0 0 −2
0 −1 −1 1 0
1 0 1 −1 −2




0
1
0
0
0

 =


0
0

−1
−1

0

 .

We have now found the first Jordan chain. It has length 2.

{
w1 = (0,0,−1,−1,0),w2 = (0,1,0,0,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 3 w1 2

ker(B2) 5 w2 1

with

w1 = (0,0,−1,−1,0)

w2 = (0,1,0,0,0)
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We see at the number 1 at the second row of the last column that we
have still to find another chain.

The second Jordan chain.
We look for a starting w4. We see from the information table that there
is a generating vector w4 for a chain of length 2.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B2). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B2).

2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B2) = K5.

So the generating vector has the following generic form

(a,b, c, d, e).

The kernel of B.
We remember that the kernel ker(B) is

ker(B) = span
{
(2,0,0,0,1), (0,2,0,2,−1), (0,0,1,1,0)

}
.
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Vectors chosen in previous Jordan chains.
We have previously chosen a vector w2 = (0,1,0,0,0) of exactly height 2
in a Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


2 0 0 0 1
0 2 0 2 −1
0 0 1 1 0
0 1 0 0 0
a b c d e

 .
If we impose the condition a + c − d − 2 e ≠ 0, then we can row reduce
this matrix to the matrix 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .
We see that these vectors are independent if we impose the condition
a+ c − d− 2 e ≠ 0.

So we can choose a = 0, b = 0, c = 1, d = 0, e = 0.

We can choose a valid generating vector of the chain as follows

w4 = (0,0,1,0,0).

We calculate then B (0,0,1,0,0) and we know that the vectors

{Bw4,w4}
form a Jordan chain of two linearly independent vectors.

We calculate w3.

w3 = Bw4 =


1 0 1 −1 −2

−1 0 −1 1 2
1 −1 0 0 −2
0 −1 −1 1 0
1 0 1 −1 −2




0
0
1
0
0

 =


1

−1
0

−1
1

 .
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We have now found the second Jordan chain. It has length 2.

{
w3 = (1,−1,0,−1,1),w4 = (0,0,1,0,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(B) 3 w1 w3 1

ker(B2) 5 w2 w4 0

with

w1 = (0,0,−1,−1,0)

w2 = (0,1,0,0,0)

w3 = (1,−1,0,−1,1)

w4 = (0,0,1,0,0)

The third Jordan chain.
We see that we have still one Jordan chain with length 1 left. This is an
eigenvector. We must choose this w5 in ker(B) but independent from the
vectors already chosen in ker(B), these are w1 and w3.

The last column in the information table tells us that there is still a
chain of length 1 left to be found. This is an eigenvector w5. We
know that we have in our previous Jordan chain found eigenvectors
w1 = (0,0,−1,−1,0) and w3 = (1,−1,0,−1,1) of height 1. So we have to
be careful when choosing another eigenvector.

The vector must be an eigenvector. It must be in the space

ker(B) = span
{
(2,0,0,0,1), (0,2,0,2,−1), (0,0,1,1,0)

}
.

The vector must be of the generic form
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a (2,0,0,0,1)+ b (0,2,0,2,−1)+ c (0,0,1,1,0)

= (2a,2b, c,2b + c,a− b).

We have at this point chosen in ker(B) already the vectors{
w1 = (0,0,−1,−1,0),
w3 = (1,−1,0,−1,1).

of height exactly height 1.

We have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =

 0 0 −1 −1 0
1 −1 0 −1 1

2a 2b c 2b + c a− b

 .
We row reduce this matrix H and find then if we impose the condition
that a+ b ≠ 0  1 0 0 0 1/2

0 1 0 1 −1/2
0 0 1 1 0

 .
We see that these vectors are independent if we impose the condition
a+ b ≠ 0.

So we can choose a = 0, b = 1, c = 0.

We have the generating vector

w5 = (0,2,0,2,−1).

This vector is an eigenvector. It forms a Jordan chain on its own. We
have found our third Jordan chain.

{
w5 = (0,2,0,2,−1)

}
.

Let us take a look at our current information table.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 remaining dim

ker(B) 3 w1 w3 w5 0

ker(B2) 5 w2 w4 0

with

w1 = (0,0,−1,−1,0)

w2 = (0,1,0,0,0)

w3 = (1,−1,0,−1,1)

w4 = (0,0,1,0,0)

w5 = (0,2,0,2,−1)

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =


0 0 1 0 0
0 1 −1 0 2

−1 0 0 1 0
−1 0 −1 0 2

0 0 1 0 −1

 .
We check our calculations.
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A = P−1 B P

=


1 0 0 −1 −2

−1 1 0 0 2
1 0 0 0 0
1 0 1 −1 −2
1 0 0 0 −1



×


1 0 1 −1 −2

−1 0 −1 1 2
1 −1 0 0 −2
0 −1 −1 1 0
1 0 1 −1 −2



×


0 0 1 0 0
0 1 −1 0 2

−1 0 0 1 0
−1 0 −1 0 2

0 0 1 0 −1



=


0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0



=


0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0



( )
( )

( ) .
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13 exercise. (3× 3); (J2(0), J1(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B so that A is in Jordan normal form. Find explicitly
a matrix P that is invertible and represents the base change: A = P−1 B P .
Find explicitly Jordan chains that are necessary to construct the matrix
P .

B =

 −1 −1 1
1 1 −1
0 0 0

 .
Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I3| = −λ3.

The eigenvalue λ = 0 has algebraic multiplicity 3. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
this subsection 2. The solution will be completely independent from this
section.
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We want to investigate the endomorphism A. We look also at the powers
Ai.

A =

 0 1 0
0 0 0
0 0 0

 .
We emphasise the structure of this Jordan matrix. We compute also the
powers of A.

A =

 0 1 0

0 0 0

0 0 0


( )

( ) ,

A2 =

 0 0 0

0 0 0

0 0 0


( )

( ) .

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the second power
of A. The smallest exponent that makes the power of the matrix A the
zero matrix, in this case 2, is called the height of nilpotency of the matrix
A.

We can see almost without calculation that

It is interesting to observe how the kernels change.{
ker(A) = span

{
e1,e3

}
,

ker(A2) = span
{
e1,e2,e3

}
= K3.

After having investigated the kernels, we can look at the data we have
found in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(A) 2 2 = dim(ker(A))

ker(A2) 3 1 = dim(ker(A2))− dim(ker(A))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A) ⊊ ker(A2) = ker(A3) = · · · .
The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:
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{
n1 +n2 = 2 = dim(ker(A)),

n2 = 1 = dim(ker(A2))− dim(ker(A)).

Solving this system, we have n1 = 1, n2 = 1.

A consequence from this fact is that the numbers in the last column are
descending.

We remark by looking at the matrices Ai that the vector e2 satisfies
Ae2 = e1. We have a Jordan chain of linearly independent vectors. We
write a Jordan chain in reverse order.

{e1 = Ae2,e2}.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 2 e1 1

ker(A2) 3 e2 0

Because the last column consists now of at least one number that is not
0, we are not done with looking for Jordan chains. One sees that we have
another Jordan chain with length one of linearly independent vectors.
Let us start with the second chain.

We have immediately a Jordan chain of length 1 by looking at the eigen-
vectors. We have indeed

{e3}.

Let us note this in the new information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(A) 2 e1 e3 0

ker(A2) 3 e2 0



www.mathandphoto.eu. Exercise Notes Jordan 259

Let us express our findings in a way that emphasises the position of
the elementary Jordan blocks and their relation with the powers of the
matrix A.

(a) Visualisation of A. (b) Visualisation of A2.

Figure 14

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.



www.mathandphoto.eu. Exercise Notes Jordan 260

3. Calculation of the kernels of Bi.

Let us calculate the powers of the matrix B.

B =

 −1 −1 1
1 1 −1
0 0 0

 ;

B2 =

 0 0 0
0 0 0
0 0 0

 .

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation −1 −1 1

1 1 −1
0 0 0

  z1

z2

z3

 =

 0
0
0

 .
This results in the following system of linear equations{

−z1 − z2 + z3 = 0,
z1 + z2 − z3 = 0.

This system can be solved and this gives us the solutions set

ker(B) =
{
(r1, r2, r1 + r2) | r1, r2 ∈ K

}
= span

{
(1,0,1), (0,1,1)

}
.

Kernel of B2.
It is clear that ker(B2) = K3.

We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B) 2 2 = dim(ker(B))

ker(B2) 3 1 = dim(ker(B2))− dim(ker(B))

We give some explanation about this information table.
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1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

The last number in the last column is 1 and this gives the information
that there will be a Jordan chain of length 2. The first number 2 in the
last column is the dimension of the kernel of B. After we have calculated
this chain, the last column will be from top to bottom {1,0}. There is
then one chain of one vector left to be found. After we have found this
chain, we have at that moment already 3 linearly independent vectors
which form a base for this vector space. The new last column will be
from top to bottom {0,0}.

4. Calculation of the Jordan chains.

The first Jordan chain.
We look for a starting w2. We see from the information table that there
is a generating vector w2 for a chain of length 2.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B2). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B2).

2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).
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3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B2) = K3.

So the generating vector has the following generic form

(a,b, c).

The kernel of B.
We remember that the kernel ker(B) is

ker(B) = span
{
(1,0,1), (0,1,1)

}
.

Vectors chosen in previous Jordan chains.
We have previously not chosen a vector of exactly height 2 in a Jordan
chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =

 1 0 1
0 1 1
a b c

 .
If we impose the condition a + b − c ≠ 0, then we can row reduce this
matrix to the matrix  1 0 0

0 1 0
0 0 1

 .
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We see that these vectors are independent if we impose the condition
a+ b − c ≠ 0.

We can choose a = 0, b = 1 and c = 0.

We can choose a valid generating vector of the chain as follows

w2 = (0,1,0).

We calculate w1.

w1 = Bw2 =

 −1 −1 1
1 1 −1
0 0 0

  0
1
0

 =

 −1
1
0

 .
We know that the vectors

{w1 = Bw2,w2}
are a Jordan chain of 2 linearly independent vectors and because B2 w2 =
0, we know that the length of the chain is exactly 2.

We have now found the first Jordan chain. It has length 2.

{
w1 = (−1,1,0),w2 = (0,1,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 2 w1 1

ker(B2) 3 w2 0

with

w1 = (−1,1,0)

w2 = (0,1,0)
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The second Jordan chain.
The last column in the information table tells us that there is still a chain
of length 1 left to be found. This is an eigenvector w3. We know that we
have in our previous Jordan chain found an eigenvector w1 = (−1,1,0).
So we have to be careful when choosing another eigenvector.

The vector must be an eigenvector. It must be in the space

ker(B) = span
{
(1,0,1), (0,1,1)

}
.

The vector must be of the generic form

a (1,0,1)+ b (0,1,1) = (a,b,a+ b).

We have at this point chosen in ker(B) already the vector

w1 = (−1,1,0)

of height exactly 1.

We have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(
−1 1 0
a b a+ b

)
.

We row reduce this matrix H and find then if we impose the condition
that a+ b ≠ 0 (

1 0 1
0 1 1

)
.

We see that these vectors are independent if we impose the condition
a+ b ≠ 0.

So we can choose a = 0, b = 1.

We have then generating vector

w3 = (0,1,1).

This vector is an eigenvector. This vector forms a Jordan chain on its
own. We have the second Jordan chain

{w3 = (0,1,1)}.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(B) 2 w1 w3 0

ker(B2) 3 w2 0

with

w1 = (−1,1,0)

w2 = (0,1,0)

w3 = (0,1,1)

Because the last column consists now of 0’s, we are done with looking
for Jordan chains. We have found at this point a basis of V consisting
entirely of vectors in Jordan chains.

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =

 −1 0 0
1 1 1
0 0 1

 .
We check this solution.
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A = P−1 B P

=

 −1 0 0
1 1 −1
0 0 1

  −1 −1 1
1 1 −1
0 0 0

  −1 0 0
1 1 1
0 0 1


=

 0 1 0
0 0 0
0 0 0



=

 0 1 0

0 0 0

0 0 0


( )

( ) .



www.mathandphoto.eu. Exercise Notes Jordan 267

14 exercise. (3× 3); (J3(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B so that A is in Jordan normal form. Find explicitly
a matrix P that is invertible and represents the base change: A = P−1 B P .
Find explicitly Jordan chains that are necessary to construct the matrix
P .

B =

 −2 1 −2
−1 0 −1

2 −1 2

 .
Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I3| = −λ3.

The eigenvalue λ = 0 has algebraic multiplicity 3. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
this subsection 2. The solution will be completely independent from this
section.
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We want to investigate the endomorphism A associated with this Jordan
block.

Remark that A is itself already an elementary Jordan block. We look also
at the powers Ai.

A =

 0 1 0
0 0 1
0 0 0

  ;

A2 =

 0 0 1
0 0 0
0 0 0

  ;

A3 =

 0 0 0
0 0 0
0 0 0

  .

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the third power of
A. The smallest exponent that makes the power of the matrix A the zero
matrix, in this case 3, is called the height of nilpotency of the matrix A.

It is interesting to observe how the kernels change.
ker(A) = span

{
e1
}
,

ker(A2) = span
{
e1,e2

}
,

ker(A3) = span
{
e1,e2,e3

}
= K3.

After having investigated the kernels, we can look at the data we have
found in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(A) 1 1 = dim(ker(A))

ker(A2) 2 1 = dim(ker(A2))− dim(ker(A))

ker(A3) 3 1 = dim(ker(A3))− dim(ker(A2))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the third
power onwards.

ker(A) ⊊ ker(A2) ⊊ ker(A3) = ker(A4) = · · · .
The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:
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n1 +n2 +n3 = 1 = dim(ker(A)),

n2 +n3 = 1 = dim(ker(A2))− dim(ker(A)),

n3 = 1 = dim(ker(A3))− dim(ker(A2)).

Solving this system, we have n1 = 0, n2 = 0, n3 = 1.

A consequence from this fact is that the numbers in the last column are
descending.

We remark by looking at the matrices Ai
Ae3 = e2,
Ae2 = e1,
Ae1 = 0.

or 
Ae3 = e2,

A2 e3 = e1,

A3 e3 = 0.

We have a Jordan chain of linearly independent vectors of length 3. We
write a Jordan chain in reverse order.

{e1 = A2 e3,e2 = Ae3,e3}.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 1 e1 0

ker(A2) 1 e2 0

ker(A3) 1 e3 0

Because the last column consists now of 0’s, we are done with looking
for Jordan chains. We have found at this point a basis of V consisting
entirely of vectors in Jordan chains.
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(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3.

Figure 15

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
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into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.
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3. Calculation of the kernels of Bi.

Let us calculate the powers of the matrix B.

B =

 −2 1 −2

−1 0 −1

2 −1 2

 ; B2 =

 −1 0 −1

0 0 0

1 0 1

 ;

B3 =

 0 0 0

0 0 0

0 0 0

 .

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation −2 1 −2

−1 0 −1
2 −1 2

  z1

z2

z3

 =

 0
0
0

 .
This results in the following system of linear equations

−2z1 + z2 − 2z3 = 0,
− z1 − z3 = 0,

2z1 − z2 + 2z3 = 0.

We solve this system and find the solution set which is a subspace

ker(B) =
{
(r1,0,−r1) | r1 ∈ K

}
= span

{
(1,0,−1)

}
.

Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation −1 0 −1

0 0 0
1 0 1

  z1

z2

z3

 =

 0
0
0

 .
This results in the following system of linear equations{

−z1 − z3 = 0,
z1 + z3 = 0.

We solve this system and find the solution set which is a subspace
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ker(B2) =
{
(r1, r2,−r1) | r1, r2 ∈ K

}
= span

{
(1,0,−1), (0,1,0)

}
.

Kernel of B3.
This is

ker(B3) = K3.

We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B) 1 1 = dim(ker(B))

ker(B2) 2 1 = dim(ker(B2))− dim(ker(B))

ker(B3) 3 1 = dim(ker(B3))− dim(ker(B2))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.
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The last number in the last column and the third line is 1 and this gives
the information that there will be a Jordan chain of length 3. The first
number 1 in the last column is the dimension of the kernel of B. After we
have calculated this chain, the last column will be from top to bottom
{0,0,0}. There is no chain left to be found. We have indeed at that
moment 3 linearly independent vectors which form a base for this vector
space.

4. Calculation of the Jordan chains.

The first Jordan chain.
We look for a starting w3. We see from the information table that there
is a generating vector w3 for a chain of length 3.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B3). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B3).

2. The generating vector may not be in the ker(B2) because the length
of the chain must be exactly 3. So it has to be independent from
all vectors in ker(B2). It is sufficient that it is linearly independent
from a basis of ker(B2).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 3. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B3 together with the vec-
tors in ker(B2) and also the vectors, if any, of exactly height 3 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B3) = K3.

So the generating vector has the following generic form

(a,b, c).
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The kernel of B.
We remember that the kernel ker(B) is

ker(B2) = span
{
(1,0,−1), (0,1,0)

}
Vectors chosen in previous Jordan chains.
We have previously not chosen a vector of exactly height 3 in a Jordan
chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =

 1 0 −1
0 1 0
a b c

 .
If we impose the condition a+c ≠ 0, then we can row reduce this matrix
to the matrix  1 0 0

0 1 0
0 0 1

 .
We see that these vectors are independent if we impose the condition
a+ c ≠ 0. we can choose a = 1, b = 1, c = 0.

We can choose a valid generating vector of the chain as follows

w3 = (1,1,0).

We calculate now B (1,1,0), B2 (1,1,0), and we know that the vectors

{w1 = B2 w3,w2 = Bw3,w3}
are a Jordan chain of 3 linearly independent vectors and because B3 w3 =
0, we know that the length of the chain is exactly 3.

We calculate w2.

w2 = Bw3 =

 −2 1 −2
−1 0 −1

2 −1 2

  1
1
0

 =

 −1
−1

1

 .
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We calculate w1.

w1 = B2 w3 =

 −1 0 −1
0 0 0
1 0 1

  1
1
0

 =

 −1
0
1

 .
We have now found the Jordan chain

{
w1 = (−1,0,1),w2 = (−1,−1,1),w3 = (1,1,0)

}
.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 1 w1 0

ker(B2) 2 w2 0

ker(B2) 3 w3 0

with

w1 = (−1,0,1)

w2 = (−1,−1,1)

w3 = (1,1,0)

Because the last column consists now of 0’s, we are done with looking
for Jordan chains. We have found at this point a basis of V consisting
entirely of vectors in Jordan chains.

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =

 −1 −1 1
0 −1 1
1 1 0

 .
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We check this solution.

A = P−1 B P

=

 −1 1 0
1 −1 1
1 0 1

  −2 1 −2
−1 0 −1

2 −1 2

  −1 −1 1
0 −1 1
1 1 0


=

 0 1 0
0 0 1
0 0 0



=

 0 1 0

0 0 1

0 0 0

  .
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15 exercise. (2× 2); (J2(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B so that A is in Jordan normal form. Find explicitly
a matrix P that is invertible and represents the base change: A = P−1 B P .
Find explicitly Jordan chains that are necessary to construct the matrix
P .

B =
(
−1 1
−1 1

)
.

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I2| = λ2.

The eigenvalue λ = 0 has algebraic multiplicity 2. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
this subsection 2. The solution will be completely independent from this
section.

We want to investigate the endomorphism A associated with this Jordan
block.
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A =
(

0 1
0 0

)
.

Remark that this is already an elementary Jordan block. We compute the
powers of A.

A2 =
(

0 0
0 0

)
.

We emphasise the structure of this Jordan matrix and compute the pow-
ers of this matrix.

A =
(

0 1

0 0

)( )
.

A2 =
(

0 0

0 0

)( )
,

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the second power
of A. The smallest exponent that makes the power of the matrix A the
zero matrix, in this case 2, is called the height of nilpotency of the matrix
A.

We can see almost without calculation that{
ker(A) = span

{
e1
}
;

ker(A2) = K2.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 1 1 = dim(ker(A))

ker(A2) 2 1 = dim(ker(A2))− dim(ker(A))
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We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A) ⊊ ker(A2) = ker(A3) · · · .
The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:{

n1 +n2 = 1 = dim(ker(A)),

n2 = 1 = dim(ker(A2))− dim(ker(A)).

Solving this system, we have n1 = 0, n2 = 1.

A consequence from this fact is that the numbers in the last column are
descending.

We remark by looking at the matrices Ai that the vector e2 satisfies
Ae2 = e1. We have a Jordan chain of linearly independent vectors. We
write a Jordan chain in reverse order.
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{e1 = Ae2,e2}.
After we have found the first Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 1 e1 0

ker(A2) 1 e2 0

Because the last column consists now of 0’s, we are done with looking
for Jordan chains. We have found at this point a basis of V consisting
entirely of vectors in Jordan chains.

Let us try to visualise this.

(a) Visualisation of A. (b) Visualisation of A2.

Figure 16

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.
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2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.

The powers of the matrix B.
Let us calculate the powers of the matrix B.

B =
(
−1 1

−1 1

)
; B2 =

(
0 0

0 0

)
.

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation(

−1 1
−1 1

) (
z1

z2

)
=
(

0
0

)
.

This results in the following system of linear equations{
−z1 + z2 = 0,
−z1 + z2 = 0.

We solve this system and find the solution set which is a subspace
ker(B) =

{
(r1, r1) | r1 ∈ K

}
= span

{
(1,1)

}
.

Kernel of B2.
We conclude immediately that ker(B2) = K2.

We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B) 1 1 = dim(ker(B))

ker(B2) 2 1 = dim(ker(B2))− dim(ker(B))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

The last number in the last column and second line is 1 and this gives
the information that there will be a Jordan chain of length 2. The first
number 1 in the last column is the dimension of the kernel of B. After
we have calculated this chain, the last column will be from top to bottom
{0,0}. We have found a basis.

4. Calculation of the Jordan chains.

The first Jordan chain.
We look for a starting w2. We see from the information table that there
is a generating vector w2 for a chain of length 2.

The generating vector has to satisfy the following conditions.
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1. It has to be in the kernel ker(B2). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B2).

2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B2) = K2.

So the generating vector has the following generic form

(a,b).

The kernel of B.
We remember that the kernel ker(B) is

ker(B) = span
{
(1,1)

}
.

Vectors chosen in previous Jordan chains.
We have previously not chosen a vector of exactly height 2 in a Jordan
chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =
(

1 1
a b

)
.
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If we impose the condition a−b ≠ 0, then we can row reduce this matrix
to the matrix (

1 0
0 1

)
.

We see that these vectors are independent if we impose the condition
a− b ≠ 0. We can choose a = 1, b = 0.

We can choose a valid generating vector of the chain as follows

w2 = (1,0).

We calculate B (1,0) and we know that

{w1 = Bw2,w2}
is a Jordan chain of 2 linearly independent vectors and because B2 w3 =
0 we know that the length of the chain is exactly 2.

We calculate w1.

w1 = Bw2 =
(
−1 1
−1 1

) (
1
0

)
=
(
−1
−1

)
.

We have now found the Jordan chain

{
w1 = (−1,−1),w2 = (1,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 1 w1 0

ker(B2) 2 w2 0

with
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w1 = (−1,−1)

w2 = (1,0)

Because the last column consists now of 0’s, we are done with looking
for Jordan chains. We have found at this point a basis of V consisting
entirely of vectors in Jordan chains.

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =
(
−1 1
−1 0

)
.

We check this solution.

A = P−1 B P

=
(

0 −1
1 −1

) (
−1 1
−1 1

) (
−1 1
−1 0

)
=
(

0 1
0 0

)

=
(

0 1

0 0

)( )
.
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16 exercise. (8× 8); (J4(0), J2(0), J2(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B so that A is in Jordan normal form. Find explicitly
a matrix P that is invertible and represents the base change: A = P−1 B P .
Find explicitly Jordan chains that are necessary to construct the matrix
P .

B =



10 −1 9 −11 6 3 −5 −9
20 0 19 −20 16 4 −15 −19
−5 0 −5 5 −4 −1 4 5

6 −1 5 −7 3 2 −2 −5
−3 0 −3 3 −2 −1 2 3
−23 1 −21 24 −15 −6 13 20

21 −1 19 −22 15 5 −13 −19
−25 1 −23 26 −18 −6 16 23


.

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I8| = λ8.

The eigenvalue λ = 0 has algebraic multiplicity 8. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
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this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
this subsection 2. The solution will be completely independent from this
section.

We want to investigate the endomorphism A associated with this Jordan
block.

We compute also the powers of A.

A =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


=



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0





( )

( )
.

A2 =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


=



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





( )

( )
.

A3 =



0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


=



0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





( )

( )
.
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A4 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


=



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





( )

( )
.

It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A) = span
{
e1,e5,e7

}
;

ker(A2) = span
{
e1,e2,e5,e6,e7,e8

}
;

ker(A3) = span
{
e1,e2,e3,e5,e6,e7,e8

}
;

ker(A4) = K8.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 3 3 = dim(ker(A))

ker(A2) 6 3 = dim(ker(A2))− dim(ker(A))

ker(A3) 7 1 = dim(ker(A3))− dim(ker(A2))

ker(A4) 8 1 = dim(ker(A4))− dim(ker(A3))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.
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2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the fourth
power onwards.

ker(A) ⊊ ker(A2) ⊊ ker(A3) ⊊ ker(A4) = ker(A5) = · · · .
The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:

n1 +n2 +n3 +n4 = 3 = dim(ker(A)),

n2 +n3 +n4 = 3 = dim(ker(A2))− dim(ker(A)),

n3 +n4 = 1 = dim(ker(A3))− dim(ker(A2)),

n4 = 1 = dim(ker(A4))− dim(ker(A3)).
Solving this system, we have n1 = 0, n2 = 2, n3 = 0, n4 = 1.

A consequence from this fact is that the numbers in the last column are
descending.

We have 
Ae4 = e3,
Ae3 = e2,
Ae2 = e1,
Ae1 = 0.
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We remark by looking at the matrices Ai that the vector e4 satisfies

Ae4 = e3,

A2 e4 = e2,

A3 e4 = e1,

A4 e4 = 0.

We have a Jordan chain of 4 linearly independent vectors. We write a
Jordan chain in reverse order.

{e1 = A3 e4,e2 = A2 e4,e3 = Ae4,e4}.
We have found the first Jordan chain. It has length 4. We have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 3 e1 2

ker(A2) 6 e2 2

ker(A3) 7 e3 0

ker(A4) 8 e4 0

We remark by looking at the matrices Ai that{
Ae6 = e5,
Ae5 = 0.

We see also that the vector e6 satisfies{
Ae6 = e5,

A2 e6 = 0.

We have now a second Jordan chain. It has length 2. We write a Jordan
chain in reverse order.

{e5 = Ae6,e6}.
We have now the following table
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Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(A) 3 e1 e5 1

ker(A2) 6 e2 e6 1

ker(A3) 7 e3 0

ker(A4) 8 e4 0

We investigate now our third Jordan chain.

We remark by looking at the matrices Ai that{
Ae8 = e7,
Ae7 = 0.

We see also that the vector e8 satisfies{
Ae8 = e7,

A2 e8 = 0.
We have now found a third Jordan chain. It has length 2. We write a
Jordan chain in reverse order.

{e7 = Ae8,e8}.
After we have found the third Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 remaining dim

ker(A) 3 e1 e5 e7 0

ker(A2) 6 e2 e6 e8 0

ker(A3) 7 e3 0

ker(A4) 8 e4 0
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Because the last column consists now of 0’s, we are done with looking
for Jordan chains. We have found at this point a basis of V consisting
entirely of vectors in Jordan chains.

Let us try to visualise our findings.

(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3. (d) Visualisation of A4.

Figure 17

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.
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2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.

The powers of B.

B =



10 −1 9 −11 6 3 −5 −9
20 0 19 −20 16 4 −15 −19
−5 0 −5 5 −4 −1 4 5

6 −1 5 −7 3 2 −2 −5
−3 0 −3 3 −2 −1 2 3
−23 1 −21 24 −15 −6 13 20

21 −1 19 −22 15 5 −13 −19
−25 1 −23 26 −18 −6 16 23


,

B2 =



2 0 2 −2 5 0 −5 −5
5 0 5 −5 9 0 −9 −9

−1 0 −1 1 −2 0 2 2
1 0 1 −1 3 0 −3 −3

−1 0 −1 1 −2 0 2 2
−5 0 −5 5 −11 0 11 11

5 0 5 −5 10 0 −10 −10
−6 0 −6 6 −12 0 12 12


,

B3 =



3 0 3 −3 3 0 −3 −3
4 0 4 −4 4 0 −4 −4

−1 0 −1 1 −1 0 1 1
2 0 2 −2 2 0 −2 −2

−1 0 −1 1 −1 0 1 1
−6 0 −6 6 −6 0 6 6

5 0 5 −5 5 0 −5 −5
−6 0 −6 6 −6 0 6 6


,
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B4 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.
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3. Calculation of the kernels of Bi.

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation



10 −1 9 −11 6 3 −5 −9
20 0 19 −20 16 4 −15 −19
−5 0 −5 5 −4 −1 4 5

6 −1 5 −7 3 2 −2 −5
−3 0 −3 3 −2 −1 2 3
−23 1 −21 24 −15 −6 13 20

21 −1 19 −22 15 5 −13 −19
−25 1 −23 26 −18 −6 16 23





z1

z2

z3

z4

z5

z6

z7

z8


=



0
0
0
0
0
0
0
0


.

This results in the following system of linear equations

10z1 − z2 + 9 z3 − 11z4 + 6 z5 + 3z6 − 5 z7 − 9 z8 = 0,
20z1 + 19z3 − 20z4 + 16z5 + 4z6 − 15z7 − 19z8 = 0,

− 5 z1 − 5 z3 + 5 z4 − 4 z5 − 1z6 + 4 z7 + 5 z8 = 0,
6 z1 − z2 + 5 z3 − 7 z4 + 3 z5 + 2z6 − 2 z7 − 5 z8 = 0,

− 3 z1 − 3 z3 + 3 z4 − 2 z5 − z6 + 2 z7 + 3 z8 = 0,
−23z1 + z2 − 21z3 + 24z4 − 15z5 − 6z6 + 13z7 + 20z8 = 0,

21z1 − z2 + 19z3 − 22z4 + 15z5 + 5z6 − 13z7 − 19z8 = 0,
−25z1 + z2 − 23z3 + 26z4 − 18z5 − 6z6 + 16z7 + 23z8 = 0.

We solve this system and find the solution set which is a subspace

ker(B)

=
{
(r1, r2, r3, r1 + r3, r3,−r1 − r2 − r3, r1 + r2 + 2 r3,−r1 − r2 − r3)

| r1, r2, r3 ∈ K
}

= span
{
(1,0,0,1,0,−1,1,−1), (0,1,0,0,0,−1,1,−1),
(0,0,1,1,1,−1,2,−1)

}
.

Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation



www.mathandphoto.eu. Exercise Notes Jordan 298



2 0 2 −2 5 0 −5 −5
5 0 5 −5 9 0 −9 −9

−1 0 −1 1 −2 0 2 2
1 0 1 −1 3 0 −3 −3

−1 0 −1 1 −2 0 2 2
−5 0 −5 5 −11 0 11 11

5 0 5 −5 10 0 −10 −10
−6 0 −6 6 −12 0 12 12





z1

z2

z3

z4

z5

z6

z7

z8


=



0
0
0
0
0
0
0
0


.

This results in the following system of linear equations

2z1 + 2z3 − 2z4 + 5 z5 − 5 z7 − 5 z8 = 0,
5z1 + 5z3 − 5z4 + 9 z5 − 9 z7 − 9 z8 = 0,
− z1 − z3 + z4 − 2 z5 + 2 z7 + 2 z8 = 0,
z1 + z3 − z4 + 3 z5 − 3 z7 − 3 z8 = 0,

− z1 − z3 + z4 − 2 z5 + 2 z7 + 2 z8 = 0,
−5z1 − 5z3 + 5z4 − 11z5 + 11z7 + 11z8 = 0,

5z1 + 5z3 − 5z4 + 10z5 − 10z7 − 10z8 = 0,
−6z1 − 6z3 + 6z4 − 12z5 + 12z7 + 12z8 = 0.

We solve this system and find the solution set which is a subspace

ker(B2) = {(r1, r2, r3, r1 + r3, r5, r6, r7, r5 − r7)

| r1, r2, r3, r5, r6, r7 ∈ K}
= span

{
(1,0,0,1,0,0,0,0), (0,1,0,0,0,0,0,0),

(0,0,1,1,0,0,0,0), (0,0,0,0,1,0,0,1), (0,0,0,0,0,1,0,0),
(0,0,0,0,0,0,1,−1)

}
.

Kernel of B3.
We calculate the kernel of B3 and we have to solve the matrix equation

3 0 3 −3 3 0 −3 −3
4 0 4 −4 4 0 −4 −4

−1 0 −1 1 −1 0 1 1
2 0 2 −2 2 0 −2 −2

−1 0 −1 1 −1 0 1 1
−6 0 −6 6 −6 0 6 6

5 0 5 −5 5 0 −5 −5
−6 0 −6 6 −6 0 6 6





z1

z2

z3

z4

z5

z6

z7

z8


=



0
0
0
0
0
0
0
0


.
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This results in the following system of linear equations

3z1 + 3z3 − 3z4 + 3z5 − 3z7 − 3z8 = 0,
4z1 + 4z3 − 4z4 + 4z5 − 4z7 − 4z8 = 0,
− z1 − z3 + z4 − z5 + z7 + z8 = 0,

2z1 + 2z3 − 2z4 + 2z5 − 2z7 − 2z8 = 0,
− z1 − z3 + z4 − z5 + z7 + z8 = 0,
−6z1 − 6z3 + 6z4 − 6z5 + 6z7 + 6z8 = 0,

5z1 + 5z3 − 5z4 + 5z5 − 5z7 − 5z8 = 0,
−6z1 − 6z3 + 6z4 − 6z5 + 6z7 + 6z8 = 0.

We solve this system and find the solution set which is a subspace

ker(B3) = {(r1, r2, r3, r4, r5, r6, r7, r1 + r3 − r4 + r5 − r7)

| r1, r2, r3, r4, r5, r6, r7 ∈ K}
= span{(1,0,0,0,0,0,0,1), (0,1,0,0,0,0,0,0),

(0,0,1,0,0,0,0,1), (0,0,0,1,0,0,0,−1),
(0,0,0,0,1,0,0,1), (0,0,0,0,0,1,0,0),
(0,0,0,0,0,0,1,−1)}.

Kernel of B4.
We want to calculate the kernel of B4 and we observe first that

B4 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

So the kernel is K8.

We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B) 3 3 = dim(ker(B))

ker(B2) 6 3 = dim(ker(B2))− dim(ker(B))

ker(B3) 7 1 = dim(ker(B3))− dim(ker(B2))

ker(B4) 8 1 = dim(ker(B4))− dim(ker(B3))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

The last number in the last column and fourth line is 1 and this gives
the information that there will be a Jordan chain of length 4. The first
number 3 in the last column is the dimension of the kernel of B. After
we have calculated this chain, the last column will be from top to bottom
{2,2,0,0}. Then we will first search for a Jordan chain of length 2. The
last column will be from top to bottom {1,1,0,0}. Then we will search



www.mathandphoto.eu. Exercise Notes Jordan 301

for another Jordan chain of length 2. The last column will be {0,0,0,0}.
We have found a basis of 8 linearly independent Jordan chain vectors.

After that, there are no linearly independent vectors to be found. We
have indeed at this moment already vectors which form a base for this
vector space.

4. Calculation of the Jordan chains.

The first Jordan chain.
We have to choose a vector w4 that is in the kernel ker(B4) but not in the
kernel ker(B3).

We look for a starting w4. We see from the information table that there
is a generating vector w4 for a chain of length 4.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B4). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B4).

2. The generating vector may not be in the ker(B3) because the length
of the chain must be exactly 4. So it has to be independent from
all vectors in ker(B3). It is sufficient that it is linearly independent
from a basis of ker(B3).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 4. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B4 together with the vec-
tors in ker(B3) and also the vectors, if any, of exactly height 4 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B4) = K8.

So the generating vector has the following generic form
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(a,b, c, d, e, f , g,h).

The kernel of B3.
We remember that the kernel ker(B3) is

ker(B3) = span
{
(1,0,0,0,0,0,0,1), (0,1,0,0,0,0,0,0),
(0,0,1,0,0,0,0,1), (0,0,0,1,0,0,0,−1),
(0,0,0,0,1,0,0,1), (0,0,0,0,0,1,0,0),
(0,0,0,0,0,0,1,−1)

}
.

Vectors chosen in previous Jordan chains.
We have previously not chosen a vector of exactly height 4 in a Jordan
chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =



1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 −1
a b c d e f g h


.

If we impose the condition −a− c + d− e + g + h ≠ 0, then we can row
reduce this matrix to the matrix

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.
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We see that these vectors are independent if we impose the condition
−a − c + d − e + g + h ≠ 0. We can choose a = 1, b = 0, c = 0, d = 0,
e = 0, f = 0, g = 0, h = 0.

We can choose a valid generating vector of the chain as follows

w4 = (1,0,0,0,0,0,0,0).

We know that

{w1 = B3 w4,w2 = B2 w4,w3 = Bw4,w4}
is a Jordan chain of 4 linearly independent vectors and because B4 w4 =
0, we know that the length of the chain is exactly 4.

We calculate w3.

w3 = Bw4

=



10 −1 9 −11 6 3 −5 −9
20 0 19 −20 16 4 −15 −19
−5 0 −5 5 −4 −1 4 5

6 −1 5 −7 3 2 −2 −5
−3 0 −3 3 −2 −1 2 3
−23 1 −21 24 −15 −6 13 20

21 −1 19 −22 15 5 −13 −19
−25 1 −23 26 −18 −6 16 23





1
0
0
0
0
0
0
0



=



10
20
−5

6
−3
−23

21
−25


.

We calculate w2.
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w2 = B2 w4

=



2 0 2 −2 5 0 −5 −5
5 0 5 −5 9 0 −9 −9

−1 0 −1 1 −2 0 2 2
1 0 1 −1 3 0 −3 −3

−1 0 −1 1 −2 0 2 2
−5 0 −5 5 −11 0 11 11

5 0 5 −5 10 0 −10 −10
−6 0 −6 6 −12 0 12 12





1
0
0
0
0
0
0
0



=



2
5

−1
1

−1
−5

5
−6


.

We calculate w1.
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w1 = B3 w4

=



3 0 3 −3 3 0 −3 −3
4 0 4 −4 4 0 −4 −4

−1 0 −1 1 −1 0 1 1
2 0 2 −2 2 0 −2 −2

−1 0 −1 1 −1 0 1 1
−6 0 −6 6 −6 0 6 6

5 0 5 −5 5 0 −5 −5
−6 0 −6 6 −6 0 6 6





1
0
0
0
0
0
0
0



=



3
4

−1
2

−1
−6

5
−6


.

We have now found the first Jordan chain. It has length 4.

{
w1 = (3,4,−1,2,−1,−6,5,−6),w2 = (2,5,−1,1,−1,−5,5,−6),
w3 = (10,20,−5,6,−3,−23,21,−25),w4 = (1,0,0,0,0,0,0,0)

}
.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 3 w1 2

ker(B2) 6 w2 2

ker(B3) 7 w3 0

ker(B4) 8 w4 0
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with

w1 = (3,4,−1,2,−1,−6,5,−6)

w2 = (2,5,−1,1,−1,−5,5,−6)

w3 = (10,20,−5,6,−3,−23,21,−25)

w4 = (1,0,0,0,0,0,0,0)

We see from this table that we can build 2 Jordan chains of length 2.

The second Jordan chain.
We look for a starting w6. We see from the information table that there
is a generating vector w6 for a chain of length 2.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B2). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B2).

2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that
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ker(B2) = span
{
(1,0,0,1,0,0,0,0), (0,1,0,0,0,0,0,0), (0,0,1,1,0,0,0,0),
(0,0,0,0,1,0,0,1), (0,0,0,0,0,1,0,0),
(0,0,0,0,0,0,1,−1)

}
.

So the generating vector has the following generic form

a (1,0,0,1,0,0,0,0)+ b (0,1,0,0,0,0,0,0)

+ c (0,0,1,1,0,0,0,0)+ d (0,0,0,0,1,0,0,1)

+ e (0,0,0,0,0,1,0,0)+ f (0,0,0,0,0,0,1,−1)

= (a,b, c, a+ c,d, e, f , d− f ).

The kernel of B.
We remember that the kernel ker(B) is

ker(B) = span
{
(1,0,0,1,0,−1,1,−1), (0,1,0,0,0,−1,1,−1),

(0,0,1,1,1,−1,2,−1)
}
.

Vectors chosen in previous Jordan chains.
We have previously chosen the vector w2 = (2,5,−1,1,−1,−5,5,−6) of
exactly height 2 in a Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 0 1 0 −1 1 −1
0 1 0 0 0 −1 1 −1
0 0 1 1 1 −1 2 −1
2 5 −1 1 −1 −5 5 −6
a b c a+ c c e f c − f

 .
If we impose the condition a+ b + 2 c − f ≠ 0, then we can row reduce
this matrix to the matrix
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1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 −1

 .

We see that these vectors are independent if we impose the condition
that a+ b+ 2 c − f ≠ 0. We can choose a = 0, b = 1, c = 0, d = 0, e = 0,
f = 0.

We can choose a valid generating vector of the chain as follows

w6 = (0,1,0,0,0,0,0,0).

We calculate now w5.

w5 = Bw6

=



10 −1 9 −11 6 3 −5 −9
20 0 19 −20 16 4 −15 −19
−5 0 −5 5 −4 −1 4 5

6 −1 5 −7 3 2 −2 −5
−3 0 −3 3 −2 −1 2 3
−23 1 −21 24 −15 −6 13 20

21 −1 19 −22 15 5 −13 −19
−25 1 −23 26 −18 −6 16 23





0
1
0
0
0
0
0
0



=



−1
0
0

−1
0
1

−1
1


.

So we have that w5 = (−1,0,0,−1,0,1,−1,1).

We have now found a second Jordan chain. It has length 2.
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{
w5 = (−1,0,0,−1,0,1,−1,1),w6 = (0,1,0,0,0,0,0,0)

}
.

We look now at our information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(B) 3 w1 w5 1

ker(B2) 6 w2 w6 1

ker(B3) 7 w3 0

ker(B4) 8 w4 0

with

w1 = (3,4,−1,2,−1,−6,5,−6)

w2 = (2,5,−1,1,−1,−5,5,−6)

w3 = (10,20,−5,6,−3,−23,21,−25)

w4 = (1,0,0,0,0,0,0,0)

w5 = (−1,0,0,−1,0,1,−1,1)

w6 = (0,1,0,0,0,0,0,0)

The third Jordan chain.
We look for a starting w8. We see from the information table that there
is a generating vector w8 for a chain of length 2.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B2). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B2).
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2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B2) = span
{
(1,0,0,1,0,0,0,0), (0,1,0,0,0,0,0,0), (0,0,1,1,0,0,0,0),
(0,0,0,0,1,0,0,1), (0,0,0,0,0,1,0,0),
(0,0,0,0,0,0,1,−1)

}
.

So the generating vector has the following generic form

a (1,0,0,1,0,0,0,0)+ b (0,1,0,0,0,0,0,0)

+ c (0,0,1,1,0,0,0,0)+ d (0,0,0,0,1,0,0,1)

+ e (0,0,0,0,0,1,0,0)+ f (0,0,0,0,0,0,1,−1)

= (a,b, c, a+ c,d, e, f , d− f ).

The kernel of B.
We remember that the kernel ker(B) is

ker(B) = span
{
(1,0,0,1,0,−1,1,−1), (0,1,0,0,0,−1,1,−1),

(0,0,1,1,1,−1,2,−1)
}
.

Vectors chosen in previous Jordan chains.
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We have previously chosen the vector w2 = (2,5,−1,1,−1,−5,5,−6) and
w6 = (0,1,0,0,0,0,0,0) of exactly height 2 in Jordan chains.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 0 1 0 −1 1 −1
0 1 0 0 0 −1 1 −1
0 0 1 1 1 −1 2 −1
2 5 −1 1 −1 −5 5 −6
0 1 0 0 0 0 0 0
a b c a+ c d e f d− f

 .

If we impose the condition c−d ≠ 0, then we can row reduce this matrix
to the matrix 

1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 −1

 .

We see that these vectors are independent if we impose the condition
that c − d ≠ 0. We can choose a = 0, b = 0, c = 1, d = 0, e = 0, f = 0.

We can choose a valid generating vector of the chain as follows

w8 = (0,0,1,1,0,0,0,0).

We calculate now w7.



www.mathandphoto.eu. Exercise Notes Jordan 312

w7 = Bw8

=



10 −1 9 −11 6 3 −5 −9
20 0 19 −20 16 4 −15 −19
−5 0 −5 5 −4 −1 4 5

6 −1 5 −7 3 2 −2 −5
−3 0 −3 3 −2 −1 2 3
−23 1 −21 24 −15 −6 13 20

21 −1 19 −22 15 5 −13 −19
−25 1 −23 26 −18 −6 16 23





0
0
1
1
0
0
0
0



=



−2
−1

0
−2

0
3

−3
3


.

So we have that w7 = (−2,−1,0,−2,0,3,−3,3).

We have now found the third Jordan chain. It has length 2.

{
w7 = (−2,−1,0,−2,0,3,−3,3),w8 = (0,0,1,1,0,0,0,0)

}
.

We look now at our information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 remaining dim

ker(B) 3 w1 w5 w7 0

ker(B2) 6 w2 w6 w8 0

ker(B3) 7 w3 0

ker(B4) 8 w4 0

with
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w1 = (3,4,−1,2,−1,−6,5,−6)

w2 = (2,5,−1,1,−1,−5,5,−6)

w3 = (10,20,−5,6,−3,−23,21,−25)

w4 = (1,0,0,0,0,0,0,0)

w5 = (−1,0,0,−1,0,1,−1,1)

w6 = (0,1,0,0,0,0,0,0)

w7 = (−2,−1,0,−2,0,3,−3,3)

w8 = (0,0,1,1,0,0,0,0)

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =



3 2 10 1 −1 0 −2 0
4 5 20 0 0 1 −1 0

−1 −1 −5 0 0 0 0 1
2 1 6 0 −1 0 −2 1

−1 −1 −3 0 0 0 0 0
−6 −5 −23 0 1 0 3 0

5 5 21 0 −1 0 −3 0
−6 −6 −25 0 1 0 3 0


.

We check this solution.
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A = P−1 B P

=



0 0 0 0 −2 −1 1 2
0 0 0 0 −2 1 2 1
0 0 0 0 1 0 −1 −1
1 0 1 −1 1 0 −1 −1
0 0 3 −3 1 −3 2 3
0 1 −1 1 −2 0 3 4
0 0 −1 1 0 1 −3 −3
0 0 1 0 1 0 −2 −2



×



10 −1 9 −11 6 3 −5 −9
20 0 19 −20 16 4 −15 −19
−5 0 −5 5 −4 −1 4 5

6 −1 5 −7 3 2 −2 −5
−3 0 −3 3 −2 −1 2 3
−23 1 −21 24 −15 −6 13 20

21 −1 19 −22 15 5 −13 −19
−25 1 −23 26 −18 −6 16 23



×



3 2 10 1 −1 0 −2 0
4 5 20 0 0 1 −1 0

−1 −1 −5 0 0 0 0 1
2 1 6 0 −1 0 −2 1

−1 −1 −3 0 0 0 0 0
−6 −5 −23 0 1 0 3 0

5 5 21 0 −1 0 −3 0
−6 −6 −25 0 1 0 3 0



=



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0



=



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0





( )

( )
.
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17 exercise. (3× 3); (J3(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B so that A is in Jordan normal form. Find explicitly
a matrix P that is invertible and represents the base change: A = P−1 B P .
Find explicitly Jordan chains that are necessary to construct the matrix
P .

B =

 3 2 −1
−3 −2 1

2 1 −1

 .
Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I3| = −λ3.

The eigenvalue λ = 0 has algebraic multiplicity 3. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
this subsection 2. The solution will be completely independent from this
section.
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We want to investigate the endomorphism A associated with this Jordan
block.

A =

 0 1 0
0 0 1
0 0 0

 =

 0 1 0

0 0 1

0 0 0

  .

Remark that this is already an elementary Jordan block.

A2 =

 0 0 1
0 0 0
0 0 0

 =

 0 0 1

0 0 0

0 0 0

  ,

A3 =

 0 0 0
0 0 0
0 0 0

 =

 0 0 0

0 0 0

0 0 0

  .

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the third power of
A. The smallest exponent that makes the power of the matrix A the zero
matrix, in this case 3, is called the height of nilpotency of the matrix A.

It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A) = span
{
e1
}
;

ker(A2) = span
{
e1,e2

}
;

ker(A3) = span
{
e1,e2,e3

}
= K3.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 1 1 = dim(ker(A))

ker(A2) 2 1 = dim(ker(A2))− dim(ker(A))

ker(A3) 3 1 = dim(ker(A3))− dim(ker(A2))
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We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the third
power onwards.

ker(A) ⊊ ker(A2) ⊊ ker(A3) = ker(A4) = · · · .
The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:

n1 +n2 +n3 = 1 = dim(ker(A)),

n2 +n3 = 1 = dim(ker(A2))− dim(ker(A)),

n3 = 1 = dim(ker(A3))− dim(ker(A2)).

Solving this system, we have n1 = 0, n2 = 0, n3 = 1.

A consequence from this fact is that the numbers in the last column are
descending.

We see that
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Ae3 = e2,
Ae2 = e1,
Ae1 = 0.

We remark by looking at the matrices Ai that
Ae3 = e2,

A2 e3 = e1,

A3 e3 = 0.

We have a Jordan chain of linearly independent vectors. We write a Jor-
dan chain in reverse order.

{e1 = A2 e3,e2 = Ae3,e3}.
After we have found the first Jordan chain of length 3, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 1 e1 0

ker(A2) 2 e2 0

ker(A2) 3 e2 0

Because the last column consists now of 0’s, we are done with looking
for Jordan chains. We have found at this point a basis of V consisting
entirely of vectors in Jordan chains.

Let us try to visualise the situation
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(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3.

Figure 18

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
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into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.
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3. Calculation of the kernels of Bi.

The powers of the matrix B.
Let us calculate the powers of the matrix B.

B =

 3 2 −1

−3 −2 1

2 1 −1

 ; B2 =

 1 1 0

−1 −1 0

1 1 0

 ;

B3 =

 0 0 0

0 0 0

0 0 0

 .

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation 3 2 −1

−3 −2 1
2 1 −1

  z1

z2

z3

 =

 0
0
0

 .
This results in the following system of linear equations

3z1 + 2z2 − z3 = 0,
−3z1 − 2z2 + z3 = 0,

2z1 + z2 − z3 = 0.

We solve this system and find the solution set which is a subspace

ker(B) =
{
(r1,−r1, r1) | r1 ∈ K

}
= span

{
(1,−1,1)

}
.

Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation 1 1 0

−1 −1 0
1 1 0

  z1

z2

z3

 =

 0
0
0

 .
This results in the following system of linear equations

z1 + z2 = 0,
−z1 − z2 = 0,
z1 + z2 = 0.
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We solve this system and find the solution set which is a subspace

ker(B2) =
{
(r1,−r1, r3) | r1, r3 ∈ K

}
= span

{
(1,−1,0), (0,0,1)

}
.

Kernel of B3.
We have

ker(B3) = K3.

We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B) 1 1 = dim(ker(B))

ker(B2) 2 1 = dim(ker(B2))− dim(ker(B))

ker(B3) 3 1 = dim(ker(B3))− dim(ker(B2))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.
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The last number in the last column and third line is 1 and this gives the
information that there will be one Jordan chain of length 3. The first
number 1 in the last column and first line is the dimension of the kernel
of B. This says that there will be one Jordan chain in the result.

After we have calculated this chain, the last column will be from top to
bottom {0,0,0}. There is no chain left to be found. We already have a
basis consisting of vectors in Jordan chains.

4. Calculation of the Jordan chains.

The first Jordan chain.
We look for a starting w3. We see from the information table that there
is a generating vector w3 for a chain of length 3.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B3). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B3).

2. The generating vector may not be in the ker(B2) because the length
of the chain must be exactly 3. So it has to be independent from
all vectors in ker(B2). It is sufficient that it is linearly independent
from a basis of ker(B2).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 3. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B3 together with the vec-
tors in ker(B2) and also the vectors, if any, of exactly height 3 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B3) = K3.

So the generating vector has the following generic form
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(a,b, c).

The kernel of B2.
We remember that the kernel ker(B2) is

ker(B2) = span
{
(1,−1,0), (0,0,1)

}
.

Vectors chosen in previous Jordan chains.
We have previously not chosen a vector of exactly height 3 in Jordan
chains.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =

 1 −1 0
0 0 1
a b c

 .
If we impose the condition a+b ≠ 0, then we can row reduce this matrix
to the matrix  1 0 0

0 1 0
0 0 1

 .
We see that these vectors are independent if we impose the condition
that a+ b ≠ 0. We can choose a = 1, b = 0, c = 0.

We can choose a valid generating vector of the chain as follows

w3 = (1,0,0).

We calculate then B (1,0,0), B2 (1,0,0), and we know that the vectors

{w1 = B2 w3,w2 = Bw3,w3}
are a Jordan chain of 3 linearly independent vectors and because B3 w3 =
0, we know that the length of the chain is exactly 3.

We calculate w2.
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w2 = Bw3 =

 −2 1 −2
−1 0 −1

2 −1 2

  1
0
0

 =

 3
−3

2

 .
We calculate w1.

w1 = B2 w3 =

 1 1 0
−1 −1 0

1 1 0

  1
0
0

 =

 1
−1

1

 .
We have now found the Jordan chain

{
w1 = (1,−1,1),w2 = (3,−3,2),w3 = (1,0,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 1 w1 0

ker(B2) 2 w2 0

ker(B3) 3 w3 0

with

w1 = (1,−1,1)

w2 = (3,−3,2)

w3 = (1,0,0)

We have only 0’s in the last column, so we are done searching for Jordan
chains. The last column consists of only 0’s. We have found at this point
a basis of V consisting entirely of vectors in Jordan chains.

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now
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P =

 1 3 1
−1 −3 0

1 2 0

 .
We check this solution.

A = P−1 B P

=

 0 2 3
0 −1 −1
1 1 0

  3 2 −1
−3 −2 1

2 1 −1

  1 3 1
−1 −3 0

1 2 0


=

 0 1 0
0 0 1
0 0 0



=

 0 1 0

0 0 1

0 0 0

  .
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18 exercise. (5× 5); (J3(0), J2(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B so that A is in Jordan normal form. Find explicitly
a matrix P that is invertible and represents the base change: A = P−1 B P .
Find explicitly Jordan chains that are necessary to construct the matrix
P .

B =


2 1 1 −2 −1

−2 −1 0 1 2
−3 −1 −1 2 2
−1 0 0 0 1

1 0 1 −1 0

 .

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I5| = −λ5.

The eigenvalue λ = 0 has algebraic multiplicity 5. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
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this subsection 2. The solution will be completely independent from this
section.

We want to investigate the endomorphism A.

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 .
We show this in a way that emphasises the position of the elementary
Jordan blocks.

A =


0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0



 
( ) .

We compute also the powers of A.

A =


0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0



 
( ) ; A2 =


0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



 
( ) ;

A3 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



 
( ) .

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the third power of
A. The smallest exponent that makes the power of the matrix A the zero
matrix, in this case 3, is called the height of nilpotency of the matrix A.
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It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A) = span
{
e1,e4

}
.

ker(A2) = span
{
e1,e2,e4,e5

}
.

ker(A3) = span
{
e1,e2,e3,e4,e5

}
= K5.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 2 2 = dim(ker(A))

ker(A2) 4 2 = dim(ker(A2))− dim(ker(A))

ker(A3) 5 1 = dim(ker(A3))− dim(ker(A2))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.
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We see also that there is equality in the inclusion of sets from the third
power onwards.

ker(A) ⊊ ker(A2) ⊊ ker(A3) = ker(A4) = · · · .
The dimensions of the kernels increase until they stabilise.

We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:

n1 +n2 +n3 = 2 = dim(ker(A)),

n2 +n3 = 2 = dim(ker(A2))− dim(ker(A)),

n3 = 1 = dim(ker(A3))− dim(ker(A2)).

Solving this system, we have n1 = 0, n2 = 1, n3 = 1.

A consequence from this fact is that the numbers in the last column are
descending.

We remark by looking at the matrices Ai that
Ae3 = e2,
Ae2 = e1,
Ae1 = 0,

or 
e1 = Ae3,

e2 = A2 e3,

A3 e3 = 0.

One sees that we have a Jordan chain with length three of linearly inde-
pendent vectors. We write a Jordan chain in reverse order.

{e1 = A2 e3,e2 = Ae3,e3}.
After we have found the first Jordan chain of length 3, we have then the
following table.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 2 e1 1

ker(A2) 4 e2 1

ker(A3) 5 e3 0

Because the last column consists now of at least one number that is not
0, we are not done with looking for Jordan chains.

We remark by looking at the matrices Ai that{
Ae5 = e4,
Ae4 = 0,

or {
Ae5 = e4,

A2 e5 = 0.

We have found a second Jordan chain. It has length two. We write a
Jordan chain in reverse order.

{e4 = Ae5,e5}.

Let us note this in the new information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(A) 2 e1 e4 0

ker(A2) 4 e2 e5 0

ker(A3) 5 e3 0
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The last column consists of only 0’s and this ends the search for Jordan
chains. We have indeed found 5 linearly independent vectors and these
form a basis for K5.

Let us express our findings in a way that emphasises the position of
the elementary Jordan blocks and their relation with the powers of the
matrix A.

(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3.

Figure 19

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
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and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.
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3. Calculation of the kernels of Bi.

The powers of the matrix B.
Let us calculate the powers of the matrix B.

B =


2 1 1 −2 −1

−2 −1 0 1 2

−3 −1 −1 2 2

−1 0 0 0 1

1 0 1 −1 0

 ; B2 =


0 0 0 0 0

−1 −1 0 1 1

−1 −1 0 1 1

−1 −1 0 1 1

0 0 0 0 0

 ;

B3 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 .

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation

2 1 1 −2 −1
−2 −1 0 1 2
−3 −1 −1 2 2
−1 0 0 0 1

1 0 1 −1 0



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This results in the following system of linear equations

2z1 + z2 + z3 − 2z4 − z5 = 0,
−2z1 − z2 + z4 + 2z5 = 0,
−3z1 − z2 − z3 + 2z4 + 2z5 = 0,
− z1 + z5 = 0,
z1 + z3 − z4 = 0.

We solve this system and find the solution set which is a subspace

ker(B) =
{
(r1, r2,−r1 + r2, r2, r1) | r1, r2 ∈ K

}
= span

{
(1,0,−1,0,1), (0,1,1,1,0)

}
.
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Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation

0 0 0 0 0
−1 −1 0 1 1
−1 −1 0 1 1
−1 −1 0 1 1

0 0 0 0 0



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This results in the following system of linear equations

−z1 − z2 + z4 + z5 = 0,
−z1 − z2 + z4 + z5 = 0,
−z1 − z2 + z4 + z5 = 0.

We solve this system and find the solution set which is a subspace

ker(B2) =
{
(r1, r2, r3, r4, r1 + r2 − r4) | r1, r2, r3, r4 ∈ K

}
= span

{
(1,0,0,0,1), (0,1,0,0,1), (0,0,1,0,0), (0,0,0,1,−1)

}
.

Kernel of B3.
We calculate the kernel of B3 and we have to solve the matrix equation

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This is the vector space K5.

We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B) 2 2 = dim(ker(B))

ker(B2) 4 2 = dim(ker(B2))− dim(ker(B))

ker(B3) 5 1 = dim(ker(B3))− dim(ker(B2))
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We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

The last number in the last column and third line is 1 and this gives the
information that there will be one Jordan chain of length 3. The first
number 2 in the last column is the dimension of the kernel of B. This
number gives the information that there will be two Jordan chains. After
we have calculated the chain with length 3, the last column will be from
top to bottom {1,1,0}. There is still one two chain of independent vec-
tors left to be found. After this calculation, the last column will be from
top to bottom {0,0,0}. We have at this moment 5 linearly independent
vectors which form a basis for this vector space.

4. Calculation of the Jordan chains.

The first Jordan chain.
We look for a linearly independent set of vectors {w1,w2,w3} satisfying

Bw3 = w2,

B2 w3 = w1,

B3 w3 = 0.

where w3 is in the vector space ker(B3) but not in ker(B2).



www.mathandphoto.eu. Exercise Notes Jordan 338

We look for a starting w3. We see from the information table that there
is a generating vector w3 for a chain of length 3.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B3). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B3).

2. The generating vector may not be in the ker(B2) because the length
of the chain must be exactly 3. So it has to be independent from
all vectors in ker(B2). It is sufficient that it is linearly independent
from a basis of ker(B2).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 3. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B3 together with the vec-
tors in ker(B2) and also the vectors, if any, of exactly height 3 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B3) = K5.

So the generating vector has the following generic form

(a,b, c, d, e).

The kernel of B2.
We remember that the kernel ker(B2) is

ker(B2) = span
{
(1,0,0,0,1), (0,1,0,0,1), (0,0,1,0,0), (0,0,0,1,−1)

}
.

Vectors chosen in previous Jordan chains.
We have previously not chosen a vector of exactly height 3 in Jordan
chains.



www.mathandphoto.eu. Exercise Notes Jordan 339

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 −1
a b c d e

 .
If we impose the condition a + b − d − e ≠ 0, then we can row reduce
this matrix to the matrix 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

We see that these vectors are independent if we impose the condition
that a+ b − d− e ≠ 0. We can choose a = 1, b = 0, c = 0, d = 0, e = 0.

We can choose a valid generating vector of the chain as follows

w3 = (1,0,0,0,0).

We calculate then Bi (1,0,0,0,0) from i = 1 to i = 2, and we know that
the vectors

{w1 = B2 w3,w2 = Bw3,w3}
are a Jordan chain of 3 linearly independent vectors and because B3 w3 =
0, we know that the length of the chain is exactly 3.

We calculate w2.

w2 = Bw3 =


2 1 1 −2 −1

−2 −1 0 1 2
−3 −1 −1 2 2
−1 0 0 0 1

1 0 1 −1 0




1
0
0
0
0

 =


2

−2
−3
−1

1

 .
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We calculate w1.

w1 = B2 w3 =


0 0 0 0 0

−1 −1 0 1 1
−1 −1 0 1 1
−1 −1 0 1 1

0 0 0 0 0




1
0
0
0
0

 =


0

−1
−1
−1

0

 .

We have found our first Jordan chain. It has length 3.

{
w1 = (0,−1,−1,−1,0),w2 = (2,−2,−3,−1,1),w3 = (1,0,0,0,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 2 w1 1

ker(B2) 4 w2 1

ker(B3) 5 w3 0

with

w1 = (0,−1,−1,−1,0)

w2 = (2,−2,−3,−1,1)

w3 = (1,0,0,0,0)

We see at the number 1 in the second row of the last column that we
have still to find a vector w5 satisfying two criteria.

We look for a starting w5. We see from the information table that there
is a generating vector w5 for a chain of length 2.

The generating vector has to satisfy the following conditions.
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1. It has to be in the kernel ker(B2). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B2).

2. The generating vector may not be in the ker(B) because the length
of the chain must be exactly 2. So it has to be independent from
all vectors in ker(B). It is sufficient that it is linearly independent
from a basis of ker(B).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 2. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.

4. We summarise: the generating vector in B2 together with the vec-
tors in ker(B) and also the vectors, if any, of exactly height 2 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B2) = span
{
(1,0,0,0,1), (0,1,0,0,1), (0,0,1,0,0), (0,0,0,1,−1)

}
.

So the generating vector has the following generic form

a (1,0,0,0,1)+ b (0,1,0,0,1)+ c (0,0,1,0,0)+ d (0,0,0,1,−1)

= (a,b, c, d,a+ b − d).

The kernel of B.
We remember that the kernel of B is

ker(B) = span
{
(1,0,−1,0,1), (0,1,1,1,0)

}
.

Vectors chosen in previous Jordan chains.
We have previously chosen the vector w2 = (2,−2,−3,−1,1) of height 2
in a Jordan chain.

Condition of linear independency of the vectors.
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We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 −1 0 1
0 1 1 1 0
2 −2 −3 −1 1
a b c d a+ b − d

 .
If we impose the condition a + c − d ≠ 0, then we can row reduce this
matrix to the matrix 

1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 −1


We see that these vectors are independent if we impose the condition
that a+ c − d ≠ 0. We can choose a = 1, b = 0, c = 0, d = 0, e = 0.

We can choose a valid generating vector of the chain as follows

w5 = (1,0,0,0,1).

We calculate now B (1,0,0,0,1), and we know that the vectors

{Bw5,w5}
form a Jordan chain of two linearly independent vectors.

We calculate w4.

w4 = Bw5 =


2 1 1 −2 −1

−2 −1 0 1 2
−3 −1 −1 2 2
−1 0 0 0 1

1 0 1 −1 0




1
0
0
0
1

 =


1
0

−1
0
1

 .

We have found our second Jordan chain. It has length 2.

{
w4 = (1,0,−1,0,1),w5 = (1,0,0,0,1)

}
.

Let us take a look at our current information table.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(B) 2 w1 w4 0

ker(B2) 4 w2 w5 0

ker(B3) 5 w3 0

with

w1 = (0,−1,−1,−1,0)

w2 = (2,−2,−3,−1,1)

w3 = (1,0,0,0,0)

w4 = (1,0,−1,0,1)

w5 = (1,0,0,0,1)

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns. We have now

P =


0 2 1 1 1

−1 −2 0 0 0
−1 −3 0 −1 0
−1 −1 0 0 0

0 1 0 1 1

 .
We check our calculations.
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A = P−1 B P

=


0 1 0 −2 0
0 −1 0 1 0
1 1 0 −1 −1
0 2 −1 −1 0
0 −1 1 0 1



×


2 1 1 −2 −1

−2 −1 0 1 2
−3 −1 −1 2 2
−1 0 0 0 1

1 0 1 −1 0



×


0 2 1 1 1

−1 −2 0 0 0
−1 −3 0 −1 0
−1 −1 0 0 0

0 1 0 1 1



=


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0



=


0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0



 
( ) .
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19 exercise. (4× 4); (J4(0)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B so that A is in Jordan normal form. Find explicitly
a matrix P that is invertible and represents the base change: A = P−1 B P .
Find explicitly Jordan chains that are necessary to construct the matrix
P .

B =


−1 1 −1 0

7 −4 9 3
3 −2 4 1
3 −2 3 1

 .
Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial pC-H(λ).

pC-H(λ) = |B − λ I4| = λ4.

The eigenvalue λ = 0 has algebraic multiplicity 4. The characteristic
polynomial pC-H(λ) factors completely in linear polynomials over the
field K. It is thus possible to put the matrix B in Jordan normal form
over the field K.

2. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already in
Jordan normal form. It will later turn out that this is exactly the matrix
A that we are looking for. A good analysis of this matrix A can be a
way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and continue with subsection 3 of the solution. The
solution from that subsection onwards will make no reference at all to
this subsection 2. The solution will be completely independent from this
section.
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We want to investigate the endomorphism A.

We compute also the powers of A.

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




 ;

A2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0




 ;

A3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0




 ;

A4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




 .

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the fourth power
of A. The smallest exponent that makes the power of the matrix A the
zero matrix, in this case 4, is called the height of nilpotency of the matrix
A.

It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A) = span
{
e1
}
;

ker(A2) = span
{
e1,e2

}
;

ker(A3) = span
{
e1,e2,e3

}
;

ker(A4) = span
{
e1,e2,e3,e4

}
= K4.

After having investigated the kernels, we can look at the data we have
found in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(A) 1 1 = dim(ker(A))

ker(A2) 2 1 = dim(ker(A2))− dim(ker(A))

ker(A3) 3 1 = dim(ker(A3))− dim(ker(A2))

ker(A4) 4 1 = dim(ker(A4))− dim(ker(A3))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

We see also that there is equality in the inclusion of sets from the fourth
power onwards.

ker(A) ⊊ ker(A2) ⊊ ker(A3) ⊊ ker(A4) = ker(A5) = · · · .
The dimensions of the kernels increase until they stabilise.
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We mention also the following fact. If ni is the number of linearly in-
dependent Jordan chains of length exactly i, then we have the following
set of equations:

n1 +n2 +n3 +n4 = 1 = dim(ker(A)),

n2 +n3 +n4 = 1 = dim(ker(A2))− dim(ker(A)),

n3 +n4 = 1 = dim(ker(A3))− dim(ker(A2)),

n4 = 1 = dim(ker(A4))− dim(ker(A3)).

Solving this system, we have n1 = 0, n2 = 0, n3 = 0, n4 = 1.

A consequence from this fact is that the numbers in the last column are
descending.

We remark by looking at the matrices Ai that
Ae4 = e3,
Ae3 = e2,
Ae2 = e1,
Ae1 = 0.

Ae4 = e3,

A2 e4 = e2,

A3 e4 = e1,

A4 e4 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{e1 = A3 e4,e2 = A2 e4,e3 = Ae4,e4}.
After we have found the first Jordan chain of length 4, we have then the
following table.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 1 e1 0

ker(A2) 1 e2 0

ker(A3) 1 e3 0

ker(A4) 1 e4 0

Because the last column consists now of 0’s, we are done with looking
for Jordan chains. We have found at this point a basis of V consisting
entirely of vectors in Jordan chains.

Let us express our findings in a way that emphasises the position of
the elementary Jordan blocks and their relation with the powers of the
matrix A.
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(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3. (d) Visualisation of A4.

Figure 20

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
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into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.
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3. Calculation of the kernels of Bi.

Let us calculate the powers of the matrix B.

B =


−1 1 −1 0

7 −4 9 3

3 −2 4 1

3 −2 3 1

 ; B2 =


5 −3 6 2

1 −1 2 0

−2 1 −2 −1

−5 3 −6 −2

 ;

B3 =


−2 1 −2 −1

−2 1 −2 −1

0 0 0 0

2 −1 2 1

 ; B4 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

Kernel of B.
We calculate the kernel of B and we have to solve the matrix equation

−1 1 −1 0
7 −4 9 3
3 −2 4 1
3 −2 3 1



z1

z2

z3

z4

 =


0
0
0
0

 .
This results in the following system of linear equations

− z1 + z2 − z3 = 0,
7z1 − 4z2 + 9z3 + 3z4 = 0,
3z1 − 2z2 + 4z3 + z4 = 0,
3z1 − 2z2 + 3z3 + z4 = 0.

We solve this system and find the solution set which is a subspace

ker(B) =
{
(r1, r1,0,−r1) | r1 ∈ K

}
= span

{
(1,1,0,−1)

}
.

Kernel of B2.
We calculate the kernel of B2 and we have to solve the matrix equation

B2 =


5 −3 6 2
1 −1 2 0

−2 1 −2 −1
−5 3 −6 −2



z1

z2

z3

z4

 =


0
0
0
0

 .
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This results in the following system of linear equations
5z1 − 3z2 + 6z3 + 2z4 = 0,
z1 − z2 + 2z3 = 0,

−2z1 + z2 − 2z3 − z4 = 0,
−5z1 + 3z2 − 6z3 − 2z4 = 0.

We solve this system and find the solution set which is a subspace

ker(B2) =
{
(r1, r2,−r1/2+ r2/2,−r1) | r1, r2 ∈ K

}
= span

{
(1,0,−1/2,−1), (0,1,1/2,0)

}
.

Kernel of B3.
We calculate the kernel of B3 and we have to solve the matrix equation

−2 1 −2 −1
−2 1 −2 −1

0 0 0 0
2 −1 2 1



z1

z2

z3

z4

 =


0
0
0
0

 .
This results in the following system of linear equations

−2z1 + z2 − 2z3 − z4 = 0,
−2z1 + z2 − 2z3 − z4 = 0,

2z1 − z2 + 2z3 + z4 = 0.

We solve this system and find the solution set which is a subspace

ker(B3) =
{
(r1, r2, r3,−2 r1 + r2 − 2 r3) | r1, r2, r3 ∈ K

}
= span

{
(1,0,0,−2), (0,1,0,1), (0,0,1,−2)

}
.

Kernel of B4.
We want to calculate the kernel of B4 and we observe first that

B4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
The kernel is K4.

We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B) 1 1 = dim(ker(B))

ker(B2) 2 1 = dim(ker(B2))− dim(ker(B))

ker(B3) 3 1 = dim(ker(B3))− dim(ker(B2))

ker(B4) 4 1 = dim(ker(B4))− dim(ker(B3))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix B.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(B)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.

4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

The last number in the last column and fourth line is 1 and this gives
the information that there will be one Jordan chain of length 4. The first
number 1 in the last column is the dimension of the kernel of B. This
gives the information that there will be one Jordan chain. After we have
calculated this chain, the last column will be {0,0,0,0}. There are no
linearly independent vectors left to be found. We have indeed at this
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moment already 4 linearly independent vectors which form a base for
this vector space.

4. Calculation of the Jordan chains.

The first Jordan chain.
We look for a linearly independent set of vectors {w1,w2,w3,w4} satis-
fying 

Bw4 = w3,
Bw3 = w2,
Bw2 = w1,
Bw1 = 0

or 

Bw4 = w3,

B2 w3 = w2,

B3 w2 = w1,

B4 w1 = 0

where w4 is in the vector space ker(B4) but not in ker(B3).

We look for a starting w4. We see from the information table that there
is a generating vector w4 for a chain of length 4.

The generating vector has to satisfy the following conditions.

1. It has to be in the kernel ker(B4). So we can describe such a vec-
tor as a linear combination of vectors of a basis of the subspace
ker(B4).

2. The generating vector may not be in the ker(B3) because the length
of the chain must be exactly 4. So it has to be independent from
all vectors in ker(B3). It is sufficient that it is linearly independent
from a basis of ker(B3).

3. This generating vector has to be linearly independent from all vec-
tors already chosen in previous Jordan chains which have exactly
height 4. It can be the case that no previous chains are already
chosen or there are no vectors of that height previously chosen in
which case this is no condition at all.
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4. We summarise: the generating vector in B4 together with the vec-
tors in ker(B3) and also the vectors, if any, of exactly height 4 cho-
sen in previous Jordan chains must be a linearly independent set
of vectors.

Generic form of the generating vector.
We remember that

ker(B4) = K4.

So the generating vector has the following generic form

(a,b, c, d).

The kernel of B3.
We remember that the kernel ker(B3) is

ker(B3) = span
{
(1,0,0,−2), (0,1,0,1), (0,0,1,−2)

}
.

Vectors chosen in previous Jordan chains.
We have previously not chosen a vector of height 4 in a Jordan chain.

Condition of linear independency of the vectors.
We have to take care that the generic vector is linearly independent of
all the vectors mentioned before. We collect for this purpose all these
vectors in the rows of the matrix H and row reduce then this matrix.

H =


1 0 0 −2
0 1 0 1
0 0 1 −2
a b c d

 .
If we impose the condition 2a−b+ 2 c +d ≠ 0, then we can row reduce
this matrix to the matrix 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
We see that these vectors are independent if we impose the condition
that 2a− b + 2 c + d ≠ 0. We can choose a = 1, b = 0, c = 0 and d = 0.

We can choose a valid generating vector of the chain as follows
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w4 = (1,0,0,0).

We calculate w3.

w3 = Bw4 =


−1 1 −1 0

7 −4 9 3
3 −2 4 1
3 −2 3 1




1
0
0
0

 =


−1

7
3
3

 .
We calculate w2.

w2 = B2 w4 =


5 −3 6 2
1 −1 2 0

−2 1 −2 −1
−5 3 −6 −2




1
0
0
0

 =


5
1

−2
−5

 .
We calculate w1.

w1 = B3 w4 =


−2 1 −2 −1
−2 1 −2 −1

0 0 0 0
2 −1 2 1




1
0
0
0

 =


−2
−2

0
2

 .
Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B) 1 w1 0

ker(B2) 2 w2 0

ker(B3) 3 w3 0

ker(B4) 4 w4 0

with
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w1 = (−2,−2,0,2)

w2 = (5,1,−2,−5)

w3 = (−1,7,3,3)

w4 = (1,0,0,0)

5. Result and check of the result.

We construct the matrix P by using the coordinates of the vectors wi

that we found in the Jordan chains as its columns.

P =


−2 5 −1 1
−2 1 7 0

0 −2 3 0
2 −5 3 0

 .
We check this solution.
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A = P−1 B P

=


0 9/16 −19/8 17/16
0 3/8 −5/4 3/8
0 1/4 −1/2 1/4
1 −1/2 1 1/2



×


−1 1 −1 0

7 −4 9 3
3 −2 4 1
3 −2 3 1



×


−2 5 −1 1
−2 1 7 0

0 −2 3 0
2 −5 3 0



=


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



=


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




 .
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20 exercise. (14× 14)

Find the kernels of Ai and Jordan chains of the matrix A.

A =



0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

Solution.

We want to investigate the endomorphism A associated with this Jordan
block.

Before trying to find a solution of this exercise, let us try to see if this
matrix is a Jordan matrix. We write the matrix by emphasising the ele-
mentary Jordan blocks.
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A =



0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0









( )

.

The powers of the matrix A.

A =



0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0









( )

,
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A2 =



0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0









( )

,

A3 =



0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0









( )

,
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A4 =



0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0









( )

,

A5 =



0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0









( )

,
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A6 =



0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0









( )

,

A7 =



0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0









( )

,
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A8 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0









( )

.

We observe that when increasing the exponents of the matrix A the orig-
inal superdiagonals of 1’s in the elementary Jordan blocks of the matrix
A are going upwards in their respective Jordan blocks in the powers of
the matrix A until they finally disappear when taking the eighth power of
A. The smallest exponent that makes the power of the matrix A the zero
matrix, in this case 8, is called the height of nilpotency of the matrix A.

Let us try to visualise these matrices in order to get an easier view of the
situation.
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(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3. (d) Visualisation of A4.

(e) Visualisation of A5. (f) Visualisation of A6.

Figure 21. The comments follow after the next figure.
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(a) Visualisation of A7. (b) Visualisation of A8.

Figure 22

We give here some comments about the figure.

1. We see in these figures a visualisation of the matrices Ai with the
squares or cells on which there are 1’s, drawn with the colour red,
and the squares or cells on which there are 0’s, drawn with the
colour yellow.

2. We can immediately observe the kernels of the Ai and the dynamic
creation of the Jordan chains.

3. We see also when increasing the exponents how the superdiagonals
in the elementary Jordan blocks go steadily higher and higher up
into their respective elementary Jordan blocks until they ultimately
completely disappear.

4. We can visually read from these matrices the height of nilpotency.

5. We can read from these matrices the invariant subspaces with re-
spect to the endomorphism A.

6. The orange lines delimit the original position of the elementary
Jordan blocks.

Kernels of Ai.

We can immediately observe that the kernel of A has dimension 3. The
dimension for the kernel of an endomorphism with the matrix in this



www.mathandphoto.eu. Exercise Notes Jordan 368

echelon form matrix is the number of 0 columns or alternatively the
number of 0 rows.

Remark also that empty columns stay empty columns reflecting the fact
that the kernel of Ai is a subset of the kernel of Ai+1. We can see almost
without calculation that

ker(A) = span
{
e1,e9,e13

}
.

We look at the matrix A2. It is interesting to observe how the kernels
change. We can see almost without calculation that the superdiagonal
of the 2 × 2 matrix has completely disappeared. The two other super-
diagonals shift to the top in their respective elementary matrices. We
can immediately observe that the kernel has dimension 6. Other supple-
mentary vectors start to appear in this kernel.

ker(A2) = span
{
e1,e2,e9,e10,e13,e14

}
.

We look at the matrix A3. We can immediately observe that the kernel
has dimension 8. Other supplementary vectors start to appear in this
kernel.

ker(A3) = span
{
e1,e2,e3,e9,e10,e11,e13,e14

}
We look at the matrix A4. We can immediately observe that the kernel
has dimension 10. Other supplementary vectors start to appear in this
kernel.

ker(A4) = span
{
e1,e2,e3,e4,e9,e10,e11,e12,e13,e14

}
.

We look at the matrix A5. We can immediately observe that the kernel
has dimension 11. Other supplementary vectors start to appear in this
kernel.

ker(A5) = span
{
e1,e2,e3,e4,e5,e9,e10,e11,e12,e13,e14

}
.

We look at the matrix A6. We can immediately observe that the kernel
has dimension 12. Other supplementary vectors start to appear in this
kernel.

ker(A6) = span
{
e1,e2,e3,e4,e5,e6,e9,e10,e11,e12,e13,e14

}
.
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We look at the matrix A7. We can immediately observe that the kernel
has dimension 13. Other supplementary vectors start to appear in this
kernel.

ker(A7) = span
{
e1,e2,e3,e4,e5,e6,e7,e9,e10,e11,e12,e13,e14

}
.

We look at the matrix A8. We can immediately observe that the kernel
has dimension 14 and this is the vector space K14.

We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A) 3 3 = dim(ker(A))

ker(A2) 6 3 = dim(ker(A2))− dim(ker(A))

ker(A3) 8 2 = dim(ker(A3))− dim(ker(A2))

ker(A4) 10 2 = dim(ker(A4))− dim(ker(A3))

ker(A5) 11 1 = dim(ker(A5))− dim(ker(A4))

ker(A6) 12 1 = dim(ker(A6))− dim(ker(A5))

ker(A7) 13 1 = dim(ker(A7))− dim(ker(A6))

ker(A8) 14 1 = dim(ker(A8))− dim(ker(A7))

We give some explanation about this information table.

1. We find in the first column the dimensions of the kernels of the
consecutive powers of the matrix A.

2. We have in the second column in every row i but the first the con-
secutive differences of the kernel dimensions.

3. In the first row, we have dim(ker(A)). This number is equal to the
number of elementary Jordan blocks and is usually called the geo-
metric multiplicity of the eigenvalue λ = 0.
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4. The last number of the second column that is not equal to zero, is
the number of elementary Jordan chains having the following prop-
erties. These elementary Jordan chains consist out of vectors so
that their union consists entirely of linearly independent vectors.
The lengths of these chains are all exactly equal to the number of
the row in which this last non zero number occurs.

5. The “remaining dim” give the number of linearly independent vec-
tors in Jordan chains that still have to be determined.

By looking at the first elementary 8× 8 Jordan block in the matrix A, we
see that we have the following mappings

Ae1 = 0,
Ae2 = e1,
Ae3 = e2,
Ae4 = e3,
Ae5 = e4,
Ae6 = e5,
Ae7 = e6,
Ae8 = e7.

This can be rewritten as follows

A8 e8 = 0,

A7 e8 = e1,

A6 e8 = e2,

A5 e8 = e3,

A4 e8 = e4,

A3 e8 = e5,

A2 e8 = e6,
Ae8 = e7.

Because A8 e8 = 0, we conclude that we have found a first Jordan chain.
It has length 8.

{e1 = A7 e8,e2 = A6 e8,e3 = A5 e8,e4 = A4 e8,

e5 = A3 e8,e6 = A2 e8,e7 = Ae8,e8}.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A) 3 e1 2

ker(A2) 6 e2 2

ker(A3) 8 e3 1

ker(A4) 10 e4 1

ker(A5) 11 e5 0

ker(A6) 12 e6 0

ker(A7) 13 e7 0

ker(A8) 14 e8 0

The last 1 in the last column and the fourth line indicates that there is
still one chain to be found of length 4. The second elementary Jordan
block in the matrix A says also that there is a chain of length 4. We can
see from the matrix A that we have the following mappings.

Ae9 = 0,
Ae10 = e9,
Ae11 = e10,
Ae12 = e11,
A4 e12 = 0,

A3 e12 = e9,

A2 e12 = e10,
Ae12 = e11.

Because A4 e12 = 0, we conclude that we have found a second Jordan
chain. It has length 4.

{e9 = A3 e12,e10 = A2 e12,e11 = Ae12,e12}.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(A) 3 e1 e9 1

ker(A2) 6 e2 e10 1

ker(A3) 8 e3 e11 0

ker(A4) 10 e4 e12 0

ker(A5) 11 e5 0

ker(A6) 12 e6 0

ker(A7) 13 e7 0

ker(A8) 14 e8 0

The last number 1 in the last column indicates that there is still a chain
to be found of exact length 2.

We can see from the matrix A that we have the following map.

Ae14 = e13.

Because A2 e14 = 0, we conclude that we have found a third Jordan chain.
It has length 2.

{e13 = Ae14,e14}.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 remaining dim

ker(A) 3 e1 e9 e13 0

ker(A2) 6 e2 e10 e14 0

ker(A3) 8 e3 e11 0

ker(A4) 10 e4 e12 0

ker(A5) 11 e5 0

ker(A6) 12 e6 0

ker(A7) 13 e7 0

ker(A8) 14 e8 0



          Part 3
 General matrices
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We stated before that the large block Jordan matrices associated with the
eigenvalue λ = 0 were essential in the investigation of the general case.
The general case are the Jordan matrices with large blocks associated
with arbritrary eigenvalues. In the previous chapter, we only considered
large blocks associated with eigenvalue λ = 0.

Let us take a look at some examples. We will see that these exercises can
be reduced to the type of exercises we have handled before in part two.
We will however to take care of some more bookkeeping.

21 example. (4× 4); (J2(λ = 3), J2(λ = 2)).

We will make in this example some remarks of procedures that have to
dealt with which were not used to when working with matrices that have
only zero eigenvalues as in part 2. Let us take a look at the matrix A that
is already in Jordan normal Form.

A =


3 1 0 0

0 3 0 0

0 0 2 1

0 0 0 2


( )

( ) .

This matrix consists of two elementary Jordan blocks. The first is a block
with eigenvalue λ = 3 and the second is a block with eigenvalue λ = 2.

It is crucial is to remark that vectors of the subspace span
{
e1,e2

}
are

mapped into the same space. We say that the subspace is invariant with
respect to the endomorphism A.

The subspace span
{
e3,e4

}
is also mapped into itself.

Let us see what happens to the powers of this matrix A.

A =


3 1 0 0

0 3 0 0

0 0 2 1

0 0 0 2


( )

( ) ;

A2 =


9 6 0 0

0 9 0 0

0 0 4 4

0 0 0 4


( )

( ) ;
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A3 =


27 27 0 0

0 27 0 0

0 0 8 12

0 0 0 8


( )

( ) ;

A4 =


81 108 0 0

0 81 0 0

0 0 16 32

0 0 0 16


( )

( ) .

Let us compare this behaviour with the behaviour of the powers of the
matrices that were handled in the previous part 2. In part 2 all the
eigenvalues were zero. In contrast they are not zero in this example. We
do not have in this case that the superdiagonals of the Jordan blocks go
to the top and slowly disappear when taking higher powers. We have on
the contrary that the diagonals of the elementary blocks associated with
a nonzero λ do not change into zero’s.

Let us visualise this situation. We visualise this type of matrix by colour-
ing the diagonal elements which are not zero by dark green and the
colour light green is representing any number. The exact value of the
numbers in the green cells are of no importance to us in this context.
They are however very important in the applications and there are very
nice formulas for these numbers. The yellow cells are representing the
number zero and the red cells represent the number 1 as before in part
two.
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(a) Visualisation of A. (b) Visualisation of A2.

(c) Visualisation of A3. (d) Visualisation of A4.

Figure 23

We give here some comments about this figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.
All the blocks with green cells in it will be keeping the same look how-
ever large we take the powers of this matrix.

The situation changes drastically by using the following trick. We take
the first eigenvalue λ = 3 and subtract from the matrix A the matrix λ I4
where I4 is the notation for the 4× 4 identity matrix.
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A− λ I4 =


3 1 0 0

0 3 0 0

0 0 2 1

0 0 0 2


( )

( ) −


3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3



=


0 1 0 0

0 0 0 0

0 0 −1 1

0 0 0 −1


( )

( ) .

We see here that the top left submatrix in the colour green is a matrix
that we immediately recognise from the previous chapter with a diagonal
consisting entirely out of 0’s and a superdiagonal consisting of 1’s.

We visualise now this new matrix A−3 I4 and its second power (A−λ I4)2.
We observe that

(A− λ I4)2 =


0 0 0 0

0 0 0 0

0 0 1 −2

0 0 0 1


( )

( ) .
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(a) Visualisation of (A− 3 I4). (b) Visualisation of (A− 3 I4)2.

Figure 24

We give here some comments about the preceding figure.

We visualise this matrix by colouring the diagonal elements which are
not zero by dark green and the colour light green is representing any
number. The yellow cells are representing the number zero. The red
cells represent the number 1. We see in the first elementary matrix at the
top left the same change as in the preceding chapter. The superdiagonal
is going to the top in this block to disappear at the second power of
A − 3 I4. The top left matrix block is recognised as one of the type we
studied in the previous part. It is a nilpotent matrix block.

An analogous procedure happens with the submatrix at the bottom right.
We repeat this completely.

The situation changes drastically if we take the second eigenvalue λ = 2
and subtract from the matrix A the matrix λ I4 where I4 stands for the
4× 4 identity matrix.
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A− λ I4 =


3 1 0 0

0 3 0 0

0 0 2 1

0 0 0 2


( )

( ) −


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2



=


1 1 0 0

0 1 0 0

0 0 0 1

0 0 0 0


( )

( ) .

We observe that the bottom right block in the colour red is a matrix that
we recognise from the previous part with a diagonal consisting entirely
out of 0’s and a superdiagonal consisting of 1’s.

We observe also that

(A− λ I4)2 =


1 2 0 0

0 1 0 0

0 0 0 0

0 0 0 0


( )

( ) .

We visualise now this new matrix A−2 I4 and its second power (A−2 I4)2.

(a) Visualisation of (A− 2 I4). (b) Visualisation of (A− 2 I4)2.

Figure 25
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We give some comments about this figure. We visualise this matrix by
colouring the diagonal elements which are not zero by dark green and
the colour light green is representing any number. The yellow cells are
representing the number zero. The red cells represent the number 1.
The non zero diagonal in the top left submatrix is right there to stay
nonzero even when taking higher powers.
We see however in the elementary submatrix right bottom the same be-
haviour as in the preceding part on nilpotent matrices.The superdiago-
nal in the right bottom submatrix is going to the top in the submatrix to
disappear at taking the second power of A− 2 I4.

The conclusion we draw from this analysis is that A− 3 I4 is a nilpotent
matrix when we restrict the matrix to operate on the space span

{
e1,e2

}
and that A − 2 I4 is a nilpotent matrix when we restrict the matrix to
operate on the space span

{
e3,e4

}
. So one could exploit this and the

machinery we learned in the previous exercises in the previous part on
nilpotent matrices to build a solution strategy for the matrix A.

We work first with the eigenvalue λ = 3. We remark that we have for the
matrix A {

Ae1 = 3 e1,
Ae2 = 3 e2 + e1.

This is equivalent with the following facts for the matrix A− 3 I4{
(A− 3 I4) e1 = 0,
(A− 3 I4) e2 = e1.

So we have the Jordan chain for the matrix A− 3 I4.

e1 =
{
(A− 3 I4) e2,e2

}
.

We work successively with the eigenvalue λ = 2. We remark that we have
for the matrix A {

Ae3 = 2 e3,
Ae4 = 2 e4 + e3.

This is equivalent with the following facts for the matrix A− 2 I4{
(A− 2 I4) e3 = 0,
(A− 2 I4) e4 = e3.

So we have the Jordan chain for the matrix A− 2 I4.
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{
(A− 2 I4) e4,e4

}
.

22 example. (12× 12); (J3(4), J3(−3), J2(−3), J4(7)).

Let us start with the matrix A.

A =



4 1 0 0 0 0 0 0 0 0 0 0

0 4 1 0 0 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0 0 0 0

0 0 0 −3 1 0 0 0 0 0 0 0

0 0 0 0 −3 1 0 0 0 0 0 0

0 0 0 0 0 −3 0 0 0 0 0 0

0 0 0 0 0 0 −3 1 0 0 0 0

0 0 0 0 0 0 0 −3 0 0 0 0

0 0 0 0 0 0 0 0 7 1 0 0

0 0 0 0 0 0 0 0 0 7 1 0

0 0 0 0 0 0 0 0 0 0 7 1

0 0 0 0 0 0 0 0 0 0 0 7



 
 

( )




.

We see here a matrix consisting of elementary Jordan blocks and no
diagonal element is 0. In order to apply the theory of the preceding
chapter, we will work again with adapted versions of this matrix A.

1. Investigation of the first eigenvalue.

Let us start with the first elementary Jordan block top left associated
with the eigenvalue λ1 = 4. We construct the matrix A−λ1 I12 = A−4 I12.
This forces the elementary submatrix top left to be a nilpotent matrix
and we know a method to deal with that case.
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A− λ1 I12 =



4 1 0 0 0 0 0 0 0 0 0 0

0 4 1 0 0 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0 0 0 0

0 0 0 −3 1 0 0 0 0 0 0 0

0 0 0 0 −3 1 0 0 0 0 0 0

0 0 0 0 0 −3 0 0 0 0 0 0

0 0 0 0 0 0 −3 1 0 0 0 0

0 0 0 0 0 0 0 −3 0 0 0 0

0 0 0 0 0 0 0 0 7 1 0 0

0 0 0 0 0 0 0 0 0 7 1 0

0 0 0 0 0 0 0 0 0 0 7 1

0 0 0 0 0 0 0 0 0 0 0 7



 
 

( )




− 4



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1



 
 

( )




=



0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −7 1 0 0 0 0 0 0 0

0 0 0 0 −7 1 0 0 0 0 0 0

0 0 0 0 0 −7 0 0 0 0 0 0

0 0 0 0 0 0 −7 1 0 0 0 0

0 0 0 0 0 0 0 −7 0 0 0 0

0 0 0 0 0 0 0 0 3 1 0 0

0 0 0 0 0 0 0 0 0 3 1 0

0 0 0 0 0 0 0 0 0 0 3 1

0 0 0 0 0 0 0 0 0 0 0 3



 
 

( )




.
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We see that the matrices A and A − λ I12 are invariant for the subspace
span

{
e1,e2,e3

}
.

We immediately observe that the top left elementary block is a matrix
that we immediately recognise from the previous chapter with a diagonal
consisting entirely out of 0’s and a superdiagonal consisting of 1’s. We
force that top left submatrix to be a singular Jordan elementary block
by applying this trick.

We visualise now this new matrix A− 4 I12 and its powers (A− 4 I12)i.

(a) Visualisation of (A− 4 I12). (b) Visualisation of (A− 4 I12)2.

(c) Visualisation of (A− 4 I12)3.

Figure 26
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We give here some comments about the preceding figure. We visualise
this matrix A − 4 I12 and its powers by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.
The red cells represent the number 1. We see in the elementary matrix
left above the same change as in the preceding chapter. The superdiag-
onal is going to the top in the block to disappear at the third power of
A − 4 I12. All the blocks with green cells in it will be keeping the same
look however large we take the powers of this matrix.

We see how the kernels of the matrices (A− 4 I12)i grow. We have
ker(A− 4 I12) = span

{
e1
}
,

ker(A− 4 I12)2 = span
{
e1,e2

}
,

ker(A− 4 I12)3 = span
{
e1,e2,e3

}
.

We can see the following equalities from the matrix A.
Ae1 = 4 e1,
Ae2 = 4 e2 + e1,
Ae3 = 4 e3 + e2,

We conclude and can also visually see that we have
(A− 4 I12) e1 = 0,
(A− 4 I12) e2 = e1,
(A− 4 I12) e3 = e2.

or 
(A− 4 I12)3 e3 = 0,

(A− 4 I12)2 e3 = e1,
(A− 4 I12) e3 = e2.

So we have the Jordan chain for the matrix A− 4 I12.

{
e1 = (A− 4 I12)2 e3,e2 = (A− 4 I12) e3,e3

}
.

2. Investigation of the second eigenvalue.

We see that the matrix A is invariant on the subspace
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span
{
e4,e5,e6,e7,e8

}
.

Let us take a look at the second and third elementary Jordan blocks in
the middle of the matrix A associated with the eigenvalue λ2 = −3. We
construct the matrix A − λ2 I12 = A + 3 I12. This forces the two subma-
trices in the middle of A to become nilpotent matrices on the subspace
just mentioned and we are used to work and to deal with these nilpotent
matrices.
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A− λ2 I12 =



4 1 0 0 0 0 0 0 0 0 0 0

0 4 1 0 0 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0 0 0 0

0 0 0 −3 1 0 0 0 0 0 0 0

0 0 0 0 −3 1 0 0 0 0 0 0

0 0 0 0 0 −3 0 0 0 0 0 0

0 0 0 0 0 0 −3 1 0 0 0 0

0 0 0 0 0 0 0 −3 0 0 0 0

0 0 0 0 0 0 0 0 7 1 0 0

0 0 0 0 0 0 0 0 0 7 1 0

0 0 0 0 0 0 0 0 0 0 7 1

0 0 0 0 0 0 0 0 0 0 0 7



 
 

( )




+ 3



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1



 
 

( )




=



7 1 0 0 0 0 0 0 0 0 0 0

0 7 1 0 0 0 0 0 0 0 0 0

0 0 7 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 10 1 0 0

0 0 0 0 0 0 0 0 0 10 1 0

0 0 0 0 0 0 0 0 0 0 10 1

0 0 0 0 0 0 0 0 0 0 0 10



 
 

( )




.
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We immediately observe that the middle blocks are blocks that we imme-
diately recognise from the previous chapter with a diagonal consisting
entirely out of 0’s and a superdiagonal consisting of 1’s. They form to-
gether a large Jordan block associated to the eigenvalue λ2 = −3.

We visualise now this new matrix A+ 3 I12 and its powers (A+ 3 I12)i.

(a) Visualisation of (A+ 3 I12). (b) Visualisation of (A+ 3 I12)2.

(c) Visualisation of (A+ 3 I12)3.

Figure 27

We give here some comments about the preceding figure.

We visualise this matrix by colouring the diagonal elements which are
not zero by dark green and the colour light green is representing any
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number. The yellow cells are representing the number zero. The red
cells represent the number 1. We see in the elementary Jordan blocks
in the middle the same change as in the preceding chapter. The super-
diagonals are going to the top in their respective blocks to disappear at
the third power of A + 3 I12. All the blocks with green cells in it will be
keeping the same look however large we take the powers of this matrix.

We see how the kernels of the matrices (A+ 3 I12)i grow. We have

ker(A+ 3 I12) = span
{
e4,e7

}
,

ker(A+ 3 I12)2 = span
{
e4,e5,e7,e8

}
,

ker(A+ 3 I12)3 = span
{
e4,e5,e6,e7,e8

}
.

We can see the following equalities from the matrix A.
Ae4 = −3 e4,
Ae5 = −3 e5 + e4,
Ae6 = −3 e6 + e5.

We have also {
Ae7 = −3 e7,
Ae8 = −3 e8 + e7.

We conclude and can also visually see that the matrix A+ 3 I12 satisfies
(A+ 3 I12) e4 = 0,
(A+ 3 I12) e5 = e4,
(A+ 3 I12) e6 = e5

or 
(A+ 3 I12)3 e6 = 0,

(A+ 3 I12)2 e6 = e4,
(A+ 3 I12) e6 = e5

and {
(A+ 3 I12) e7 = 0,
(A+ 3 I12) e8 = e7

or
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{
(A+ 3 I12)2 e8 = 0,
(A+ 3 I12) e8 = e7.

So we have two Jordan chains for the matrix A+ 3 I12.

{
e4 = (A+ 3 I12)2 e6,e5 = (A+ 3 I12) e6,e6

}
and

{
e7 = (A+ 3 I12) e8,e8

}
.

3. Investigation of the third eigenvalue.

We see that the matrix A is invariant on the subspace

span
{
e9,e10,e11,e12

}
.

Let us take a look to the bottom right elementary Jordan block in the
matrix A associated with the eigenvalue λ3 = 7. We construct the matrix
A − λ3 I12 = A − 7 I12. This forces that submatrix at the right bottom
in A to become a nilpotent matrix on the subspace span

{
e9,e10,e11,e12

}
and we are used to work with these nilpotent matrices in the preceding
chapter.
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A− λ2 I12

=



4 1 0 0 0 0 0 0 0 0 0 0

0 4 1 0 0 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0 0 0 0

0 0 0 −3 1 0 0 0 0 0 0 0

0 0 0 0 −3 1 0 0 0 0 0 0

0 0 0 0 0 −3 0 0 0 0 0 0

0 0 0 0 0 0 −3 1 0 0 0 0

0 0 0 0 0 0 0 −3 0 0 0 0

0 0 0 0 0 0 0 0 7 1 0 0

0 0 0 0 0 0 0 0 0 7 1 0

0 0 0 0 0 0 0 0 0 0 7 1

0 0 0 0 0 0 0 0 0 0 0 7



 
 

( )




− 7



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1



 
 

( )




=



−3 1 0 0 0 0 0 0 0 0 0 0
0 −3 1 0 0 0 0 0 0 0 0 0
0 0 −3 0 0 0 0 0 0 0 0 0
0 0 0 −10 1 0 0 0 0 0 0 0
0 0 0 0 −10 1 0 0 0 0 0 0
0 0 0 0 0 −10 0 0 0 0 0 0
0 0 0 0 0 0 −10 1 0 0 0 0
0 0 0 0 0 0 0 −10 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0



  ( )




.
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We immediately observe that the bottom right elementary Jordan sub-
matrix is a matrix that we recognise from the previous chapter to have a
diagonal consisting entirely out of 0’s and a superdiagonal consisting of
1’s. This was an elementary Jordan block associated with the eigenvalue
λ3 = 7. It has now only 0’s in its diagonal.

We visualise now this new matrix A− 7 I12 and its powers (A− 7 I12)i.

(a) Visualisation of (A− 7 I12). (b) Visualisation of (A− 7 I12)2.

(c) Visualisation of (A− 7 I12)3. (d) Visualisation of (A− 7 I12)4.

Figure 28

We give here some comments about the preceding figure.

We visualise this matrix by colouring the diagonal elements which are
not zero by dark green and the colour light green is representing any
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number. The yellow cells are representing the number zero. The red
cells represent the number 1. We see in the elementary matrix at the
right bottom the same dynamic change as in the preceding part 2 on
nilpotent matrices. The submatrix at the bottom right is indeed a nilpo-
tent elementary Jordan block. The superdiagonal of this submatrix is
going to the top in the submatrix to disappear at the fourth power of
A − 7 I12. All the blocks with green cells in it will be keeping the same
look however large we take the powers of this matrix.

We see how the kernels of the matrices (A− 7 I12)i grow. We have

ker(A− 7 I12) = span
{
e9
}
,

ker(A− 7 I12)2 = span
{
e9,e10

}
,

ker(A− 7 I12)3 = span
{
e9,e10,e11

}
,

ker(A− 7 I12)4 = span
{
e9,e10,e11,e12

}
.

We can see the following equalities from the matrix A.
Ae9 = 7 e9,
Ae10 = 7 e10 + e9,
Ae11 = 7 e11 + e10,
Ae12 = 7 e12 + e11.

We conclude and can also visually see that the matrix A− 7 I12 satisfies
(A− 7 I12) e9 = 0,
(A− 7 I12) e10 = e9,
(A− 7 I12) e11 = e10,
(A− 7 I12) e12 = e11,

We have also 
(A− 7 I12)4 e12 = 0,

(A− 7 I12)3 e12 = e9,

(A− 7 I12)2 e12 = e10,
(A− 7 I12) e12 = e11.

So we have a Jordan chain for the matrix A− 7 I12.

{
e9 = (A− 7 I12)3 e12,e10 = (A− 7 I12)2 e12,e11 = (A− 7 I12) e12,e12

}
.
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23 exercise. (7× 7); (J2(1), J2(1), J3(−1)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B so that A is in Jordan normal form. Find explicitly
a matrix P that is invertible and represents the base change: A = P−1 B P .
Find explicitly Jordan chains that are necessary to construct the matrix
P .

B =



0 2 0 −2 −1 0 0
0 1 0 0 0 0 0
1 −1 1 2 1 0 0
0 −1 0 4 3 −1 0
1 0 0 −4 −4 2 0

−1 1 1 −3 −2 0 1
−1 1 −2 −2 −1 0 −1


.

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial.

pC-H(λ) = |B − λ I7| = −(λ− 1)4 (λ+ 1)3.

We see that the characteristic Cayley-Hamilton polynomial pC-H(λ) can
be factorised in linear polynomials over the field K. So we can apply the
Jordan normalisation machinery.

The eigenvalue λ = 1 has algebraic multiplicity 4. The eigenvalue λ = −1
has algebraic multiplicity 3.

2. Investigation of the first eigenvalue.

We work now with the eigenvalue λ = 1.

3. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
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a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 3 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 2. The solution will be completely independent from this
section.

We start from the matrix A.

A =



1 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 −1 1 0

0 0 0 0 0 −1 1

0 0 0 0 0 0 −1



( )
( )

 
.

We subtract from this matrix A the matrix λ I7 with the first eigenvalue
λ = 1.

A− λ I7 =



0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 −2 1 0

0 0 0 0 0 −2 1

0 0 0 0 0 0 −2



( )
( )

 
.

We want to investigate the endomorphism A − λ I7 restricted on the in-
variant subspace span

{
e1,e2,e3,e4

}
. We see that A − λ I7 is a nilpotent

operator on this subspace. We have the classic case of a nilpotent oper-
ator on a finite dimensional space.

We compute also the powers of A− λ I7, λ = 1.



www.mathandphoto.eu. Exercise Notes Jordan 396

A− λ I7 =



0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 −2 1 0

0 0 0 0 0 −2 1

0 0 0 0 0 0 −2



( )
( )

 
,

(A− λ I7)2 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 4 −4 1

0 0 0 0 0 4 −4

0 0 0 0 0 0 4



( )
( )

 
.

Let us visualise this situation.

(a) Visualisation of A− λ I7. (b) Visualisation of (A− λ I7)2.

Figure 29

We give some comments about the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.
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All higher powers starting from 2 of this matrix have the same look.
All the blocks with green cells in it will be keeping the same look how-
ever large we take the powers of this matrix. We see also that the space
span

{
e1,e2,e3,e4

}
is invariant with respect to A − λ I7 with height of

nilpotency equal to 2.

Let us take a look at the first and second elementary Jordan blocks at
the left in this matrix.

We look now at the superdiagonals of the blocks of A − λ I7 associated
with nilpotent elementary Jordan blocks. They are coloured in red. We
observe that these superdiagonals consisting of 1’s in the matrix A−λ I7
are going upwards in their respective elementary Jordan blocks when in-
creasing the powers of the matrix A−λ I7 until they ultimately disappear
when taking the second power of A− λ I7.

It is interesting to observe how the kernels change. We can see almost
without calculation that{

ker(A− λ I7) = span
{
e1,e3

}
;

ker(A− λ I7)2 = span
{
e1,e2,e3,e4

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I7) 2 2 = dim(ker(A− λ I7))

ker(A− λ I7)2 4 2 = dim(ker(A− λ I7)2)− dim(ker(A− λ I7))

We see here a table for the invariant subspace span
{
e1,e2,e3,e4

}
with

respect to its nilpotent operator ker(A−λ I7) restricted to this space. We
find in the first column the dimensions of the kernels. In the second col-
umn, we have in every row i but the first the consecutive differences of
the kernel dimensions numbers dim(ker(A−λ I7)i)−dim(ker(A−λ I7)i−1).
In the first row, we have dim(ker(A− λ I7)).

We see also that there is equality in the inclusion of sets from the second
power onwards.
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ker(A− λ I7) ⊊ ker(A− λ I7)2 = ker(A− λ I7)3 = · · · .

We remark by looking at the matrices (A−λ I7)i that we have the follow-
ing mappings {

(A− λ I7) e2 = e1,
(A− λ I7) e1 = 0.

We remark by looking at the matrices (A− λ I7)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I7) e4 = e3,
(A− λ I7) e3 = 0.

One sees that we have two Jordan chains of linearly independent vectors.
We write a Jordan chain in reverse order. The first chain is

{
e1 = (A− λ I7) e2,e2

}
.

The second chain is

{
e3 = (A− λ I7) e4,e4

}
.

After we have found the first and second Jordan chains of length 2, we
have then the following table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

(A− λ I7) 2 e1 e3 0

(A− λ I7)2 4 e2 e4 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

4. Kernels of (B− λ I7)i.

Kernel of (B− λ I7).
The matrix B − λ I7 is
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B − λ I7 =



−1 2 0 −2 −1 0 0
0 0 0 0 0 0 0
1 −1 0 2 1 0 0
0 −1 0 3 3 −1 0
1 0 0 −4 −5 2 0

−1 1 1 −3 −2 −1 1
−1 1 −2 −2 −1 0 −2


.

We have to solve the matrix equation

−1 2 0 −2 −1 0 0
0 0 0 0 0 0 0
1 −1 0 2 1 0 0
0 −1 0 3 3 −1 0
1 0 0 −4 −5 2 0

−1 1 1 −3 −2 −1 1
−1 1 −2 −2 −1 0 −2





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

−z1 + 2z2 − 2z4 − z5 = 0,
z1 − z2 + 2z4 + z5 = 0,
− z2 + 3z4 + 3z5 − z6 = 0,

z1 − 4z4 − 5z5 + 2z6 = 0,
−z1 + z2 + z3 − 3z4 − 2z5 − z6 + z7 = 0,
−z1 + z2 − 2z3 − 2z4 − z5 − 2z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7) =
{
(r1,0, r3,−r1, r1,0,−r3) | r1, r3 ∈ K

}
= span

{
(1,0,0,−1,1,0,0), (0,0,1,0,0,0,−1)

}
.

Kernel of (B− λ I7)2.
We remember that λ = 1.

We calculate the kernel of (B − λ I7)2. The matrix (B − λ I7)2 is
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(B − λ I7)2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
4 −4 −1 0 −4 4 −1

−8 8 2 0 8 −8 2
0 0 −3 4 4 0 −3
0 0 4 0 0 0 4


.

We have to solve the matrix equation

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
4 −4 −1 0 −4 4 −1

−8 8 2 0 8 −8 2
0 0 −3 4 4 0 −3
0 0 4 0 0 0 4





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.
4z1 − 4z2 − z3 − 4z5 + 4z6 − z7 = 0,
−8z1 + 8z2 + 2z3 + 8z5 − 8z6 + 2z7 = 0,

− 3z3 + 4z4 + 4z5 − 3z7 = 0,
4z3 + 4z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)2 =
{
(r1, r2, r3, r4,−r4,−r1 + r2 − r4,−r3) | r1, r2, r3, r4 ∈ K

}
= span

{
(1,0,0,0,0,−1,0), (0,1,0,0,0,1,0),
(0,0,1,0,0,0,−1), (0,0,0,1,−1,−1,0)

}
.

Kernel of (B− λ I7)3.
We remember that λ = 1.

We calculate the kernel of (B − λ I7)3. The matrix (B − λ I7)3 is
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(B − λ I7)3 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−12 12 6 −4 8 −12 6
24 −24 −12 8 −16 24 −12
4 −4 6 −4 −8 4 6
0 0 −8 0 0 0 −8


.

We have to solve the matrix equation



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−12 12 6 −4 8 −12 6
24 −24 −12 8 −16 24 −12
4 −4 6 −4 −8 4 6
0 0 −8 0 0 0 −8





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.
−12z1 + 12z2 + 6 z3 − 4z4 + 8 z5 − 12z6 + 6 z7 = 0,

24z1 − 24z2 − 12z3 + 8z4 − 16z5 + 24z6 − 12z7 = 0,
4 z1 − 4 z2 + 6 z3 − 4z4 − 8 z5 + 4 z6 + 6 z7 = 0,

− 8 z3 − 8 z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)3 =
{
(r1, r2, r3, r4,−r4,−r1 + r2 − r4,−r3) | r1, r2, r3, r4 ∈ K

}
= span

{
(1,0,0,0,0,−1,0), (0,0,1,0,0,0,−1),

(0,1,0,0,0,1,0), (0,0,0,1,−1,−1,0)
}
.

We see here that the inclusion of the kernels stabilises here. The kernels
of (B − λ I7)2 and (B − λ I7)3 are equal.

Stabilisation of the kernels.
We remarked that the inclusion of the kernels is starting to stabilise
from the second power onwards. We mean by this that we are having
equality from the second power onwards in the following chain of inclu-
sion of sets.
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ker(B − λ I7) ⊊ ker((B − λ I7)2) = ker((B − λ I7)3) = · · · .
We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I7) 2 2 = dim(ker(B − λ I7))

ker(B − λ I7)2 4 2 = dim(ker(B − λ I7)2)− dim(ker(B − λ I7))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I7)i))−dim(ker((B−λ I7)i−1)). The first
number of this last column is dim(ker(B − λ I7)).

5. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w1,w2

}
satisfying{

(B − λ I7) w1 = 0,
(B − λ I7) w2 = w1,

where w2 is in the vector space ker((B − λ I7)2) but not in ker(B − λ I7).

We look for a generating vector w2. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I7) and must be independent from
vectors of height 2 that were already chosen in ker(B−λ I7)2. There is at
this moment no vector of the second category. We know that

ker((B − λ I7)2) = span
{
(1,0,0,0,0,−1,0), (0,1,0,0,0,1,0),
(0,0,1,0,0,0,−1), (0,0,0,1,−1,−1,0)

}
.

We remember that ker(B − λ I7) is

ker(B − λ I7) = span
{
(1,0,0,−1,1,0,0), (0,0,1,0,0,0,−1)

}
.
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We know that a vector in ker(B − λ I7)2 must be of the generic form

a (1,0,0,0,0,−1,0)+ b (0,1,0,0,0,1,0)+ c (0,0,1,0,0,0,−1)

+ d (0,0,0,1,−1,−1,0) = (a,b, c, d,−d,−a+ b − d,−c).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =

 1 0 0 −1 1 0 0
0 0 1 0 0 0 −1
a b c d −d −a+ b − d −c

 .
We row reduce this matrix H and if we impose b ≠ 0, we find 1 0 0 −1 1 0 0

0 1 0 a+d
b

−a−d
b

−a+b−d
b 0

0 0 1 0 0 0 −1

 .
We have that these vectors are linearly independent if b ≠ 0. We can
choose a = 0, b = 1, c = 0, d = 0.

We can choose the generating vector

w2 = (0,1,0,0,0,1,0).

We calculate w1.

w1 = (B − λ I7) w2

=



−1 2 0 −2 −1 0 0
0 0 0 0 0 0 0
1 −1 0 2 1 0 0
0 −1 0 3 3 −1 0
1 0 0 −4 −5 2 0

−1 1 1 −3 −2 −1 1
−1 1 −2 −2 −1 0 −2





0
1
0
0
0
1
0


=



2
0

−1
−2

2
0
1


.

We have found a first Jordan chain. It has length 2.

{
w1 = (2,0,−1,−2,2,0,1),w2 = (0,1,0,0,0,1,0)

}
.

Let us take a look at our current information table.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I7) 2 w1 1

ker(B − λ I7)2 4 w2 1

with

w1 = (2,0,−1,−2,2,0,1)

w2 = (0,1,0,0,0,1,0)

Calculation of the second Jordan chain.
We look for a linearly independent set of vectors

{
w3,w4

}
satisfying{

(B − λ I7) w3 = 0,
(B − λ I7) w4 = w3,

where w4 is in the vector space ker(B − λ I7)2 but not in ker(B − λ I7).

We look for a generating vector w4. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I7) and must be independent from
vectors of height 2 that were already chosen in ker(B − λ I7)2. We know
that

ker(B − λ I7)2 = span
{
(1,0,0,0,0,−1,0), (0,1,0,0,0,1,0),
(0,0,1,0,0,0,−1), (0,0,0,1,−1,−1,0)

}
.

We have at this point chosen in ker(B − λ I7)2 already the vector w2 =
(0,1,0,0,0,1,0) of height 2.

We remember that ker(B − λ I7) equals

ker(B − λ I7) = span
{
(1,0,0,−1,1,0,0), (0,0,1,0,0,0,−1)

}
.

We know that a vector in ker(B − λ I7)2 must be of the form
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a (1,0,0,0,0,−1,0)+ b (0,1,0,0,0,1,0)+ c (0,0,1,0,0,0,−1)

+ d (0,0,0,1,−1,−1,0) = (a,b, c, d,−d,−a+ b − d,−c).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =


1 0 0 −1 1 0 0
0 0 1 0 0 0 −1
0 1 0 0 0 1 0
a b c d −d −a+ b − d −c

 .
We row reduce this matrix H and if we impose a+ d ≠ 0, we find

1 0 0 0 0 −1 0
0 1 0 0 0 1 0
0 0 1 0 0 0 −1
0 0 0 1 −1 −1 0

 .
We see that these vectors are independent if we choose a = 0, b = 0,
c = 0, d = 1.

We have then the following valid generating vector

w4 = (0,0,0,1,−1,−1,0).

We calculate

w3 = (B − λ I7) w4

=



−1 2 0 −2 −1 0 0
0 0 0 0 0 0 0
1 −1 0 2 1 0 0
0 −1 0 3 3 −1 0
1 0 0 −4 −5 2 0

−1 1 1 −3 −2 −1 1
−1 1 −2 −2 −1 0 −2





0
0
0
1

−1
−1

0


=



−1
0
1
1

−1
0

−1


.

We have found a second Jordan chain. It has length 2.
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{
w3 = (−1,0,1,1,−1,0,−1),w4 = (0,0,0,1,−1,−1,0)

}
.

Let us take a look at our current information table. We remember that
λ = 1.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(B − λ I7) 2 w1 w3 0

ker(B − λ I7)2 4 w2 w4 0

with

w1 = (2,0,−1,−2,2,0,1)

w2 = (0,1,0,0,0,1,0)

w3 = (−1,0,1,1,−1,0,−1)

w4 = (0,0,0,1,−1,−1,0)

6. Investigation of the second eigenvalue.

We work now with the second eigenvalue λ = −1.

7. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 8 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
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subsection 7. The solution will be completely independent from this
section.

We start from the matrix A.

A =



1 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 −1 1 0

0 0 0 0 0 −1 1

0 0 0 0 0 0 −1



( )
( )

 
.

We subtract from this matrix A the matrix λ I7 with λ = −1.

A− λ I7 =



2 1 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 1 0 0 0

0 0 0 2 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0



( )
( )

 
.

We see that the third elementary Jordan block is now the matrix of a
nilpotent operator. If we restrict the mapping A − λ I7 to the subspace
span

{
e5,e6,e7

}
which is an invariant subspace with respect to the oper-

ator A − λ I7, then we have the classic case of a nilpotent operator on a
finite dimensional space.

We compute also the powers of A− λ I7. We remember that λ = −1.

A− λ I7 =



2 1 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 1 0 0 0

0 0 0 2 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0



( )
( )

 
,
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(A− λ I7)2 =



4 4 0 0 0 0 0

0 4 0 0 0 0 0

0 0 4 4 0 0 0

0 0 0 4 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0



( )
( )

 
,

(A− λ I7)3 =



8 12 0 0 0 0 0

0 8 0 0 0 0 0

0 0 8 12 0 0 0

0 0 0 8 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



( )
( )

 
.

Let us study a visualisation of this situation.
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(a) Visualisation of A− λ I7. (b) Visualisation of (A− λ I7)2.

(c) Visualisation of (A− λ I7)3.

Figure 30

We give some remarks on the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. All these green elementary Jordan blocks have the
same look however large the exponent of A − λ I7. The yellow cells are
representing the number zero. The nilpotent part of the matrix is the
third elementary Jordan block. It changes by moving the superdiagonal
upwards when increasing the exponents of A − λ I7. We see that the
space span

{
e5,e6,e7

}
is invariant with respect to A− λ I7 with height of

nilpotency equal to 3.
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Investigation of the third elementary Jordan chain.
Let us take a look at the third elementary Jordan block in this matrix.

We observe that the original superdiagonal of 1’s in third elementary
block of the matrix A−λ I7 is going upwards in the powers of the matrix
A−λ I7 until it finally disappears when taking the third power of A−λ I7.

It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A− λ I7) = span
{
e5
}
;

ker(A− λ I7)2 = span
{
e5,e6

}
;

ker(A− λ I7)3 = span
{
e5,e6,e7

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I7) 1 1 = dim(ker(A− λ I7))

ker(A− λ I7)2 2 1 = dim(ker(A− λ I7)2)− dim(ker(A− λ I7))

ker(A− λ I7)3 3 1 = dim(ker(A− λ I7)3)− dim(ker(A− λ I7)2)

We see here a table for the invariant subspace span
{
e5,e6,e7

}
with re-

spect to the nilpotent operator ker(A− λ I7) restricted to this space. We
find in the first column the dimensions of the kernels. In the second col-
umn, we have in every row i but the first the consecutive differences of
the kernel dimensions numbers dim(ker(A−λ I7)i)−dim(ker(A−λ I7)i−1).
In the first row, we have dim(ker(A− λ I7)).

We see also that there is equality in the inclusion of sets from the third
power onwards.

ker(A− λ I7) ⊊ ker(A− λ I7)2 ⊊ ker(A− λ I7)3 = ker(A− λ I7)4 · · · .

We remark by looking at the matrices (A−λ I7)i that we have the follow-
ing mappings
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(A− λ I7) e7 = e6,
(A− λ I7) e6 = e5,
(A− λ I7) e5 = 0.

We remark by looking at the matrices (A− λ I7)i or as a consequence of
the previous mappings that we have also the following mappings

(A− λ I7) e7 = e6,

(A− λ I7)2 e7 = e5,

(A− λ I7)3 e7 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e5 = (A− λ I7)2 e7,e6 = (A− λ I7) e7,e7

}
.

After we have found the first Jordan chain of length 3, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I7) 1 e5 0

ker(A− λ I7)2 2 e6 0

ker(A− λ I7)3 3 e7 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

8. Kernels of (B− λ I7)i.

We calculate the kernel of B − λ I7. We remember that λ = −1.

The matrix B − λ I7 is
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B − λ I7 =



1 2 0 −2 −1 0 0
0 2 0 0 0 0 0
1 −1 2 2 1 0 0
0 −1 0 5 3 −1 0
1 0 0 −4 −3 2 0

−1 1 1 −3 −2 1 1
−1 1 −2 −2 −1 0 0


.

We have to solve the matrix equation

1 2 0 −2 −1 0 0
0 2 0 0 0 0 0
1 −1 2 2 1 0 0
0 −1 0 5 3 −1 0
1 0 0 −4 −3 2 0

−1 1 1 −3 −2 1 1
−1 1 −2 −2 −1 0 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

z1 + 2z2 − 2z4 − z5 = 0,
2z2 = 0,

z1 − z2 + 2z3 + 2z4 + z5 = 0,
− z2 + 5z4 + 3z5 − z6 = 0,

z1 − 4z4 − 3z5 + 2z6 = 0,
−z1 + z2 + z3 − 3z4 − 2z5 + z6 + z7 = 0,
−z1 + z2 − 2z3 − 2z4 − z5 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7) =
{
(0,0,0, r4,−2 r4,−r4,0) | r4 ∈ K

}
= span

{
(0,0,0,1,−2,−1,0)

}
.

Kernel of (B− λ I7)2.
We remember that λ = −1.

We calculate the kernel of (B − λ I7)2. The matrix (B − λ I7)2 is
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(B − λ I7)2 =



0 8 0 −8 −4 0 0
0 4 0 0 0 0 0
4 −4 4 8 4 0 0
4 −8 −1 16 8 0 −1

−4 8 2 −16 −8 0 2
−4 4 1 −8 −4 0 1
−4 4 −4 −8 −4 0 0


.

We have to solve the matrix equation

0 8 0 −8 −4 0 0
0 4 0 0 0 0 0
4 −4 4 8 4 0 0
4 −8 −1 16 8 0 −1

−4 8 2 −16 −8 0 2
−4 4 1 −8 −4 0 1
−4 4 −4 −8 −4 0 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

8z2 − 8 z4 − 4z5 = 0,
4z2 = 0,

4z1 − 4z2 + 4z3 + 8 z4 + 4z5 = 0,
4z1 − 8z2 − z3 + 16z4 + 8z5 − z7 = 0,

−4z1 + 8z2 + 2z3 − 16z4 − 8z5 + 2z7 = 0,
−4z1 + 4z2 + z3 − 8 z4 − 4z5 + z7 = 0,
−4z1 + 4z2 − 4z3 − 8 z4 − 4z5 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)2 =
{
(0,0,0, r4,−2 r4, r6,0) | r4, r6 ∈ K

}
= span

{
(0,0,0,1,−2,0,0), (0,0,0,0,0,1,0)

}
.

Kernel of (B− λ I7)3.
We calculate the kernel of (B − λ I7)3. The matrix (B − λ I7)3 is
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(B − λ I7)3 =



−4 24 0 −24 −12 0 0
0 8 0 0 0 0 0

12 −12 8 24 12 0 0
12 −24 0 40 20 0 0
−12 24 0 −40 −20 0 0
−8 8 0 −16 −8 0 0
−12 12 −8 −24 −12 0 0


.

We have to solve the matrix equation

−4 24 0 −24 −12 0 0
0 8 0 0 0 0 0

12 −12 8 24 12 0 0
12 −24 0 40 20 0 0

−12 24 0 −40 −20 0 0
−8 8 0 −16 −8 0 0
−12 12 −8 −24 −12 0 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

− 4 z1 + 24z2 − 24z4 − 12z5 = 0,
8 z2 = 0,

12z1 − 12z2 + 8z3 + 24z4 + 12z5 = 0,
12z1 − 24z2 + 40z4 + 20z5 = 0,

−12z1 + 24z2 − 40z4 − 20z5 = 0,
− 8 z1 + 8 z2 − 16z4 − 8 z5 = 0,
−12z1 + 12z2 − 8z3 − 24z4 − 12z5 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)3 =
{
(0,0,0, r4,−2 r4, r6, r7) | r4, r6, r7 ∈ K

}
= span

{
(0,0,0,1,−2,0,0), (0,0,0,0,0,1,0),
(0,0,0,0,0,0,1)

}
.

Kernel of (B− λ I7)4.
We remember that λ = −1.

We calculate the kernel of (B − λ I7)4. The matrix (B − λ I7)4 is
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(B − λ I7)4 =



−16 64 0 −64 −32 0 0
0 16 0 0 0 0 0

32 −32 16 64 32 0 0
32 −64 0 96 48 0 0

−32 64 0 −96 −48 0 0
−16 16 0 −32 −16 0 0
−32 32 −16 −64 −32 0 0


.

We have to solve the matrix equation

−16 64 0 −64 −32 0 0
0 16 0 0 0 0 0

32 −32 16 64 32 0 0
32 −64 0 96 48 0 0

−32 64 0 −96 −48 0 0
−16 16 0 −32 −16 0 0
−32 32 −16 −64 −32 0 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

−16z1 + 64z2 − 64z4 − 32z5 = 0,
16z2 = 0,

32z1 − 32z2 + 16z3 + 64z4 + 32z5 = 0,
32z1 − 64z2 + 96z4 + 48z5 = 0,

−32z1 + 64z2 − 96z4 − 48z5 = 0,
−16z1 + 16z2 − 32z4 − 16z5 = 0,
−32z1 + 32z2 − 16z3 − 64z4 − 32z5 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)4 =
{
(0,0,0, r4,−2 r4, r6, r7) | r4, r6, r7 ∈ K

}
= span

{
(0,0,0,1,−2,0,0), (0,0,0,0,0,1,0),
(0,0,0,0,0,0,1)

}
.

Stabilisation of the kernels.
We see that inclusion of the kernels is starting to stabilise. We mean
by this that we are having equality from the third power onwards in the
following chain of inclusion of sets.
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ker(B − λ I7) ⊊ ker((B − λ I7)2) ⊊ ker((B − λ I7)3) = ker((B − λ I7)4) · · · .

We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I7) 1 1 = dim(ker(B − λ I7))

ker(B − λ I7)2 2 1 = dim(ker(B − λ I7)2)− dim(ker(B − λ I7))

ker(B − λ I7)3 3 1 = dim(ker(B − λ I7)3)− dim(ker(B − λ I7)2)

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I7)i))−dim(ker((B−λ I7)i−1)). The first
number of this last column is dim(ker(B − λ I7)).

9. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w5,w6,w7

}
satisfying

(B − λ I7) w5 = 0,
(B − λ I7) w6 = w5,
(B − λ I7) w7 = w6,

where w7 is in the vector space ker(B − λ I7)3 but not in ker(B − λ I7)2.

We look for a generating vector w7. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I7)2 and must be independent from
vectors that were already chosen in ker(B − λ I7)3 of height 3. We know
that

ker((B − λ I7)3) = span
{
(0,0,0,1,−2,0,0), (0,0,0,0,0,1,0),
(0,0,0,0,0,0,1)

}
.

We have at this point not chosen in ker((B − λ I7)3) any vectors of height
3.
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We remember that ker((B − λ I7)2) equals

ker(B − λ I7)2 = span
{
(0,0,0,1,−2,0,0), (0,0,0,0,0,1,0)

}
.

We know that a vector in ker((B − λ I7)3) must be of the form

a (0,0,0,1,−2,0,0)+ b (0,0,0,0,0,1,0)+ c (0,0,0,0,0,0,1)

= (0,0,0, a,−2a,b, c).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =

 0 0 0 1 −2 0 0
0 0 0 0 0 1 0
0 0 0 a −2a b c

 .
We row reduce this matrix H and if we impose c ≠ 0, we find 0 0 0 1 −2 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1

 .
We see that these vectors are independent. So we can take a = 0, b = 0,
c = 1.

We have the generating vector

w7 = (0,0,0,0,0,0,1).

We start with w7 = (0,0,0,0,0,0,1).

We calculate
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w6 = (B − λ I7) w7

=



1 2 0 −2 −1 0 0
0 2 0 0 0 0 0
1 −1 2 2 1 0 0
0 −1 0 5 3 −1 0
1 0 0 −4 −3 2 0

−1 1 1 −3 −2 1 1
−1 1 −2 −2 −1 0 0





0
0
0
0
0
0
1


=



0
0
0
0
0
1
0


.

So we have w6 = (0,0,0,0,0,1,0).

We calculate w5.

w5 = (B − λ I7)2 w7

=



0 8 0 −8 −4 0 0
0 4 0 0 0 0 0
4 −4 4 8 4 0 0
4 −8 −1 16 8 0 −1

−4 8 2 −16 −8 0 2
−4 4 1 −8 −4 0 1
−4 4 −4 −8 −4 0 0





0
0
0
0
0
0
1


=



0
0
0

−1
2
1
0


.

So we have w5 = (0,0,0,−1,2,1,0).

We have our first Jordan chain for this eigenvalue. It has length 3. We
have in total found 3 chains.

{
w5 = (0,0,0,−1,2,1,0),w6 = (0,0,0,0,0,1,0),w7 = (0,0,0,0,0,0,1)

}
.

Let us take a look at our current information table.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I7) 1 w5 0

ker(B − λ I7)2 2 w6 0

ker(B − λ I7)3 3 w7 0

with

w5 = (0,0,0,−1,2,1,0)

w6 = (0,0,0,0,0,1,0)

w7 = (0,0,0,0,0,0,1)

10. Calculation of Jordan chains.
We construct the matrix of base change P with the coordinates of the
vectors wi found in the Jordan chains in the columns of P .

P =



2 0 −1 0 0 0 0
0 1 0 0 0 0 0

−1 0 1 0 0 0 0
−2 0 1 1 −1 0 0

2 0 −1 −1 2 0 0
0 1 0 −1 1 1 0
1 0 −1 0 0 0 1


.



www.mathandphoto.eu. Exercise Notes Jordan 420

A = P−1 B P

=



1 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 2 0 0 0 0
1 0 0 2 1 0 0
0 0 0 1 1 0 0
1 −1 0 1 0 1 0
0 0 1 0 0 0 1



×



0 2 0 −2 −1 0 0
0 1 0 0 0 0 0
1 −1 1 2 1 0 0
0 −1 0 4 3 −1 0
1 0 0 −4 −4 2 0

−1 1 1 −3 −2 0 1
−1 1 −2 −2 −1 0 −1



×



2 0 −1 0 0 0 0
0 1 0 0 0 0 0

−1 0 1 0 0 0 0
−2 0 1 1 −1 0 0

2 0 −1 −1 2 0 0
0 1 0 −1 1 1 0
1 0 −1 0 0 0 1



=



1 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 −1 1 0

0 0 0 0 0 −1 1

0 0 0 0 0 0 −1



( )
( )

 
.
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24 exercise. (7× 7); (J3(1), J2(1), J2(2)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible a
matrix A similar to B so that A is in Jordan normal form. Find explicitly
a matrix P that is invertible and represents the base change: A = P−1 B P .
Find explicitly Jordan chains that are necessary to construct the matrix
P .

B =



2 1 0 0 0 1 0
−2 0 1 1 1 −1 −2
−2 −2 3 1 −1 −3 −1

1 1 −1 1 1 2 1
−1 0 1 0 1 −1 −1

0 −1 0 0 −1 0 1
0 0 0 0 0 0 2


.

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial.

pC-H(λ) = |B − λ I7| = −(λ− 2)2 (λ− 1)5.

We see that the characteristic Cayley-Hamilton polynomial pC-H(λ) can
be factorised in linear polynomials over the field K. So we can apply the
Jordan normalisation machinery.

The eigenvalue λ = 1 has algebraic multiplicity 5. the eigenvalue λ = 2
has algebraic multiplicity 2.

2. Investigation of the first eigenvalue.

We work now with the eigenvalue λ = 1.

3. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
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this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 4 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 3. The solution will be completely independent from this
section.

We start from the matrix A.

A =



1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 2 1

0 0 0 0 0 0 2



 
( )

( ) .

We subtract from this matrix A the matrix λ I7 with eigenvalue λ = 1.

A− λ I7 =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 1

0 0 0 0 0 0 1



 
( )

( ) .

We compute also the powers of A− λ I7.

A− λ I7 =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 1

0 0 0 0 0 0 1



 
( )

( ) ,
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(A− λ I7)2 =



0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 2

0 0 0 0 0 0 1



 
( )

( ) ,

(A− λ I7)3 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 3

0 0 0 0 0 0 1



 
( )

( ) .

We see that the superdiagonals in the two first elementary Jordan blocks
are going up in their respective Jordan blocks while increasing the expo-
nents until they ultimately disappear when taking the third power.

Let us visualise this situation.



www.mathandphoto.eu. Exercise Notes Jordan 424

(a) Visualisation of A− λ I7. (b) Visualisation of (A− λ I7)2.

(c) Visualisation of (A− λ I7)3.

Figure 31

We give here some remarks about the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. However large we take the powers of this matrix,
the blocks with green cells always keep having the same look. The yel-
low cells are representing the number zero. The red cells represent
the number 1. If we restrict the mapping A − λ I7 to the subspace
span

{
e1,e2,e3,e4,e5

}
which is an invariant subspace with respect to the

operator A − λ I7, then we have the classic case of a nilpotent opera-
tor on a finite dimensional space. The nilpotent operator has degree



www.mathandphoto.eu. Exercise Notes Jordan 425

of nilpotency 3. The nilpotent part of the matrix is represented by the
two first elementary Jordan blocks. They change by moving the super-
diagonal upwards in their respective Jordan blocks when increasing the
exponents of A− λ I7. We see that the space span

{
e1,e2,e3,e4,e5

}
is in-

variant with respect to A−λ I7 which has a height of nilpotency equal to
3.

Investigation of the first Jordan chain.
It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A− λ I7) = span
{
e1,e4

}
;

ker(A− λ I7)2 = span
{
e1,e2,e4,e5

}
;

ker(A− λ I7)3 = span
{
e1,e2,e3,e4,e5

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I7) 2 2 = dim(ker(A− λ I7))

ker(A− λ I7)2 4 2 = dim(ker(A− λ I7)2)− dim(ker(A− λ I7))

ker(A− λ I7)3 5 1 = dim(ker(A− λ I7)3)− dim(ker(A− λ I7)2)

We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I7)i)−dim(ker(A−
λ I7)i−1). In the first row, we have dim(ker(A− λ I7)).

We see also that there is equality in the inclusion of sets from the third
power onwards.

ker(A− λ I7) ⊊ ker(A− λ I7)2 ⊊ ker(A− λ I7)3 = ker(A− λ I7)4 = · · · .

We remark by looking at the matrices (A−λ I7)i that we have the follow-
ing mappings
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(A− λ I7) e3 = e2,
(A− λ I7) e2 = e1,
(A− λ I7) e1 = 0.

We remark by looking at the matrices (A− λ I7)i or as a consequence of
the previous mappings that we have also the following mappings

(A− λ I7) e3 = e2,

(A− λ I7)2 e3 = e1,

(A− λ I7)3 e3 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e1 = (A− λ I7)2 e3,e2 = (A− λ I7) e3,e3

}
.

After we have found the first Jordan chain of length 3, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I7) 2 e1 1

ker(A− λ I7)2 4 e2 1

ker(A− λ I7)3 5 e3 0

We have that the last number in the last column is not zero, and this
means that there is still a chain left of length 2.

Investigating the second Jordan chain.
We remark by looking at the matrices (A−λ I7)i that we have the follow-
ing mappings {

(A− λ I7) e5 = e4,
(A− λ I7) e4 = 0.

We remark by looking at the matrices (A− λ I7)i or as a consequence of
the previous mappings that we have also the following mappings



www.mathandphoto.eu. Exercise Notes Jordan 427

{
(A− λ I7) e5 = e4,

(A− λ I7)2 e5 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e4 = (A− λ I7) e5,e5

}
.

We have found the second Jordan chain. It has length 2. we have then
found the following table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(A− λ I7) 2 e1 e4 0

ker(A− λ I7)2 4 e2 e5 0

ker(A− λ I7)3 5 e3 0

4. Kernels of (B− λ I7)i.

Kernel of (B− λ I7).
We calculate the kernel of B−λ I7. We remember that we are still working
with the eigenvalue λ = 1.

The matrix B − λ I7 is

B − λ I7 =



1 1 0 0 0 1 0
−2 −1 1 1 1 −1 −2
−2 −2 2 1 −1 −3 −1

1 1 −1 0 1 2 1
−1 0 1 0 0 −1 −1

0 −1 0 0 −1 −1 1
0 0 0 0 0 0 1


.

We have to solve the matrix equation
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1 1 0 0 0 1 0
−2 −1 1 1 1 −1 −2
−2 −2 2 1 −1 −3 −1

1 1 −1 0 1 2 1
−1 0 1 0 0 −1 −1

0 −1 0 0 −1 −1 1
0 0 0 0 0 0 1





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

z1 + z2 + z6 = 0,
−2z1 − z2 + z3 + z4 + z5 − z6 − 2z7 = 0,
−2z1 − 2z2 + 2z3 + z4 − z5 − 3z6 − z7 = 0,
z1 + z2 − z3 + z5 + 2z6 + z7 = 0,

− z1 + z3 − z6 − z7 = 0,
− z2 − z5 − z6 + z7 = 0,

z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7) =
{
(r1, r2,−r2, r2, r1,−r1 − r2, ) | r1, r2 ∈ K

}
= span

{
(1,0,0,0,1,−1,0), (0,1,−1,1,0,−1,0)

}
.

Kernel of (B− λ I7)2.
We remember that λ = 1.

We calculate the kernel of (B − λ I7)2. The matrix (B − λ I7)2 is

(B − λ I7)2 =



−1 −1 1 1 0 −1 −1
−2 −1 1 0 0 −2 −2

0 0 0 0 0 0 0
0 0 0 0 0 0 1

−3 −2 2 1 0 −3 −3
3 2 −2 −1 0 3 3
0 0 0 0 0 0 1


.

We have to solve the matrix equation
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−1 −1 1 1 0 −1 −1
−2 −1 1 0 0 −2 −2

0 0 0 0 0 0 0
0 0 0 0 0 0 1

−3 −2 2 1 0 −3 −3
3 2 −2 −1 0 3 3
0 0 0 0 0 0 1





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

− z1 − z2 + z3 + z4 − z6 − z7 = 0,
−2z1 − z2 + z3 − 2z6 − 2z7 = 0,

z7 = 0,
−3z1 − 2z2 + 2z3 + z4 − 3z6 − 3z7 = 0,

3z1 + 2z2 − 2z3 − z4 + 3z6 + 3z7 = 0,
z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)2 =
{
(r1, r2, r3, r2/2− r3/2, r5,−r1 − r2/2+ r3/2,0)

| r1, r2, r3, r5 ∈ K
}

= span
{
(1,0,0,0,0,−1,0), (0,1,0,1/2,0,−1/2,0),
(0,0,1,−1/2,0,1/2,0), (0,0,0,0,1,0,0)

}
.

Kernel of (B− λ I7)3.
We calculate the kernel of (B − λ I7)3.

(B − λ I7)3 =



0 0 0 0 0 0 0
−2 −1 1 0 0 −2 −3

0 0 0 0 0 0 0
0 0 0 0 0 0 1

−2 −1 1 0 0 −2 −3
2 1 −1 0 0 2 3
0 0 0 0 0 0 1


.

We have to solve the matrix equation
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0 0 0 0 0 0 0
−2 −1 1 0 0 −2 −3

0 0 0 0 0 0 0
0 0 0 0 0 0 1

−2 −1 1 0 0 −2 −3
2 1 −1 0 0 2 3
0 0 0 0 0 0 1





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

−2z1 − z2 + z3 − 2z6 − 3z7 = 0,
z7 = 0,

−2z1 − z2 + z3 − 2z6 − 3z7 = 0,
2z1 + z2 − z3 + 2z6 + 3z7 = 0,

z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)3 =
{
(r1, r2, r3, r4, r5,−r1 − r2/2+ r3/2,0)

| r1, r2, r3, r4, r5 ∈ K
}

= span
{
(1,0,0,0,0,−1,0), (0,1,0,0,0,−1/2,0),
(0,0,1,0,0,1/2,0), (0,0,0,1,0,0,0),
(0,0,0,0,1,0,0)

}
.

Kernel of (B− λ I7)4.
We calculate the kernel of (B − λ I7)4. The matrix (B − λ I7)4 is

(B − λ I7)4 =



0 0 0 0 0 0 0
−2 −1 1 0 0 −2 −4

0 0 0 0 0 0 0
0 0 0 0 0 0 1

−2 −1 1 0 0 −2 −4
2 1 −1 0 0 2 4
0 0 0 0 0 0 1


.

We have to solve the matrix equation
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0 0 0 0 0 0 0
−2 −1 1 0 0 −2 −4

0 0 0 0 0 0 0
0 0 0 0 0 0 1

−2 −1 1 0 0 −2 −4
2 1 −1 0 0 2 4
0 0 0 0 0 0 1





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

−2z1 − z2 + z3 − 2z6 − 4z7 = 0,
z7 = 0,

−2z1 − z2 + z3 − 2z6 − 4z7 = 0,
2z1 + z2 − z3 + 2z6 + 4z7 = 0,

z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)4 =
{
(r1, r2, r3, r4, r5,−r1 − r2/2+ r3/2,0)

| r1, r2, r3, r4, r5 ∈ K
}

= span
{
(1,0,0,0,0,−1,0), (0,1,0,0,0,−1/2,0),
(0,0,1,0,0,1/2,0), (0,0,0,1,0,0,0),
(0,0,0,0,1,0,0)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that we
are having equality from the third power onwards in the following chain
of inclusion of sets.

ker(B − λ I7) ⊊ ker((B − λ I7)2) ⊊ ker((B − λ I7)3) = ker((B − λ I7)4) · · · .

We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I7) 2 2 = dim(ker(B − λ I7))

ker(B − λ I7)2 4 2 = dim(ker(B − λ I7)2)− dim(ker(B − λ I7))

ker(B − λ I7)3 5 1 = dim(ker(B − λ I7)3)− dim(ker(B − λ I7)2)

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I7)i))−dim(ker((B−λ I7)i−1)). The first
number of this last column is dim(ker(B − λ I7)).

5. Calculation of Jordan chains.

Calculation of the first Jordan chain.
We look for a linearly independent set of vectors

{
w1,w2,w3

}
satisfying

(B − λ I7) w1 = 0,
(B − λ I7) w2 = w1,
(B − λ I7) w3 = w2,

or 
(B − λ I7) w3 = w2,

(B − λ I7)2 w3 = w1,

(B − λ I7)3 w3 = 0,

where w3 is in the vector space ker((B − λ I7)3) but not in ker((B − λ I7)2).

We look for a generating vector w3. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I7)2 and must be independent from
vectors of height 3 that were already chosen in ker(B − λ I7)3. We know
that

ker((B − λ I7)3) = span
{
(1,0,0,0,0,−1,0), (0,1,0,0,0,−1/2,0),

(0,0,1,0,0,1/2,0), (0,0,0,1,0,0,0),
(0,0,0,0,1,0,0)

}
.
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We have at this point chosen in ker((B − λ I7)3) no other vector of height
3.

We remember that

ker(B − λ I7)2 = span
{
(1,0,0,0,0,−1,0), (0,1,0,1/2,0,−1/2,0),
(0,0,1,−1/2,0,1/2,0), (0,0,0,0,1,0,0)

}
.

We know that a vector in ker((B − λ I7)3) must be of the form

a (1,0,0,0,0,−1,0)+ b (0,1,0,1/2,0,−1/2,0)+ c (0,0,1,−1/2,0,1/2,0)

+ d (0,0,0,1,0,0,0)+ e (0,0,0,0,1,0,0)

= (a,b, c, b/2− c/2+ d, e,−a− b/2+ c/2,0).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =


1 0 0 0 0 −1 0
0 1 0 1/2 0 −1/2 0
0 0 1 −1/2 0 1/2 0
0 0 0 0 1 0 0
a b c b/2− c/2+ d e −a− b/2+ c/2 0

 .
We row reduce this matrix H and if we impose d ≠ 0, we find

1 0 0 0 0 −1 0
0 1 0 0 0 −1/2 0
0 0 1 0 0 1/2 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

 .

We see that these vectors are independent if we impose the condition
d ≠ 0. So we have that we can choose a = 0, b = 0, c = 0, d = 1, e = 0.

We can take the generating vector

w3 = (0,0,0,1,0,0,0).
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We start with w3 = (0,0,0,1,0,0,0).

We calculate w2.

w2 = (B−λ I7) w3 =



1 1 0 0 0 1 0
−2 −1 1 1 1 −1 −2
−2 −2 2 1 −1 −3 −1

1 1 −1 0 1 2 1
−1 0 1 0 0 −1 −1

0 −1 0 0 −1 −1 1
0 0 0 0 0 0 1





0
0
0
1
0
0
0


=



0
1
1
0
0
0
0


and

w1 = (B − λ I7)2 w3

=



−1 −1 1 1 0 −1 −1
−2 −1 1 0 0 −2 −2

0 0 0 0 0 0 0
0 0 0 0 0 0 1

−3 −2 2 1 0 −3 −3
3 2 −2 −1 0 3 3
0 0 0 0 0 0 1





0
0
0
1
0
0
0


=



1
0
0
0
1

−1
0


.

We have found the first Jordan chain. It has length 3.

{
w1 = (1,0,0,0,1,−1,0),w2 = (0,1,1,0,0,0,0),w3 = (0,0,0,1,0,0,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I7) 2 w1 1

ker(B − λ I7)2 4 w2 1

ker(B − λ I7)3 5 w3 0
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with

w1 = (1,0,0,0,1,−1,0)

w2 = (0,1,1,0,0,0,0)

w3 = (0,0,0,1,0,0,0)

We have one Jordan chain of length two left to look for.

Calculation of the second Jordan chain.
We look for a linearly independent set of vectors

{
w4,w5

}
satisfying{

(B − λ I7) w4 = 0,
(B − λ I7) w5 = w4.

where w5 is in the vector space ker((B − λ I7)2) but not in ker(B − λ I7).

We look for a generating vector w5. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I7) and must be independent from
vectors of height 2 that were already chosen in ker(B − λ I7)2. We know
that

ker(B − λ I7)2 = span
{
(1,0,0,0,0,−1,0), (0,1,0,1/2,0,−1/2,0),

(0,0,1,−1/2,0,1/2,0), (0,0,0,0,1,0,0)
}
.

We have at this point chosen in ker((B − λ I7)2) already the vector w2 =
(0,1,1,0,0,0,0) of height 2.

We remember that

ker(B − λ I7) = span
{
(1,0,0,0,1,−1,0), (0,1,−1,1,0,−1,0)

}
.

We know that a vector in ker((B − λ I7)2) must be of the form

a (1,0,0,0,0,−1,0)+ b (0,1,0,1/2,0,−1/2,0)

+ c (0,0,1,−(1/2),0,1/2,0)+ d (0,0,0,0,1,0,0)

= (a,b, c, b/2− c/2, d,−a− b/2+ c/2,0).
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So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =


1 0 0 0 1 −1 0
0 1 −1 1 0 −1 0
0 1 1 0 0 0 0
a b c b/2− c/2 d −a− b/2+ c/2 0

 .
We row reduce this matrix H and if we impose a− d ≠ 0, we find

1 0 0 0 0 −1 0
0 1 0 1/2 0 −1/2 0
0 0 1 −1/2 0 1/2 0
0 0 0 0 1 0 0

 .
We see that these vectors are independent if we impose the condition
a− d ≠ 0. So we can choose a = 0, b = 0, c = 0, d = 1.

We have the generating vector

w5 = (0,0,0,0,1,0,0).

We start with w5 = (0,0,0,0,1,0,0).

We calculate w4.

w4 = (B−λ I7) w5 =



1 1 0 0 0 1 0
−2 −1 1 1 1 −1 −2
−2 −2 2 1 −1 −3 −1

1 1 −1 0 1 2 1
−1 0 1 0 0 −1 −1

0 −1 0 0 −1 −1 1
0 0 0 0 0 0 1





0
0
0
0
1
0
0


=



0
1

−1
1
0

−1
0


.

We have found the second Jordan chain. It has length 2.

{
w4 = (0,1,−1,1,0,−1,0),w5 = (0,0,0,0,1,0,0)

}
.

Let us take a look at our current information table.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(B − λ I7) 1 w1 w4 0

ker(B − λ I7)2 2 w2 w5 0

ker(B − λ I7)3 3 w3 0

with

w1 = (1,0,0,0,1,−1,0)

w2 = (0,1,1,0,0,0,0)

w3 = (0,0,0,1,0,0,0)

w4 = (0,1,−1,1,0,−1,0)

w5 = (0,0,0,0,1,0,0)

6. Investigation of the second eigenvalue.

We work now with the second eigenvalue λ = 2.

7. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 8 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 7. The solution will be completely independent from this
section.
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We start from the matrix A.

A =



1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 2 1

0 0 0 0 0 0 2



 
( )

( ) .

We subtract from this matrix A the matrix λ I7.

A− λ I7 =



−1 1 0 0 0 0 0

0 −1 1 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 −1 1 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0



 
( )

( ) .

We see that the subspace span
{
e6,e7

}
is invariant with respect to the

endomorphism A− λ I7. This morphism is nilpotent on this subspace.

We compute the powers of A− λ I7.

A− λ I7 =



−1 1 0 0 0 0 0

0 −1 1 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 −1 1 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0



 
( )

( ) ,

(A− λ I7)2 =



1 −2 1 0 0 0 0

0 1 −2 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 −2 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



 
( )

( ) .
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Let us visualise this situation.

(a) Visualisation of (A− λ I7). (b) Visualisation of (A− λ I7)2.

Figure 32

We give some comments about this preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The cells which represent 0 are coloured in yellow
and those which represent 1 are coloured in red. All the blocks with
green cells in it will be keeping the same look however large we take the
powers of this matrix. If we restrict the mapping A−λ I7 to the subspace
span

{
e6,e7

}
which is an invariant subspace with respect to the operator

A− λ I7, then we have the classic case of a nilpotent operator on a finite
dimensional space. The nilpotent operator has degree of nilpotency 2.
Let us take a look at the third elementary Jordan block in this matrix.

We observe that the original superdiagonal of 1’s in the third block of
the matrix A − λ I7 is going upwards in the elementary Jordan blocks
associated with the nilpotent part of the transformation A − λ I7 when
increasing the powers of the matrix A − λ I7. It finally disappears when
taking the second power of A− λ I7.

Investigation of the Jordan chain.
It is interesting to observe how the kernels change. We can see almost
without calculation that
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{
ker(A− λ I7) = span

{
e6
}
;

ker(A− λ I7)2 = span
{
e6,e7

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I7) 1 1 = dim(ker(A− λ I7))

ker(A− λ I7)2 2 1 = dim(ker(A− λ I7)2)− dim(ker(A− λ I7))

We see here a table for the invariant subspace span
{
e6,e7

}
with respect

to its nilpotent operator ker(A− λ I7) restricted to this space. We find in
the first column the dimensions of the kernels. In the second column,
we have in every row i but the first the consecutive differences of the
kernel dimensions numbers dim(ker(A−λ I7)i)−dim(ker(A−λ I7)i−1). In
the first row, we have dim(ker(A− λ I7)).

We see also that there is equality in the inclusion of sets from the second
power onwards

ker(A− λ I7) ⊊ ker(A− λ I7)2 = ker(A− λ I7)3 = · · · .

We remark by looking at the matrices (A−λ I7)i that we have the follow-
ing mappings {

(A− λ I7) e7 = e6,
(A− λ I7) e6 = 0.

We remark by looking at the matrices (A− λ I7)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I7) e7 = e6,

(A− λ I7)2 e7 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.
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{
e6 = (A− λ I7) e7,e7

}
.

After we have found the Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I7) 1 e6 0

ker(A− λ I7)2 2 e7 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

8. Kernels of (B− λ I7)i.

We remember that λ = 2.

Kernel of (B− λ I7).
We calculate the kernel of B − λ I7. The matrix B − λ I7 is

B − λ I7 =



0 1 0 0 0 1 0
−2 −2 1 1 1 −1 −2
−2 −2 1 1 −1 −3 −1

1 1 −1 −1 1 2 1
−1 0 1 0 −1 −1 −1

0 −1 0 0 −1 −2 1
0 0 0 0 0 0 0


.

We have to solve the matrix equation

0 1 0 0 0 1 0
−2 −2 1 1 1 −1 −2
−2 −2 1 1 −1 −3 −1

1 1 −1 −1 1 2 1
−1 0 1 0 −1 −1 −1

0 −1 0 0 −1 −2 1
0 0 0 0 0 0 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.
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z2 + z6 = 0,
−2z1 − 2z2 + z3 + z4 + z5 − z6 − 2z7 = 0,
−2z1 − 2z2 + z3 + z4 − z5 − 3z6 − z7 = 0,
z1 + z2 − z3 − z4 + z5 + 2z6 + z7 = 0,

− z1 + z3 − z5 − z6 − z7 = 0,
− z2 − z5 − 2z6 + z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7) =
{
(0, r2,0,0, r2,−r2,0) | r2 ∈ K

}
= span

{
(0,1,0,0,1,−1,0)

}
.

Kernel of (B− λ I7)2.
We calculate the kernel of (B − λ I7)2. The matrix (B − λ I7)2 is

(B − λ I7)2 =



−2 −3 1 1 0 −3 −1
2 2 −1 −2 −2 0 2
4 4 −3 −2 2 6 2
−2 −2 2 1 −2 −4 −1
−1 −2 0 1 1 −1 −1

3 4 −2 −1 2 6 1
0 0 0 0 0 0 0


.

We have to solve the matrix equation

−2 −3 1 1 0 −3 −1
2 2 −1 −2 −2 0 2
4 4 −3 −2 2 6 2

−2 −2 2 1 −2 −4 −1
−1 −2 0 1 1 −1 −1

3 4 −2 −1 2 6 1
0 0 0 0 0 0 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.
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−2z1 − 3z2 + z3 + z4 − 3z6 − z7 = 0,
2z1 + 2z2 − z3 − 2z4 − 2z5 + 2z7 = 0,
4z1 + 4z2 − 3z3 − 2z4 + 2z5 + 6z6 + 2z7 = 0,
−2z1 − 2z2 + 2z3 + z4 − 2z5 − 4z6 − z7 = 0,
− z1 − 2z2 + z4 + z5 − z6 − z7 = 0,

3z1 + 4z2 − 2z3 − z4 + 2z5 + 6z6 + z7 = 0.
We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)2 =
{
(0, r2,0, r4, r2,−r2, r4) | r2, r4 ∈ K

}
= span

{
(0,1,0,0,1,−1,0), (0,0,0,1,0,0,1)

}
.

Kernel of (B− λ I7)3.
We calculate the kernel of (B − λ I7)3.

(B − λ I7)3 =



5 6 −3 −3 0 6 3
−2 −2 1 3 3 1 −3
−6 −6 5 3 −3 −9 −3

3 3 −3 −1 3 6 1
4 5 −2 −3 −1 4 3

−7 −8 5 3 −3 −11 −3
0 0 0 0 0 0 0


.

We have to solve the matrix equation

5 6 −3 −3 0 6 3
−2 −2 1 3 3 1 −3
−6 −6 5 3 −3 −9 −3

3 3 −3 −1 3 6 1
4 5 −2 −3 −1 4 3

−7 −8 5 3 −3 −11 −3
0 0 0 0 0 0 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

5z1 + 6z2 − 3z3 − 3z4 + 6 z6 + 3z7 = 0,
−2z1 − 2z2 + z3 + 3z4 + 3z5 + z6 − 3z7 = 0,
−6z1 − 6z2 + 5z3 + 3z4 − 3z5 − 9 z6 − 3z7 = 0,

3z1 + 3z2 − 3z3 − z4 + 3z5 + 6 z6 + z7 = 0,
4z1 + 5z2 − 2z3 − 3z4 − z5 + 4 z6 + 3z7 = 0,
−7z1 − 8z2 + 5z3 + 3z4 − 3z5 − 11z6 − 3z7 = 0.
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We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)3 =
{
(0, r2,0, r4, r2,−r2, r4) | r2, r4 ∈ K

}
= span

{
(0,1,0,0,1,−1,0), (0,0,0,1,0,0,1)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality starting from the second power onwards in the
following chain of inclusion of sets.

ker(B − λ I7) ⊊ ker(B − λ I7)2 = ker(B − λ I7)3 · · · .
We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I7) 1 1 = dim(ker(B − λ I7))

ker(B − λ I7)2 2 1 = dim(ker(B − λ I7)2)− dim(ker(B − λ I7))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker(B − λ I7)i) − dim(ker(B − λ I7)i−1). The first
number of this last column is dim(ker(B − λ I7)).

9. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w6,w7

}
satisfying{

(B − λ I7) w6 = 0,
(B − λ I7) w7 = w6,

or {
(B − λ I7)2 w7 = 0,
(B − λ I7) w7 = w6,

where w7 is in the vector space ker((B − λ I7)2) but not in ker(B − λ I7).
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We look for a generating vector w7. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I7) and must be independent from
vectors of height 2 that were already chosen in ker(B − λ I7)2.

We remember that

ker(B − λ I7) = span
{
(0,1,0,0,1,−1,0)

}
.

We know that

ker((B − λ I7)2) = span
{
(0,1,0,0,1,−1,0), (0,0,0,1,0,0,1)

}
.

We have at this point not chosen any vector of height 2 in a previous
Jordan chain of ker(B − λ I7)2.

We know that a vector in ker((B − λ I7)2) must be of the form

a (0,1,0,0,1,−1,0)+ b (0,0,0,1,0,0,1) = (0, a,0, b, a,−a,b).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(

0 1 0 0 1 −1 0
0 a 0 b a −a b

)
.

We row reduce this matrix H and if we impose b ≠ 0 we find(
0 1 0 0 1 −1 0
0 0 0 1 0 0 1

)
.

We see that these vectors are independent if we impose the condition
b ≠ 0. So we choose a = 0 and b = 1.

We have the generating vector

w7 = (0,0,0,1,0,0,1).

We start with w7 = (0,0,0,1,0,0,1).

We calculate w6.
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w6 = (B − λ I7) w7

=



0 1 0 0 0 1 0
−2 −2 1 1 1 −1 −2
−2 −2 1 1 −1 −3 −1

1 1 −1 −1 1 2 1
−1 0 1 0 −1 −1 −1

0 −1 0 0 −1 −2 1
0 0 0 0 0 0 0





0
0
0
1
0
0
1


=



0
−1

0
0

−1
1
0


.

We have now the first Jordan chain for this eigenvalue. We have found
in total 3 chains. The length of this chain is 2.

{
w6 = (0,−1,0,0,−1,1,0),w7 = (0,0,0,1,0,0,1)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I7) 1 w6 0

ker(B − λ I7)2 2 w7 0

with

w6 = (0,−1,0,0,−1,1,0)

w7 = (0,0,0,1,0,0,1)

10. Result and check of the result.
We construct the matrix of base change P with the coordinates of the
vectors wi found in the Jordan chains in the columns of P .
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P =



1 0 0 0 0 0 0
0 1 0 1 0 −1 0
0 1 0 −1 0 0 0
0 0 1 1 0 0 1
1 0 0 0 1 −1 0

−1 0 0 −1 0 1 0
0 0 0 0 0 0 1


.
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A = P−1 B P

=



1 0 0 0 0 0 0
1 1 0 0 0 1 0

−1 −1 1 1 0 −1 −1
1 1 −1 0 0 1 0
1 1 −1 0 1 2 0
2 1 −1 0 0 2 0
0 0 0 0 0 0 1



×



2 1 0 0 0 1 0
−2 0 1 1 1 −1 −2
−2 −2 3 1 −1 −3 −1

1 1 −1 1 1 2 1
−1 0 1 0 1 −1 −1

0 −1 0 0 −1 0 1
0 0 0 0 0 0 2



×



1 0 0 0 0 0 0
0 1 0 1 0 −1 0
0 1 0 −1 0 0 0
0 0 1 1 0 0 1
1 0 0 0 1 −1 0

−1 0 0 −1 0 1 0
0 0 0 0 0 0 1



=



1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 2 1

0 0 0 0 0 0 2



 
( )

( ) .
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25 exercise. (7× 7); (J2(2), J2(2), J1(2), J2(1)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible
a matrix A similar to B such that A is in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =



1 0 0 0 0 0 0
−2 1 0 −2 1 2 1
−3 −1 2 −1 1 2 1

0 0 0 2 0 0 0
3 1 0 1 1 −2 −1
4 1 −1 1 −1 −1 −1

−15 −4 2 −5 4 10 6


.

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial.

pC-H(λ) = |B − λ I7| = −(λ− 2)5 (λ− 1)2.

We see that the characteristic Cayley-Hamilton polynomial pC-H(λ) can
be factorised in linear polynomials over the field K. So we can apply the
Jordan normalisation machinery.

The eigenvalue λ = 2 has algebraic multiplicity 5. the eigenvalue λ = 1
has algebraic multiplicity 2.

2. Investigation of the first eigenvalue.

We work now with the eigenvalue λ = 2.

3. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
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this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 4 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 3. The solution will be completely independent from this
section.

We start from the matrix A.

A =



2 1 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 1 0 0 0

0 0 0 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 1 1

0 0 0 0 0 0 1



( )
( )

( )( ) .

We subtract from this matrix A the matrix λ I7.

A− λ I7 =



0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −1 1
0 0 0 0 0 0 −1


.

We compute also the powers of A− λ I7.

A− λ I7 =



0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −1 1

0 0 0 0 0 0 −1



( )
( )

( )( ) ,
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(A− λ I7)2 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 −2

0 0 0 0 0 0 1



( )
( )

( )( ) .

Let us visualise this situation.

(a) Visualisation of A− λ I7. (b) Visualisation of (A− λ I7)2.

Figure 33

We give some comments about the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.
The red cells are representing the number one. All the blocks with green
cells in it will be keeping the same look however large we take the pow-
ers of this matrix. If we restrict the mapping A − λ I7 to the subspace
span

{
e1,e2,e3,e4,e5

}
which is an invariant subspace with respect to the

operator A − λ I7, then we have the classic case of a nilpotent opera-
tor on a finite dimensional space. The nilpotent operator has degree
of nilpotency 2. Let us take a look at the three first elementary Jordan
blocks in this matrix. We observe that the original superdiagonals of 1’s
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in the three first blocks of A − λ I7 are going upwards in their respec-
tive elementary Jordan blocks associated with the nilpotent part of the
transformation A−λ I7 when increasing the powers of the matrix A−λ I7.
They finally disappear when taking the second power of A− λ I7.

Investigation of the first Jordan chain.

We can also see that the space span
{
e1,e2

}
is invariant with respect to

the transformation A− λ I7.

The same can be said about the spaces span
{
e3,e4

}
and span

{
e5
}

It is interesting to observe how the kernels change. We can see almost
without calculation that{

ker(A− λ I7) = span
{
e1,e3,e5

}
;

ker(A− λ I7)2 = span
{
e1,e2,e3,e4,e5

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I7) 3 3 = dim(ker(A− λ I7))

ker(A− λ I7)2 5 2 = dim(ker(A− λ I7)2)− dim(ker(A− λ I7))

We find in the first column the dimensions of the kernels. In the second
column, we have in every row i but the first the consecutive differences
of the kernel dimensions. In the first row, we have dim(ker(A− λ I7)).

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A− λ I7) ⊊ ker(A− λ I7)2 = ker(A− λ I7)3 = · · · .

We remark by looking at the matrices (A−λ I7)i that we have the follow-
ing mappings
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{
(A− λ I7) e2 = e1,
(A− λ I7) e1 = 0.

We remark by looking at the matrices (A− λ I7)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I7) e2 = e1,

(A− λ I7)2 e2 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e1 = (A− λ I7) e2,e2

}
.

After we have found the first Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I7) 3 e1 2

ker(A− λ I7)2 5 e2 1

We have that the last number in the last column is not zero, and this
means that there is still a chain left of length 2.

Investigating the second Jordan chain.
We remark by looking at the matrices (A−λ I7)i that we have the follow-
ing mappings {

(A− λ I7) e4 = e3,
(A− λ I7) e3 = 0.

We remark by looking at the matrices (A− λ I7)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I7) e4 = e3,

(A− λ I7)2 e4 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.
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{
e3 = (A− λ I7) e4,e4

}
.

After we have found the second Jordan chain of length 4, we have then
the following table.

Keeping track of chains and dimensions.

dim first chain second chain remaining dim

ker(A− λ I7) 3 e1 e3 1

ker(A− λ I7)2 5 e2 e4 0

Investigating the third Jordan chain.
We remark by looking at the matrices (A−λ I7)i that we have the follow-
ing mappings

(A− λ I7) e5 = 0.

One sees that we have a Jordan chain of one linearly independent vector.

{
e5
}
.

After we have found the third Jordan chain with length 1, we have then
the following table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 remaining dim

ker(A− λ I7) 3 e1 e3 e5 0

ker(A− λ I7)2 5 e2 e4 0

4. Kernels of (B− λ I7)i.

We remember that we are still working with the eigenvalue λ = 2. We
calculate the kernel of B − λ I7.
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The matrix B − λ I7 is

B − λ I7 =



−1 0 0 0 0 0 0
−2 −1 0 −2 1 2 1
−3 −1 0 −1 1 2 1

0 0 0 0 0 0 0
3 1 0 1 −1 −2 −1
4 1 −1 1 −1 −3 −1

−15 −4 2 −5 4 10 4


.

We have to solve the matrix equation

−1 0 0 0 0 0 0
−2 −1 0 −2 1 2 1
−3 −1 0 −1 1 2 1

0 0 0 0 0 0 0
3 1 0 1 −1 −2 −1
4 1 −1 1 −1 −3 −1

−15 −4 2 −5 4 10 4





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

− z1 = 0,
− 2 z1 − z2 − 2z4 + z5 + 2 z6 + z7 = 0,
− 3 z1 − z2 − z4 + z5 + 2 z6 + z7 = 0,

3 z1 + z2 + z4 − z5 − 2 z6 − z7 = 0,
4 z1 + z2 − z3 + z4 − z5 − 3 z6 − z7 = 0,

−15z1 − 4z2 + 2z3 − 5z4 + 4z5 + 10z6 + 4z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7) =
{
(0, r2, r3,0, r5,−r3, r2 + 2 r3 − r5) | r2, r3, r5 ∈ K

}
= span

{
(0,1,0,0,0,0,1), (0,0,1,0,0,−1,2),

(0,0,0,0,1,0,−1)
}
.

Kernel of (B− λ I7)2.
We calculate the kernel of (B − λ I7)2.

The matrix (B − λ I7)2 is
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1 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0

−1 0 0 0 0 0 0
−3 0 1 0 0 1 0

9 0 −2 0 0 −2 0


.

We have to solve the matrix equation

1 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0

−1 0 0 0 0 0 0
−3 0 1 0 0 1 0

9 0 −2 0 0 −2 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.
z1 = 0,

− z1 = 0,
−3z1 + z3 + z6 = 0,

9z1 − 2z3 − 2z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)2 =
{
(0, r2, r3, r4, r5,−r3, r7) | r2, r3, r4, r5, r7 ∈ K

}
= span

{
(0,1,0,0,0,0,0), (0,0,1,0,0,−1,0),

(0,0,0,1,0,0,0), (0,0,0,0,1,0,0),
(0,0,0,0,0,0,1)

}
.

Kernel of (B− λ I7)3.
We calculate the kernel of (B − λ I7)3.

The matrix (B − λ I7)3 is
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(B − λ I7)3 =



−1 0 0 0 0 0 0
0 0 0 0 0 0 0

−1 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
4 0 −1 0 0 −1 0

−11 0 2 0 0 2 0


.

We have to solve the matrix equation

−1 0 0 0 0 0 0
0 0 0 0 0 0 0

−1 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
4 0 −1 0 0 −1 0

−11 0 2 0 0 2 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

− z1 = 0,
− z1 = 0,

z1 = 0,
4 z1 − z3 − z6 = 0,

−11z1 + 2z3 + 2z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)3 =
{
(0, r2, r3, r4, r5,−r3, r7) | r2, r3, r4, r5, r7 ∈ K

}
= span

{
(0,1,0,0,0,0,0), (0,0,1,0,0,−1,0),

(0,0,0,1,0,0,0), (0,0,0,0,1,0,0),
(0,0,0,0,0,0,1)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality from the second power onwards in the following
chain of inclusion of sets.

ker(B − λ I7) ⊊ ker((B − λ I7)2) = ker((B − λ I7)3) = · · · .
We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I7) 3 3 = dim(ker(B − λ I7))

ker(B − λ I7)2 5 2 = dim(ker(B − λ I7)2)− dim(ker(B − λ I7))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I7)i))−dim(ker((B−λ I7)i−1)). The first
number of this last column is dim(ker(B − λ I7)).

5. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w1,w2

}
satisfying{

(B − λ I7) w1 = 0,
(B − λ I7) w2 = w1.

where w2 is in the vector space ker((B − λ I7)2) but not in ker(B − λ I7).

We look for a generating vector w2. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I7) and must be independent from
vectors that were already chosen in ker(B − λ I7)2. We know that

ker((B − λ I7)2) = span
{
(0,1,0,0,0,0,0), (0,0,1,0,0,−1,0),

(0,0,0,1,0,0,0), (0,0,0,0,1,0,0),
(0,0,0,0,0,0,1)

}
.

We have at this point that no vector is already chosen in ker(B − λ I7)2.
We know that a vector in ker(B − λ I7)2 must be of the form

a (0,1,0,0,0,0,0)+ b (0,0,1,0,0,−1,0)+ c (0,0,0,1,0,0,0)

+ d (0,0,0,0,1,0,0)+ e (0,0,0,0,0,0,1)

= (0, a, b, c, d,−b, e).
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We remember that

ker(B − λ I7) = span
{
(0,1,0,0,0,0,1), (0,0,1,0,0,−1,2),

(0,0,0,0,1,0,−1)
}
.

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =


0 1 0 0 0 0 1
0 0 1 0 0 −1 2
0 0 0 0 1 0 −1
0 a b c d −b e

 .
We row reduce this matrix H and if we impose c ≠ 0, we find

0 1 0 0 0 0 1
0 0 1 0 0 −1 2
0 0 0 1 0 0 (−a− 2b + d+ e)/c
0 0 0 0 1 0 −1

 .
We see that these vectors are independent if we impose the condition
c ≠ 0. So we can take a = 0, b = 0, c = 1, d = 0, e = 0.

So we have the generating vector

w2 = (0,0,0,1,0,0,0).

We start with w2 = (0,0,0,1,0,0,0).

We calculate w1.

w1 = (B − λ I7) w2

=



−1 0 0 0 0 0 0
−2 −1 0 −2 1 2 1
−3 −1 0 −1 1 2 1

0 0 0 0 0 0 0
3 1 0 1 −1 −2 −1
4 1 −1 1 −1 −3 −1

−15 −4 2 −5 4 10 4





0
0
0
1
0
0
0


=



0
−2
−1

0
1
1

−5


.
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We have found the first Jordan chain. It has length 2.

{
w1 = (0,−2,−1,0,1,1,−5),w2 = (0,0,0,1,0,0,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I7) 3 w1 2

ker((B − λ I7)2) 5 w2 1

with

w1 = (0,−2,−1,0,1,1,−5)

w2 = (0,0,0,1,0,0,0)

Calculation of the second Jordan chain.
We look for a linearly independent set of vectors

{
w3,w4

}
satisfying{

(B − λ I7) w3 = 0,
(B − λ I7) w4 = w3

where w4 is in the vector space ker((B − λ I7)2) but not in ker(B − λ I7).

We look for a generating vector w4. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I7) and must be independent from
vectors of height 2 that were already chosen in ker(B − λ I7)2. We know
that

ker((B − λ I7)2) = span
{
(0,1,0,0,0,0,0), (0,0,1,0,0,−1,0),
(0,0,0,1,0,0,0), (0,0,0,0,1,0,0),
(0,0,0,0,0,0,1)

}
.

We have at this point chosen in ker((B − λ I7)2) already the vector w2 =
(0,0,0,1,0,0,0) which is of height 2.

We remember that
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ker(B − λ I7) = span
{
(0,1,0,0,0,0,1), (0,0,1,0,0,−1,2),

(0,0,0,0,1,0,−1)
}
.

We know that a vector in ker((B − λ I7)2) must be of the form

a (0,1,0,0,0,0,0)+ b (0,0,1,0,0,−1,0)+ c (0,0,0,1,0,0,0)

+ d (0,0,0,0,1,0,0)+ e (0,0,0,0,0,0,1)

= (0, a, b, c, d,−b, e).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =


0 1 0 0 0 0 1
0 0 1 0 0 −1 2
0 0 0 0 1 0 −1
0 0 0 1 0 0 0
0 a b c d −b e

 .
We row reduce this matrix H and if we impose a + 2b − d − e ≠ 0, we
find 

0 1 0 0 0 0 0
0 0 1 0 0 −1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1

 .

We see that these vectors are independent if we impose the condition
a + 2b − d − e ≠ 0. So we can choose a = 1, b = 0, c = 0, d = 0 and
e = 0.

We have the generating vector

w4 = (0,1,0,0,0,0,0).

We start with w4 = (0,1,0,0,0,0,0).
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So we calculate

w3 = (B − λ I7) w4

=



−1 0 0 0 0 0 0
−2 −1 0 −2 1 2 1
−3 −1 0 −1 1 2 1

0 0 0 0 0 0 0
3 1 0 1 −1 −2 −1
4 1 −1 1 −1 −3 −1

−15 −4 2 −5 4 10 4





0
1
0
0
0
0
0


=



0
−1
−1

0
1
1

−4


.

We have found the second Jordan chain. It has length 2.

{
w3 = (0,−1,−1,0,1,1,−4),w4 = (0,1,0,0,0,0,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(B − λ I7) 3 w1 w3 1

ker(B − λ I7)2 5 w2 w4 0

with

w1 = (0,−2,−1,0,1,1,−5)

w2 = (0,0,0,1,0,0,0)

w3 = (0,−1,−1,0,1,1,−4)

w4 = (0,1,0,0,0,0,0)

Calculation of the third Jordan chain.
We look for a linearly independent vector

{
w5
}

satisfying
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(B − λ I7) w5 = 0.

This vector must be independent from the vectors of height 1 that were
already chosen in ker(B − λ I7).

We have at this point chosen in ker(B − λ I7) already the vectors w1 =
(0,−2,−1,0,1,1,−5) and w3 = (0,−1,−1,0,1,1,−4).

We know that a vector in ker(B − λ I7) must be of the form

a (0,1,0,0,0,0,1)+ b (0,0,1,0,0,−1,2)+ c (0,0,0,0,1,0,−1)

= (0, a, b,0, c,−b,a+ 2b − c).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =

 0 −2 −1 0 1 1 −5
0 −1 −1 0 1 1 −4
0 a b 0 c −b a+ 2b − c

 .
We row reduce this matrix H and if we impose b + c ≠ 0 we find 0 1 0 0 0 0 1

0 0 1 0 0 −1 2
0 0 0 0 1 0 −1

 .
We see that these vectors are independent if we impose the condition
b + c ≠ 0. So we can choose a = 0, b = 1, c = 0.

So we have the generating vector

w5 = (0,0,1,0,0,−1,2).

This vector gives rise to a third Jordan. It has length 1.

Let us take a look at our current information table.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 chain 3 remaining dim

ker(B − λ I7) 3 w1 w3 w5 0

ker(B − λ I7)2 5 w2 w4 0

with

w1 = (0,−2,−1,0,1,1,−5)

w2 = (0,0,0,1,0,0,0)

w3 = (0,−1,−1,0,1,1,−4)

w4 = (0,1,0,0,0,0,0)

w5 = (0,0,1,0,0,−1,2)

6. Investigation of the second eigenvalue.

We work now with the eigenvalue λ = 1.

7. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 8 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 7. The solution will be completely independent from this
section.

We start from the matrix A.
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A =



2 1 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 1 0 0 0

0 0 0 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 1 1

0 0 0 0 0 0 1



( )
( )

( )( ) .

We subtract from this matrix A the matrix λ I7.

A− λ I7 =



1 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0



( )
( )

( )( ) .

We see that the space span
{
e6,e7

}
is invariant relative to A− λ I7. If we

restrict A − λ I7 to this space, we have a nilpotent operator and we can
apply the techniques learned in part 2.

We want to investigate the endomorphism A − λ I7 restricted to this
space. We compute now the powers of A− λ I7.

A− λ I7 =



1 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0



( )
( )

( )( ) ,

(A− λ I7)2 =



1 2 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 2 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



( )
( )

( )( ) .
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Let us visualise this situation.

(a) Visualisation of (A− λ I7). (b) Visualisation of (A− λ I7)2.

Figure 34

We give here some comments about the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.

All the blocks with green cells in it will be keeping the same look how-
ever large we take the powers of this matrix. If we restrict the mapping
A−λ I7 to the subspace span

{
e6,e7

}
which is an invariant subspace with

respect to the operator A−λ I7, then we have the classic case of a nilpo-
tent operator on a finite dimensional space. The nilpotent operator has
degree of nilpotency 2. Let us take a look at the fourth elementary Jor-
dan block in this matrix. We observe that the original superdiagonal of
1’s in the fourth block of A−λ I7 is going upwards in its elementary Jor-
dan submatrix associated with the nilpotent part of the transformation
A− λ I7 when increasing the powers of the matrix A− λ I7. They finally
disappear when taking the second power of A− λ I7.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that
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{
ker(A− λ I7) = span

{
e6
}
;

ker(A− λ I7)2 = span
{
e6,e7

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I7) 1 1 = dim(ker(A− λ I7))

ker(A− λ I7)2 2 1 = dim(ker(A− λ I7)2)− dim(ker(A− λ I7))

We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I7)i)−dim(ker(A−
λ I7)i−1). In the first row, we have dim(ker(A− λ I7)).

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A− λ I7) ⊊ ker(A− λ I7)2 = ker(A− λ I7)3 = · · · .

We remark by looking at the matrices (A−λ I7)i that we have the follow-
ing mappings {

(A− λ I7) e7 = e6,
(A− λ I7) e6 = 0.

We remark by looking at the matrices (A− λ I7)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I7) e7 = e6,

(A− λ I7)2 e7 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e6 = (A− λ I7) e7,e7

}
.
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After we have found the first Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I7) 1 e6 0

ker(A− λ I7)2 1 e7 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

8. Kernels of (B− λ I7)i.

Kernel of (B− λ I7).
We calculate the kernel of B − λ I7.

The matrix B − λ I7 is

B − λ I7 =



0 0 0 0 0 0 0
−2 0 0 −2 1 2 1
−3 −1 1 −1 1 2 1

0 0 0 1 0 0 0
3 1 0 1 0 −2 −1
4 1 −1 1 −1 −2 −1

−15 −4 2 −5 4 10 5


.

We have to solve the matrix equation

0 0 0 0 0 0 0
−2 0 0 −2 1 2 1
−3 −1 1 −1 1 2 1

0 0 0 1 0 0 0
3 1 0 1 0 −2 −1
4 1 −1 1 −1 −2 −1

−15 −4 2 −5 4 10 5





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.
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− 2 z1 − 2z4 + z5 + 2 z6 + z7 = 0,
− 3 z1 − z2 + z3 − z4 + z5 + 2 z6 + z7 = 0,

z4 = 0,
3 z1 + z2 + z4 − 2 z6 − z7 = 0,
4 z1 + z2 − z3 + z4 − z5 − 2 z6 − z7 = 0,

−15z1 − 4z2 + 2z3 − 5z4 + 4z5 + 10z6 + 5z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7) =
{
(0,0,0,0,0, r6,−2 r6) | r6 ∈ K

}
= span

{
(0,0,0,0,0,1,−2)

}
.

Kernel of (B− λ I7)2.
We calculate the kernel of (B − λ I7)2.

The matrix (B − λ I7)2 is

(B − λ I7)2 =



0 0 0 0 0 0 0
−4 −1 0 −4 2 4 2
−5 −2 1 −2 2 4 2

0 0 0 1 0 0 0
5 2 0 2 −1 −4 −2
5 2 −1 2 −2 −4 −2

−21 −8 2 −10 8 18 9


.

We have to solve the matrix equation

0 0 0 0 0 0 0
−4 −1 0 −4 2 4 2
−5 −2 1 −2 2 4 2

0 0 0 1 0 0 0
5 2 0 2 −1 −4 −2
5 2 −1 2 −2 −4 −2

−21 −8 2 −10 8 18 9





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.
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− 4 z1 − z2 − 4 z4 + 2z5 + 4 z6 + 2z7 = 0,
− 5 z1 − 2z2 + z3 − 2 z4 + 2z5 + 4 z6 + 2z7 = 0,

z4 = 0,
5 z1 + 2z2 + 2 z4 − z5 − 4 z6 − 2z7 = 0,
5 z1 + 2z2 − z3 + 2 z4 − 2z5 − 4 z6 − 2z7 = 0,

−21z1 − 8z2 + 2z3 − 10z4 + 8z5 + 18z6 + 9z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)2 =
{
(r1,0, r1,0,−r1, r6,3 r1 − 2 r6) | r1, r6 ∈ K

}
= span

{
(1,0,1,0,−1,0,3), (0,0,0,0,0,1,−2)

}
.

Kernel of (B− λ I)3.
We calculate the kernel of (B − λ I7)3.

The matrix (B − λ I7)3 is

(B − λ I7)3 =



0 0 0 0 0 0 0
−6 −2 0 −6 3 6 3
−7 −3 1 −3 3 6 3

0 0 0 1 0 0 0
7 3 0 3 −2 −6 −3
7 3 −1 3 −3 −6 −3

−29 −12 2 −15 12 26 13


.

We have to solve the matrix equation

0 0 0 0 0 0 0
−6 −2 0 −6 3 6 3
−7 −3 1 −3 3 6 3

0 0 0 1 0 0 0
7 3 0 3 −2 −6 −3
7 3 −1 3 −3 −6 −3

−29 −12 2 −15 12 26 13





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.
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− 6 z1 − 2 z2 − 6 z4 + 3 z5 + 6 z6 + 3 z7 = 0,
− 7 z1 − 3 z2 + z3 − 3 z4 + 3 z5 + 6 z6 + 3 z7 = 0,

z4 = 0,
7 z1 + 3 z2 + 3 z4 − 2 z5 − 6 z6 − 3 z7 = 0,
7 z1 + 3 z2 − z3 + 3 z4 − 3 z5 − 6 z6 − 3 z7 = 0,

−29z1 − 12z2 + 2z3 − 15z4 + 12z5 + 26z6 + 13z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)3 =
{
(r1,0, r1,0,−r1, r6,3 r1 − 2 r6) | r1, r6 ∈ K

}
= span

{
(1,0,1,0,−1,0,3), (0,0,0,0,0,1,−2)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality from the second power onwards in the following
chain of inclusion of sets.

ker(B − λ I7) ⊊ ker((B − λ I7)2) = ker((B − λ I7)3) = · · · .
We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I7) 1 1 = dim(ker(B − λ I7))

ker(B − λ I7)2 2 1 = dim(ker(B − λ I7)2)− dim(ker(B − λ I7))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I7)i))−dim(ker((B−λ I7)i−1)). The first
number of this last column is dim(ker(B − λ I7)).

9. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w6,w7

}
satisfying
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{
(B − λ I7) w6 = 0,
(B − λ I7) w7 = w6.

where w7 is in the vector space ker((B − λ I7)2) but not in ker(B − λ I7).

We look for a generating vector w7. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I7) and must be independent from
vectors that were already chosen in ker(B − λ I7)2. We know that

ker((B − λ I7)2) = span
{
(1,0,1,0,−1,0,3), (0,0,0,0,0,1,−2)

}
.

We know that a vector in ker(B − λ I7)2 must be of the form

a ((1,0,1,0,−1,0,3))+ b ((0,0,0,0,0,1,−2)) = (a,0, a,0,−a,b,3a− 2b).

We remember that

ker(B − λ I7) = span
{
(0,0,0,0,0,1,−2)

}
.

We have at this point not chosen any vector in ker(B − λ I7)2.

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(

0 0 0 0 0 1 −2
a 0 a 0 −a b 3a− 2b

)
.

We row reduce this matrix H and if we impose a ≠ 0, we find(
1 0 1 0 −1 0 3
0 0 0 0 0 1 −2

)
.

We see that these vectors are independent if we impose the condition
a ≠ 0. So we can choose a = 1, b = 0.

We choose the generating vector

w7 = 1 (1,0,1,0,−1,0,3)+ 0 (0,0,0,0,0,1,−2) = (1,0,1,0,−1,0,3).

We start with w7 = (1,0,1,0,−1,0,3).
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We calculate w6.

w6 = (B − λ I7) w7

=



0 0 0 0 0 0 0
−2 0 0 −2 1 2 1
−3 −1 1 −1 1 2 1

0 0 0 1 0 0 0
3 1 0 1 0 −2 −1
4 1 −1 1 −1 −2 −1

−15 −4 2 −5 4 10 5





1
0
1
0

−1
0
3


=



0
0
0
0
0
1

−2


.

So we have the Jordan chain

{
w6 = (0,0,0,0,0,1,−2),w7 = (1,0,1,0,−1,0,3)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I7) 1 w6 0

ker(B − λ I7)2 2 w7 0

with

w6 = (0,0,0,0,0,1,−2)

w7 = (1,0,1,0,−1,0,3)

10. Result and check of the result.
We construct the matrix of base change P with the coordinates of the
vectors wi found in the Jordan chains in the columns of P .

P =



0 0 0 0 0 0 1
−2 0 −1 1 0 0 0
−1 0 −1 0 1 0 1

0 1 0 0 0 0 0
1 0 1 0 0 0 −1
1 0 1 0 −1 1 0

−5 0 −4 0 2 −2 3


.
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A = P−1 B P

=



1 0 0 0 −2 −2 −1
0 0 0 1 0 0 0
0 0 0 0 3 2 1
2 1 0 0 −1 −2 −1
0 0 1 0 1 0 0

−1 0 1 0 0 1 0
1 0 0 0 0 0 0



×



1 0 0 0 0 0 0
−2 1 0 −2 1 2 1
−3 −1 2 −1 1 2 1

0 0 0 2 0 0 0
3 1 0 1 1 −2 −1
4 1 −1 1 −1 −1 −1

−15 −4 2 −5 4 10 6



×



0 0 0 0 0 0 1
−2 0 −1 1 0 0 0
−1 0 −1 0 1 0 1

0 1 0 0 0 0 0
1 0 1 0 0 0 −1
1 0 1 0 −1 1 0

−5 0 −4 0 2 −2 3



=



2 1 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 1 0 0 0

0 0 0 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 1 1

0 0 0 0 0 0 1



( )
( )

( )( ) .
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26 exercise. (7× 7); (J4(1), J1(1), J2(−1)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible
a matrix A similar to B such that A is in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =



−2 1 −2 −1 0 0 −2
1 1 2 0 0 −1 1
2 0 2 1 0 −1 1
1 −1 0 2 0 2 0
1 0 2 0 1 −1 1
1 0 1 0 0 −2 1
0 −1 0 0 0 0 1


.

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial.

pC-H(λ) = |B − λ I7| = −(λ− 1)5 (λ+ 1)2.

We see that the characteristic Cayley-Hamilton polynomial pC-H(λ) can
be factorised in linear polynomials over the field K. So we can apply the
Jordan normalisation machinery.

The eigenvalue λ = 1 has algebraic multiplicity 5, The eigenvalue λ = −1
has algebraic multiplicity 2.

2. Investigation of the first eigenvalue.

We work now with the eigenvalue λ = 1.

3. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
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this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 4 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 3. The solution will be completely independent from this
section.

We start from the matrix A.

A =



1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 −1 1

0 0 0 0 0 0 −1




( )( ) .

We subtract from this matrix A the matrix λ I7.

A− λ I7 =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −2 1

0 0 0 0 0 0 −2




( )( ) .

We compute also the powers of A− λ I7.

A− λ I7 =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −2 1

0 0 0 0 0 0 −2




( )( ) ,
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(A− λ I7)2 =



0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 4 −4

0 0 0 0 0 0 4




( )( ) ,

(A− λ I7)3 =



0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −8 12

0 0 0 0 0 0 −8




( )( ) ,

(A− λ I7)4 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 16 −32

0 0 0 0 0 0 16




( )( ) .

Let us visualise this situation.
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(a) Visualisation of A− λ I7. (b) Visualisation of (A− λ I7)2.

(c) Visualisation of (A− λ I7)3. (d) Visualisation of (A− λ I7)4.

Figure 35

We give some comments about the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. These cells keep their green colour however large
we increase the exponents of A− λ I7. The yellow cells are representing
the number zero. The red cells are representing the number one. All the
blocks with green cells in it will be keeping the same look however large
we take the powers of this matrix. If we restrict the mapping A− λ I7 to
the subspace span

{
e1,e2,e3,e4,e5

}
which is an invariant subspace with

respect to the operator A−λ I7, then we have the classic case of a nilpo-
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tent operator on a finite dimensional space. The nilpotent operator has
degree of nilpotency 4. Let us take a look at the two first elementary
Jordan blocks in this matrix. We observe that the original superdiago-
nals of 1’s in the two first blocks of A − λ I7 are going upwards in their
respective elementary Jordan blocks associated with the nilpotent part
of the transformation A− λ I7 when increasing the powers of the matrix
A−λ I7. They finally disappear when taking the fourth power of A−λ I7.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A− λ I7) = span
{
e1,e5

}
;

ker(A− λ I7)2 = span
{
e1,e2,e5

}
;

ker(A− λ I7)3 = span
{
e1,e2,e3,e5

}
;

ker(A− λ I7)4 = span
{
e1,e2,e3,e4,e5

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I7) 2 2 = dim(ker(A− λ I7))

ker(A− λ I7)2 3 1 = dim(ker(A− λ I7)2)− dim(ker(A− λ I7))

ker(A− λ I7)3 4 1 = dim(ker(A− λ I7)3)− dim(ker(A− λ I7)2)

ker(A− λ I7)4 5 1 = dim(ker(A− λ I7)4)− dim(ker(A− λ I7)3)

We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I7)i)−dim(ker(A−
λ I7)i−1). In the first row, we have dim(ker(A− λ I7)).

We see also that there is equality in the inclusion of sets from the fourth
power onwards.
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ker(A− λ I7) ⊊ ker(A− λ I7)2 ⊊ ker(A− λ I7)3

⊊ ker(A− λ I7)4 = ker(A− λ I7)5 = · · · .

We remark by looking at the matrices (A−λ I7)i that we have the follow-
ing mappings 

(A− λ I7) e4 = e3,
(A− λ I7) e3 = e2,
(A− λ I7) e2 = e1,
(A− λ I7) e1 = 0.

We remark by looking at the matrices (A− λ I7)i or as a consequence of
the previous mappings that we have also the following mappings

(A− λ I7) e4 = e3,

(A− λ I7)2 e4 = e2,

(A− λ I7)3 e4 = e1,

(A− λ I7)4 e4 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e1 = (A− λ I7)3 e4,e2 = (A− λ I7)2 e4,e3 = (A− λ I7) e4,e4

}
.

After we have found the first Jordan chain of length 4, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I7) 2 e1 1

ker(A− λ I7)2 3 e2 0

ker(A− λ I7)3 4 e3 0

ker(A− λ I7)4 5 e4 0
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We have that the last number in the last column is not zero, and this
means that there is still a chain left of length 1.

Investigating the second Jordan chain.
We remark by looking at the matrices (A−λ I7)i that we have the follow-
ing mapping

(A− λ I7) e5 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e5
}
.

After we have found the second Jordan chain with length 1, we have then
the following table.

Keeping track of chains and dimensions.

dim first chain second chain remaining dim

ker(A− λ I7) 2 e1 e5 0

ker(A− λ I7)2 3 e2 0

ker(A− λ I7)3 4 e3 0

ker(A− λ I7)4 5 e4 0

The last column consists entirely of zero’s and this means that we have
finished investigating the first eigenvalue.

4. Kernels of (B− λ I7)i.

We calculate the kernel of B − λ I7.

Kernel of (B− λ I7).
The matrix B − λ I7 is
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B − λ I7 =



−3 1 −2 −1 0 0 −2
1 0 2 0 0 −1 1
2 0 1 1 0 −1 1
1 −1 0 1 0 2 0
1 0 2 0 0 −1 1
1 0 1 0 0 −3 1
0 −1 0 0 0 0 0


.

We have to solve the matrix equation

−3 1 −2 −1 0 0 −2
1 0 2 0 0 −1 1
2 0 1 1 0 −1 1
1 −1 0 1 0 2 0
1 0 2 0 0 −1 1
1 0 1 0 0 −3 1
0 −1 0 0 0 0 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

−3z1 + z2 − 2z3 − z4 − 2z7 = 0,
z1 + 2z3 − z6 + z7 = 0,

2z1 + z3 + z4 − z6 + z7 = 0,
z1 − z2 + z4 + 2z6 = 0,
z1 + 2z3 − z6 + z7 = 0,
z1 + z3 − 3z6 + z7 = 0,
− z2 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7) =
{
(r1,0,0,−r1, r5,0,−r1) | r1, r5 ∈ K

}
= span

{
(1,0,0,−1,0,0,−1), (0,0,0,0,1,0,0)

}
.

Kernel of (B− λ I7)2.
We calculate the kernel of (B − λ I7)2.

The matrix (B − λ I7)2 is
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(B − λ I7)2 =



5 0 6 0 0 −1 5
0 0 −1 1 0 1 −1

−4 0 −4 0 0 4 −4
−1 0 −2 0 0 −3 −1

0 0 −1 1 0 1 −1
−4 0 −4 0 0 8 −4
−1 0 −2 0 0 1 −1


.

We have to solve the matrix equation

5 0 6 0 0 −1 5
0 0 −1 1 0 1 −1

−4 0 −4 0 0 4 −4
−1 0 −2 0 0 −3 −1

0 0 −1 1 0 1 −1
−4 0 −4 0 0 8 −4
−1 0 −2 0 0 1 −1





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

5z1 + 6z3 − z6 + 5z7 = 0,
− z3 + z4 + z6 − z7 = 0,

−4z1 − 4z3 + 4z6 − 4z7 = 0,
− z1 − 2z3 − 3z6 − z7 = 0,

− z3 + z4 + z6 − z7 = 0,
−4z1 − 4z3 + 8z6 − 4z7 = 0,
− z1 − 2z3 + z6 − z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)2 =
{
(r1, r2,0,−r1, r5,0,−r1) | r1, r2, r5 ∈ K

}
= span

{
(1,0,0,−1,0,0,−1), (0,1,0,0,0,0,0),

(0,0,0,0,1,0,0)
}
.

Kernel of (B− λ I7)3.
We calculate the kernel of (B − λ I7)3.

The matrix (B − λ I7)3 is
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(B − λ I7)3 =



−4 0 −5 1 0 −3 −5
0 0 0 0 0 0 0
8 0 8 0 0 −8 8

−4 0 −3 −1 0 11 −3
0 0 0 0 0 0 0

12 0 12 0 0 −20 12
0 0 1 −1 0 −1 1


.

We have to solve the matrix equation

−4 0 −5 1 0 −3 −5
0 0 0 0 0 0 0
8 0 8 0 0 −8 8

−4 0 −3 −1 0 11 −3
0 0 0 0 0 0 0

12 0 12 0 0 −20 12
0 0 1 −1 0 −1 1





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

− 4 z1 − 5 z3 + z4 − 3 z6 − 5 z7 = 0,
8 z1 + 8 z3 − 8 z6 + 8 z7 = 0,

− 4 z1 − 3 z3 − z4 + 11z6 − 3 z7 = 0,
12z1 + 12z3 − 20z6 + 12z7 = 0,

z3 − z4 − z6 + z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)3 =
{
(r1, r2, r3,−r1, r5,0,−r1 − r3) | r1, r2, r3, r5 ∈ K

}
= span

{
(1,0,0,−1,0,0,−1), (0,1,0,0,0,0,0),
(0,0,1,0,0,0,−1), (0,0,0,0,1,0,0)

}
.

Kernel of (B− λ I7)4.
We calculate the kernel of (B − λ I7)4.

The matrix (B − λ I7)4 is
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(B − λ I7)4 =



0 0 0 0 0 16 0
0 0 0 0 0 0 0

−16 0 −16 0 0 16 −16
16 0 16 0 0 −32 16
0 0 0 0 0 0 0

−32 0 −32 0 0 48 −32
0 0 0 0 0 0 0


.

We have to solve the matrix equation

0 0 0 0 0 16 0
0 0 0 0 0 0 0

−16 0 −16 0 0 16 −16
16 0 16 0 0 −32 16
0 0 0 0 0 0 0

−32 0 −32 0 0 48 −32
0 0 0 0 0 0 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.
16z6 = 0,

−16z1 − 16z3 + 16z6 − 16z7 = 0,
16z1 + 16z3 − 32z6 + 16z7 = 0,

−32z1 − 32z3 + 48z6 − 32z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)4 =
{
(r1, r2, r3, r4, r5,0,−r1 − r3) | r1, r2, r3, r4, r5 ∈ K

}
= span

{
(1,0,0,0,0,0,−1), (0,1,0,0,0,0,0),
(0,0,1,0,0,0,−1), (0,0,0,1,0,0,0),
(0,0,0,0,1,0,0)

}
.

Kernel of (B− λ I7)5.
We calculate the kernel of (B − λ I7)5.

The matrix (B − λ I7)5 is
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(B − λ I7)5 =



16 0 16 0 0 −48 16
0 0 0 0 0 0 0

32 0 32 0 0 −32 32
−48 0 −48 0 0 80 −48

0 0 0 0 0 0 0
80 0 80 0 0 −112 80
0 0 0 0 0 0 0


.

We have to solve the matrix equation

16 0 16 0 0 −48 16
0 0 0 0 0 0 0

32 0 32 0 0 −32 32
−48 0 −48 0 0 80 −48

0 0 0 0 0 0 0
80 0 80 0 0 −112 80
0 0 0 0 0 0 0





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.
16z1 + 16z3 − 48 z6 + 16z7 = 0,
32z1 + 32z3 − 32 z6 + 32z7 = 0,

−48z1 − 48z3 + 80 z6 − 48z7 = 0,
80z1 + 80z3 − 112z6 + 80z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)5 =
{
(r1, r2, r3, r4, r5,0,−r1 − r3) | r1, r2, r3, r4, r5 ∈ K

}
= span

{
(1,0,0,0,0,0,−1), (0,1,0,0,0,0,0),
(0,0,1,0,0,0,−1), (0,0,0,1,0,0,0),
(0,0,0,0,1,0,0)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality from the fourth power onwards in the following
chain of inclusion of sets.

ker(B − λ I7) ⊊ ker((B − λ I7)2) ⊊ ker((B − λ I7)3)

⊊ ker((B − λ I7)4) = ker((B − λ I7)5) · · · .
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We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I7) 2 2 = dim(ker(B − λ I7))

ker(B − λ I7)2 3 1 = dim(ker(B − λ I7)2)− dim(ker(B − λ I7))

ker(B − λ I7)3 4 1 = dim(ker(B − λ I7)3)− dim(ker(B − λ I7)2)

ker(B − λ I7)4 5 1 = dim(ker(B − λ I7)4)− dim(ker(B − λ I7)3)

The last column in this table is the column of the consecutive differences
of the first column, dim(ker(B − λ I7)i) − dim(ker(B − λ I7)i−1). The first
number of this last column is dim(ker(B − λ I7)).

5. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w1,w2,w3,w4

}
satis-

fying 
(B − λ I7) w1 = 0,
(B − λ I7) w2 = w1,
(B − λ I7) w3 = w2,
(B − λ I7) w4 = w3,

or 

(B − λ I7) w4 = w3,

(B − λ I7)2 w4 = w2,

(B − λ I7)3 w4 = w1,

(B − λ I7)4 w4 = 0

where w4 is in the vector space ker((B − λ I7)4) but not in ker((B − λ I7)3).

We look for a generating vector w4. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I7)3 and must be independent from
vectors of height 4 that were already chosen in ker(B − λ I7)4. We know
that
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ker((B − λ I7)3) = span
{
(1,0,0,−1,0,0,−1), (0,1,0,0,0,0,0),
(0,0,1,0,0,0,−1), (0,0,0,0,1,0,0)

}
.

We have at this point not chosen any vector in a previous Jordan chain
of ker((B − λ I7)4).

We know that a vector in ker((B − λ I7)4) must be of the form

a (1,0,0,0,0,0,−1)+ b (0,1,0,0,0,0,0)+ c (0,0,1,0,0,0,−1)

+ d (0,0,0,1,0,0,0)+ e (0,0,0,0,1,0,0)

= (a,b, c, d, e,0,−a− c).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =


1 0 0 −1 0 0 −1
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 −1
a b c d e 0 −a− c

 .
We row reduce this matrix H and if we impose a+ d ≠ 0, we find

1 0 0 0 0 0 −1
0 1 0 0 0 0 0
0 0 1 0 0 0 −1
0 0 0 1 0 0 0
0 0 0 0 1 0 0

 .

We see that these vectors are independent if we impose the condition
a+ d ≠ 0. So we can chose a = 1, b = 0, c = 0, d = 0 and e = 0.

So we have the generating vector

w4 = (1,0,0,0,0,0,−1).

We start with w4 = (1,0,0,0,0,0,−1).
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We calculate

w3 = (B − λ I7) w4

=



−3 1 −2 −1 0 0 −2
1 0 2 0 0 −1 1
2 0 1 1 0 −1 1
1 −1 0 1 0 2 0
1 0 2 0 0 −1 1
1 0 1 0 0 −3 1
0 −1 0 0 0 0 0





1
0
0
0
0
0

−1


=



−1
0
1
1
0
0
0



and

w2 = (B − λ I7)2 w4

=



5 0 6 0 0 −1 5
0 0 −1 1 0 1 −1

−4 0 −4 0 0 4 −4
−1 0 −2 0 0 −3 −1

0 0 −1 1 0 1 −1
−4 0 −4 0 0 8 −4
−1 0 −2 0 0 1 −1





1
0
0
0
0
0

−1


=



0
1
0
0
1
0
0



and

w1 = (B − λ I7)3 w4

=



−4 0 −5 1 0 −3 −5
0 0 0 0 0 0 0
8 0 8 0 0 −8 8

−4 0 −3 −1 0 11 −3
0 0 0 0 0 0 0

12 0 12 0 0 −20 12
0 0 1 −1 0 −1 1





1
0
0
0
0
0

−1


=



1
0
0

−1
0
0

−1


.

So we have the Jordan chain
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{
w1 = (1,0,0,−1,0,0,−1),w2 = (0,1,0,0,1,0,0),

w3 = (−1,0,1,1,0,0,0),w4 = (1,0,0,0,0,0,−1)
}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I7) 2 w1 1

ker(B − λ I7)2 3 w2 0

ker(B − λ I7)3 4 w3 0

ker(B − λ I7)4 5 w4 0

with

w1 = (1,0,0,−1,0,0,−1)

w2 = (0,1,0,0,1,0,0)

w3 = (−1,0,1,1,0,0,0)

w4 = (1,0,0,0,0,0,−1)

Calculation of the second Jordan chain.
We look for a vector

{
w5
}

where w5 is in the vector space ker(B − λ I7)
and must be linearly independent from vectors of height 1 that were
already chosen in ker(B − λ I7), and that is w1 = (1,0,0,−1,0,0,−1).

We remember that

ker(B − λ I7) = span
{
(1,0,0,−1,0,0,−1), (0,0,0,0,1,0,0)

}
.
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We know that a vector in ker(B − λ I7) must be of the form

a (1,0,0,−1,0,0,−1)+ b (0,0,0,0,1,0,0) = (a,0,0,−a,b,0,−a).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(

1 0 0 −1 0 0 −1
a 0 0 −a b 0 −a

)
.

We row reduce this matrix H and if we impose b ≠ 0, we find(
1 0 0 −1 0 0 −1
0 0 0 0 1 0 0

)
.

We see that these vectors are linearly independent if we impose the con-
dition b ≠ 0. We can choose a = 0 and b = 1. We have the generating
vector

w5 = (0,0,0,0,1,0,0).

So we have a second Jordan chain and the length of it is 1.

{
w5 = (0,0,0,0,1,0,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(B − λ I7) 2 w1 w5 0

ker(B − λ I7)2 3 w2 0

ker(B − λ I7)3 4 w3 0

ker(B − λ I7)4 5 w4 0

with
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w1 = (1,0,0,−1,0,0,−1)

w2 = (0,1,0,0,1,0,0)

w3 = (−1,0,1,1,0,0,0)

w4 = (1,0,0,0,0,0,−1)

w5 = (0,0,0,0,1,0,0)

6. Investigation of the second eigenvalue.

We work now with the eigenvalue λ = −1.

7. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 8 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 7. The solution will be completely independent from this
section.

We start from the matrix A.

A =



1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 −1 1

0 0 0 0 0 0 −1




( )( ) .

We subtract from this matrix A the matrix λ I7.
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A− λ I7 =



2 1 0 0 0 0 0

0 2 1 0 0 0 0

0 0 2 1 0 0 0

0 0 0 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0




( )( ) .

We see that the space span
{
e6,e7

}
is invariant relative to A− λ I7. If we

restrict A − λ I7 to this space, we have a nilpotent operator and we can
apply the techniques learned in part 2.

We want to investigate the endomorphism A − λ I7 restricted to this
space. We compute now the powers of A − λ I7. We remember that
λ = −1.

A− λ I7 =



2 1 0 0 0 0 0

0 2 1 0 0 0 0

0 0 2 1 0 0 0

0 0 0 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0




( )( ) ,

(A− λ I7)2 =



4 4 1 0 0 0 0

0 4 4 1 0 0 0

0 0 4 4 0 0 0

0 0 0 4 0 0 0

0 0 0 0 4 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




( )( ) .

Let us visualise this situation.
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(a) Visualisation of (A− λ I7). (b) Visualisation of (A− λ I7)2.

Figure 36

We give here some comments about the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.
The red cells are representing the number one. All the blocks with green
cells in it will be keeping the same look however large we take the powers
of this matrix.

If we restrict the mapping A− λ I7 to the subspace span
{
e6,e7

}
which is

an invariant subspace with respect to the operator A−λ I7, then we have
the classic case of a nilpotent operator on a finite dimensional space.
The nilpotent operator has degree of nilpotency 2.

Let us take a look at the third elementary Jordan block in this matrix. We
observe that the original superdiagonal of 1’s in the last Jordan block of
A−λ I7 is going upwards in its elementary Jordan block associated with
the nilpotent part of the transformation A − λ I7 when increasing the
powers of the matrix A − λ I7. They finally disappear when taking the
second power of A− λ I7.

Investigation of the first Jordan chain.
Let us take a look at the third elementary Jordan block in this matrix.

We see that the space span
{
e6,e7

}
is invariant with respect to the oper-

ator A− λ I7.
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We observe that the original superdiagonal of 1’s in the third elementary
Jordan block of the matrix A − λ I7 is going upwards in its block in the
powers of the matrix A− λ I7 until it finally disappears when taking the
second power of A.

It is interesting to observe how the kernels change. We can see almost
without calculation that{

ker(A− λ I7) = span
{
e6
}
;

ker(A− λ I7)2 = span
{
e6,e7

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I7) 1 1 = dim(ker(A− λ I7))

ker(A− λ I7)2 2 1 = dim(ker(A− λ I7)2)− dim(ker(A− λ I7))

We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I7)i)−dim(ker(A−
λ I7)i−1). In the first row, we have dim(ker(A− λ I7)).

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A− λ I7) ⊊ ker(A− λ I7)2 = ker(A− λ I7)3 = · · · .

We remark by looking at the matrices (A−λ I7)i that we have the follow-
ing mappings {

(A− λ I7) e7 = e6,
(A− λ I7) e6 = 0.

We remark by looking at the matrices (A− λ I7)i or as a consequence of
the previous mappings that we have also the following mappings
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{
(A− λ I7) e7 = e6,

(A− λ I7)2 e7 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e6 = (A− λ I7) e7,e7

}
.

After we have found the first Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I7) 1 e6 0

ker(A− λ I7)2 2 e7 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

8. Kernels of (B− λ I7)i.

We remember that we are working here with λ = −1.

Kernel of (B− λ I7).

We calculate the kernel of B − λ I7.

The matrix B − λ I7 is

B − λ I7 =



−1 1 −2 −1 0 0 −2
1 2 2 0 0 −1 1
2 0 3 1 0 −1 1
1 −1 0 3 0 2 0
1 0 2 0 2 −1 1
1 0 1 0 0 −1 1
0 −1 0 0 0 0 2


.

We have to solve the matrix equation
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−1 1 −2 −1 0 0 −2
1 2 2 0 0 −1 1
2 0 3 1 0 −1 1
1 −1 0 3 0 2 0
1 0 2 0 2 −1 1
1 0 1 0 0 −1 1
0 −1 0 0 0 0 2





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

− z1 + z2 − 2z3 − z4 − 2z7 = 0,
z1 + 2z2 + 2z3 − z6 + z7 = 0,

2z1 + 3z3 + z4 − z6 + z7 = 0,
z1 − z2 + 3z4 + 2z6 = 0,
z1 + 2z3 + 2z5 − z6 + z7 = 0,
z1 + z3 − z6 + z7 = 0,
− z2 + 2z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7) =
{
(r1,0,0,−r1,0, r1,0) | r1 ∈ K

}
= span

{
(1,0,0,−1,0,1,0)

}
.

Kernel of (B− λ I7)2.
We calculate the kernel of (B − λ I7)2.

The matrix (B − λ I7)2 is

(B − λ I7)2 =



−3 4 −2 −4 0 −1 −3
4 4 7 1 0 −3 3
4 0 4 4 0 0 0
3 −4 −2 8 0 5 −1
4 0 7 1 4 −3 3
0 0 0 0 0 0 0

−1 −4 −2 0 0 1 3


.

We have to solve the matrix equation
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−3 4 −2 −4 0 −1 −3
4 4 7 1 0 −3 3
4 0 4 4 0 0 0
3 −4 −2 8 0 5 −1
4 0 7 1 4 −3 3
0 0 0 0 0 0 0

−1 −4 −2 0 0 1 3





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

−3z1 + 4z2 − 2z3 − 4z4 − z6 − 3z7 = 0,
4z1 + 4z2 + 7z3 + z4 − 3z6 + 3z7 = 0,
4z1 + 4z3 + 4z4 = 0,
3z1 − 4z2 − 2z3 + 8z4 + 5z6 − z7 = 0,
4z1 + 7z3 + z4 + 4z5 − 3z6 + 3z7 = 0,
− z1 − 4z2 − 2z3 + z6 + 3z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)2 =
{
(r1,0, r3,−r1 − r3,0, r1 + 2 r3,0) | r1, r3 ∈ K

}
= span

{
(1,0,0,−1,0,1,0), (0,0,1,−1,0,2,0)

}
.

Kernel of (B− λ I7)3.
We calculate the kernel of (B − λ I7)3.

The matrix (B − λ I7)3 is

(B − λ I7)3 =



−3 4 −2 −4 0 −1 −3
4 4 7 1 0 −3 3
4 0 4 4 0 0 0
3 −4 −2 8 0 5 −1
4 0 7 1 4 −3 3
0 0 0 0 0 0 0

−1 −4 −2 0 0 1 3


.

We have to solve the matrix equation
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−3 4 −2 −4 0 −1 −3
4 4 7 1 0 −3 3
4 0 4 4 0 0 0
3 −4 −2 8 0 5 −1
4 0 7 1 4 −3 3
0 0 0 0 0 0 0

−1 −4 −2 0 0 1 3





z1

z2

z3

z4

z5

z6

z7


=



0
0
0
0
0
0
0


.

This results in having to solve the following system of linear equations.

−3z1 + 4z2 − 2z3 − 4z4 − z6 − 3z7 = 0,
4z1 + 4z2 + 7z3 + z4 − 3z6 + 3z7 = 0,
4z1 + 4z3 + 4z4 = 0,
3z1 − 4z2 − 2z3 + 8z4 + 5z6 − z7 = 0,
4z1 + 7z3 + z4 + 4z5 − 3z6 + 3z7 = 0,
− z1 − 4z2 − 2z3 + z6 + 3z7 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I7)3 =
{
(r1,0, r3,−r1 − r3,0, r1 + 2 r3,0) | r1, r3 ∈ K

}
= span

{
(1,0,0,−1,0,1,0), (0,0,1,−1,0,2,0)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality from the second power onwards in the following
chain of inclusion of sets.

ker(B − λ I7) ⊊ ker((B − λ I7)2) = ker((B − λ I7)3) = · · · .
We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I7) 1 1 = dim(ker(B − λ I7))

ker(B − λ I7)2 2 1 = dim(ker(B − λ I7)2)− dim(ker(B − λ I7))
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The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I7)i))−dim(ker((B−λ I7)i−1)). The first
number of this last column is dim(ker(B − λ I7)).

9. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w6,w7

}
satisfying{

(B − λ I7) w6 = 0,
(B − λ I7) w7 = w6,

or {
(B − λ I7)2 w7 = 0,
(B − λ I7) w7 = w6

where w7 is in the vector space ker((B − λ I7)2) but not in ker(B − λ I7).

We look for a generating vector w7. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I7) and must be independent from
vectors of height 2 that were already chosen in ker(B − λ I7)2. We know
that

ker((B − λ I7)2) = span
{
(1,0,0,−1,0,1,0), (0,0,1,−1,0,2,0)

}
.

We have at this point not chosen any vector in a previous Jordan chain
of of height 2 in ker((B − λ I7)2).

We know that a vector in ker((B − λ I7)2) must be of the form

a (1,0,0,−1,0,1,0)+ b (0,0,1,−1,0,2,0) = (a,0, b,−a− b,0, a+ 2b,0).

We remember that

ker(B − λ I7) = span
{
(1,0,0,−1,0,1,0)

}
.

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(

1 0 0 −1 0 1 0
a 0 b −a− b 0 a+ 2b 0

)
.

We row reduce this matrix H and if we impose b ≠ 0, we find
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(
1 0 0 −1 0 1 0
0 0 1 −1 0 2 0

)
.

We see that these vectors are independent if we impose the condition
b ≠ 0. So we have a = 0 and b = 1.

We choose the generating vector

w7 = (0,0,1,−1,0,2,0).

We start with w7 = (0,0,1,−1,0,2,0).

We calculate w6.

w6 = (B − λ I7) w7

=



−1 1 −2 −1 0 0 −2
1 2 2 0 0 −1 1
2 0 3 1 0 −1 1
1 −1 0 3 0 2 0
1 0 2 0 2 −1 1
1 0 1 0 0 −1 1
0 −1 0 0 0 0 2





0
0
1

−1
0
2
0


=



−1
0
0
1
0

−1
0


.

We have now the Jordan chain

{
w6 = (−1,0,0,1,0,−1,0),w7 = (0,0,1,−1,0,2,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I7) 1 w6 0

ker(B − λ I7)2 2 w7 0

with
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w6 = (−1,0,0,1,0,−1,0)

w7 = (0,0,1,−1,0,2,0)

10. Result and check of the result.
We construct the matrix of base change P with the coordinates of the
vectors wi found in the Jordan chains in the columns of P .

P =



1 0 −1 1 0 −1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 1

−1 0 1 0 0 1 −1
0 1 0 0 1 0 0
0 0 0 0 0 −1 2

−1 0 0 −1 0 0 0


.
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A = P−1 B P

=



0 0 1 −1 0 −1 0
0 1 0 0 0 0 0
1 0 2 0 0 −1 1
0 0 −1 1 0 1 −1
0 −1 0 0 1 0 0

−2 0 −2 0 0 1 −2
−1 0 −1 0 0 1 −1



×



−2 1 −2 −1 0 0 −2
1 1 2 0 0 −1 1
2 0 2 1 0 −1 1
1 −1 0 2 0 2 0
1 0 2 0 1 −1 1
1 0 1 0 0 −2 1
0 −1 0 0 0 0 1



×



1 0 −1 1 0 −1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 1

−1 0 1 0 0 1 −1
0 1 0 0 1 0 0
0 0 0 0 0 −1 2

−1 0 0 −1 0 0 0



=



1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 1
0 0 0 0 0 0 −1



=



1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 −1 1

0 0 0 0 0 0 −1




( )( ) .
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27 exercise. (6× 6); (J3(−1), J1(−1), J2(1)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible
a matrix A similar to B such that A is in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =


−1 −2 3 2 −4 2

0 −1 −4 −3 −2 −3
0 0 2 2 1 2
0 4 −2 −4 4 −3
0 0 3 2 0 2
0 −8 0 3 −10 2

 .

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial.

pC-H(λ) = |B − λ I6| = (λ− 1)2 (λ+ 1)4 = 0.

We see that the characteristic Cayley-Hamilton polynomial pC-H(λ) can
be factorised in linear polynomials over the field K. So we can apply the
Jordan normalisation machinery.

The eigenvalue λ = −1 has algebraic multiplicity 4. The eigenvalue λ = 1
has algebraic multiplicity 2.

2. Investigation of the first eigenvalue.

We work now with the eigenvalue λ = −1.

3. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
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calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 4 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 3. The solution will be completely independent from this
section.

We start from the matrix A.

A =



−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 1

0 0 0 0 0 1



 
( )( ) .

We subtract from this matrix A the matrix λ I6.

A− λ I6 =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 2 1

0 0 0 0 0 2



 
( )( ) .

We compute also the powers of A− λ I6.

A− λ I6 =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 2 1

0 0 0 0 0 2



 
( )( ) ,

(A− λ I6)2 =



0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 4 4

0 0 0 0 0 4



 
( )( ) ,
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(A− λ I6)3 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 8 12

0 0 0 0 0 8



 
( )( ) .

Let us visualise this situation.

(a) Visualisation of A− λ I6. (b) Visualisation of (A− λ I6)2.

(c) Visualisation of (A− λ I6)3.

Figure 37

We visualise this type of matrix by colouring the diagonal elements
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which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.
The red cells are representing the number 1. All the blocks with green
cells in it will be keeping the same look however large we take the powers
of this matrix.

If we restrict the mapping A − λ I6 to the subspace span
{
e1,e2,e3,e4

}
which is an invariant subspace with respect to the operator A − λ I6,
then we have the classic case of a nilpotent operator on a finite dimen-
sional space. The nilpotent operator has degree of nilpotency 3. Let us
take a look at the two first elementary Jordan blocks in this matrix. We
observe that the original superdiagonals of 1’s in the two first blocks of
A− λ I6 are going upwards in their respective elementary Jordan blocks
associated with the nilpotent part of the transformation A − λ I6 when
increasing the powers of the matrix A−λ I6. They finally disappear when
taking the third power of A− λ I6.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A− λ I6) = span
{
e1,e4

}
;

ker(A− λ I6)2 = span
{
e1,e2,e4

}
;

ker(A− λ I6)3 = span
{
e1,e2,e3,e4

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I6) 2 2 = dim(ker(A− λ I6))

ker(A− λ I6)2 3 1 = dim(ker(A− λ I6)2)− dim(ker(A− λ I6))

ker(A− λ I6)3 4 1 = dim(ker(A− λ I6)3)− dim(ker(A− λ I6)2)

We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
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ences of the kernel dimensions numbers dim(ker(A−λ I6)i)−dim(ker(A−
λ I6)i−1). In the first row, we have dim(ker(A− λ I6)).

We see also that there is equality in the inclusion of sets from the third
power onwards

ker(A− λ I6) ⊊ ker(A− λ I6)2 ⊊ ker(A− λ I6)3 = ker(A− λ I6)4 = · · · .

We remark by looking at the matrices (A−λ I6)i that we have the follow-
ing mappings 

(A− λ I6) e3 = e2,
(A− λ I6) e2 = e1,
(A− λ I6) e1 = 0.

We remark by looking at the matrices (A− λ I6)i or as a consequence of
the previous mappings that we have also the following mappings

(A− λ I6) e3 = e2,

(A− λ I6)2 e3 = e1.

(A− λ I6)3 e3 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e1 = (A− λ I6)2 e3,e2 = (A− λ I6) e3,e3

}
.

After we have found the first Jordan chain of length 4, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I6) 2 e1 1

ker(A− λ I6)2 3 e2 0

ker(A− λ I6)3 4 e3 0
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We have that the last number in the last column is not zero, and this
means that there is still a chain left of length 1.

Investigating the second Jordan chain.
We remark by looking at the matrices (A−λ I6)i that we have the follow-
ing mapping

(A− λ I6) e4 = 0.

We see that we have a second Jordan chain and its length is one.

{
e4
}
.

After we have found this second Jordan chain of length 1, we have then
the following table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(A− λ I6) 2 e1 e4 0

ker(A− λ I6)2 3 e2 0

ker(A− λ I6)3 4 e3 0

4. Kernels of (B− λ I6)i.

We calculate the kernel of B − λ I6.

Kernel of B− λ I6.
The matrix B − λ I6 is

B − λ I6 =


0 −2 3 2 −4 2
0 0 −4 −3 −2 −3
0 0 3 2 1 2
0 4 −2 −3 4 −3
0 0 3 2 1 2
0 −8 0 3 −10 3

 .

We have to solve the matrix equation
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0 −2 3 2 −4 2
0 0 −4 −3 −2 −3
0 0 3 2 1 2
0 4 −2 −3 4 −3
0 0 3 2 1 2
0 −8 0 3 −10 3




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

−2z2 + 3z3 + 2z4 − 4 z5 + 2z6 = 0,
− 4z3 − 3z4 − 2 z5 − 3z6 = 0,

3z3 + 2z4 + z5 + 2z6 = 0,
4z2 − 2z3 − 3z4 + 4 z5 − 3z6 = 0,

3z3 + 2z4 + z5 + 2z6 = 0,
−8z2 + 3z4 − 10z5 + 3z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6) =
{
(r1,0,0, r4,0,−r4) | r1, r4 ∈ K

}
= span

{
(1,0,0,0,0,0), (0,0,0,1,0,−1)

}
.

Kernel of (B− λ I6)2.
We calculate the kernel of (B − λ I6)2.

The matrix (B − λ I6)2 is

(B − λ I6)2 =


0 −8 1 4 −9 4
0 12 −12 −12 12 −12
0 −8 8 8 −8 8
0 12 −4 −8 12 −8
0 −8 8 8 −8 8
0 −12 −4 4 −12 4

 .
We have to solve the matrix equation

0 −8 1 4 −9 4
0 12 −12 −12 12 −12
0 −8 8 8 −8 8
0 12 −4 −8 12 −8
0 −8 8 8 −8 8
0 −12 −4 4 −12 4




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
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This results in having to solve the following system of linear equations.

− 8 z2 + z3 + 4 z4 − 9 z5 + 4 z6 = 0,
12z2 − 12z3 − 12z4 + 12z5 − 12z6 = 0,

− 8 z2 + 8 z3 + 8 z4 − 8 z5 + 8 z6 = 0,
12z2 − 4 z3 − 8 z4 + 12z5 − 8 z6 = 0,
− 8 z2 + 8 z3 + 8 z4 − 8 z5 + 8 z6 = 0,
−12z2 − 4 z3 + 4 z4 − 12z5 + 4 z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)2 =
{
(r1, r2,−r2/2, r4,−r2/2, r2 − r4) | r1, r2, r4 ∈ K

}
= span

{
(1,0,0,0,0,0), (0,1,−1/2,0,−1/2,1),
(0,0,0,1,0,−1)

}
.

Kernel of (B− λ I6)3.
We calculate the kernel of (B − λ I6)3.

The matrix (B − λ I6)3 is

(B − λ I6)3 =


0 −16 0 8 −16 8
0 48 −24 −36 48 −36
0 −32 16 24 −32 24
0 32 −8 −20 32 −20
0 −32 16 24 −32 24
0 −16 −8 4 −16 4

 .

We have to solve the matrix equation
0 −16 0 8 −16 8
0 48 −24 −36 48 −36
0 −32 16 24 −32 24
0 32 −8 −20 32 −20
0 −32 16 24 −32 24
0 −16 −8 4 −16 4




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in having to solve the following system of linear equations.
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−16z2 + 8 z4 − 16z5 + 8 z6 = 0,
48z2 − 24z3 − 36z4 + 48z5 − 36z6 = 0,

−32z2 + 16z3 + 24z4 − 32z5 + 24z6 = 0,
32z2 − 8 z3 − 20z4 + 32z5 − 20z6 = 0,

−32z2 + 16z3 + 24z4 − 32z5 + 24z6 = 0,
−16z2 − 8 z3 + 4 z4 − 16z5 + 4 z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)3 =
{
(r1, r2, r3, r4,−r2 − r3,−2 r3 − r4) | r1, r2, r3, r4 ∈ K

}
= span

{
(1,0,0,0,0,0), (0,1,0,0,−1,0),
(0,0,1,0,−1,−2), (0,0,0,1,0,−1)

}
.

Kernel of (B− λ I6)4.
We calculate the kernel of (B − λ I6)4.

The matrix (B − λ I6)4 is

(B − λ I6)4 =


0 −32 0 16 −32 16
0 144 −48 −96 144 −96
0 −96 32 64 −96 64
0 80 −16 −48 80 −48
0 −96 32 64 −96 64
0 −16 −16 0 −16 0

 .

We have to solve the matrix equation
0 −32 0 16 −32 16
0 144 −48 −96 144 −96
0 −96 32 64 −96 64
0 80 −16 −48 80 −48
0 −96 32 64 −96 64
0 −16 −16 0 −16 0




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in having to solve the following system of linear equations.
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− 32 z2 + 16z4 − 32 z5 + 16z6 = 0,
144z2 − 48z3 − 96z4 + 144z5 − 96z6 = 0,

− 96 z2 + 32z3 + 64z4 − 96 z5 + 64z6 = 0,
80 z2 − 16z3 − 48z4 + 80 z5 − 48z6 = 0,

− 96 z2 + 32z3 + 64z4 − 96 z5 + 64z6 = 0,
− 16 z2 − 16z3 − 16 z5 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)4 =
{
(r1, r2, r3, r4,−r2 − r3,−2 r3 − r4) | r1, r2, r3, r4 ∈ K

}
= span

{
(1,0,0,0,0,0), (0,1,0,0,−1,0),

(0,0,1,0,−1,−2), (0,0,0,1,0,−1)
}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that we
are having equality from the third power onwards in the following chain
of inclusion of sets.

ker(B − λ I6) ⊊ ker((B − λ I6)2) ⊊ ker((B − λ I6)3) = ker((B − λ I6)4) = · · · .

We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I6) 2 2 = dim(ker(B − λ I6))

ker(B − λ I6)2 3 1 = dim(ker((B − λ I6)2))− dim(ker(B − λ I6))

ker(B − λ I6)3 4 1 = dim(ker((B − λ I6)3))− dim(ker((B − λ I6)2))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I6)i))−dim(ker((B−λ I6)i−1)). The first
number of this last column is dim(ker(B − λ I6)).
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5. Calculation of Jordan chains.

Calculation of the first Jordan chain.
We look for a linearly independent set of vectors

{
w1,w2,w3

}
satisfying

(B − λ I6) w1 = 0,
(B − λ I6) w2 = w1,
(B − λ I6) w3 = w2

or 
(B − λ I6)3 w3 = 0,

(B − λ I6)2 w3 = w1,
(B − λ I6) w3 = w2

where w3 is in the vector space ker((B − λ I6)3) but not in ker((B − λ I6)2).

We look for a generating vector w3. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I6)2 and must be independent from
vectors of height 3 that were already chosen in ker(B − λ I6)3. We know
that

ker((B − λ I6)3) = span
{
(1,0,0,0,0,0), (0,1,0,0,−1,0),
(0,0,1,0,−1,−2), (0,0,0,1,0,−1)

}
.

We have at this point not chosen in ker((B−λ I6)3) not chosen any vector.

We know that a vector in ker((B − λ I6)3) must be of the form

a (1,0,0,0,0,0)+ b (0,1,0,0,−1,0)+ c (0,0,1,0,−1,−2)

+ d (0,0,0,1,0,−1)

= (a,b, c, d,−b − c,−2 c − d).

We remember that

ker(B − λ I6)2 = span
{
(1,0,0,0,0,0), (0,1,−1/2,0,−1/2,1),
(0,0,0,1,0,−1)

}
.
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So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =


1 0 0 0 0 0
0 1 −1/2 0 −1/2 1
0 0 0 1 0 −1
a b c d −b − c −2 c − d

 .
We row reduce this matrix H and if we impose b + 2 c ≠ 0, we find

1 0 0 0 0 0
0 1 0 0 −1 0
0 0 1 0 −1 −2
0 0 0 1 0 −1

 .
We see that these vectors are independent if we impose the condition
b + 2 c ≠ 0. So we can choose a = 0, b = 1, c = 0 and d = 0.

So we have the generating vector

w3 = (0,1,0,0,−1,0).

We start with w3 = (0,1,0,0,−1,0).

We calculate w2.

w2 = (B − λ I6) w3

=


0 −2 3 2 −4 2
0 0 −4 −3 −2 −3
0 0 3 2 1 2
0 4 −2 −3 4 −3
0 0 3 2 1 2
0 −8 0 3 −10 3




0
1
0
0

−1
0

 =


2
2

−1
0

−1
2



and
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w1 = (B − λ I6)2 w3

=


0 −8 1 4 −9 4
0 12 −12 −12 12 −12
0 −8 8 8 −8 8
0 12 −4 −8 12 −8
0 −8 8 8 −8 8
0 −12 −4 4 −12 4




0
1
0
0

−1
0

 =


1
0
0
0
0
0

 .

So we have the Jordan chain

{
w1 = (1,0,0,0,0,0),w2 = (2,2,−1,0,−1,2),w3 = (0,1,0,0,−1,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I6) 2 w1 1

ker(B − λ I6)2 3 w2 0

ker(B − λ I6)3 4 w3 0

with

w1 = (1,0,0,0,0,0)

w2 = (2,2,−1,0,−1,2)

w3 = (0,1,0,0,−1,0)

Calculation of the second Jordan chain.
We look for a linearly independent set of vectors

{
w4
}

satisfying

(B − λ I6) w4 = 0,
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where w4 is in the vector space ker((B − λ I6)).

We look for a generating vector w4. This vector must be linearly inde-
pendent of vectors that were already chosen in ker(B − λ I6).

We have at this point chosen in ker((B − λ I6)) already the vector w1 =
(1,0,0,0,0,0).

We know that a vector in ker(B − λ I6) must be of the form

a (1,0,0,0,0,0)+ b (0,0,0,1,0,−1) = (a,0,0, b,0,−b).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(

1 0 0 0 0 0
a 0 0 b 0 −b

)
.

We row reduce this matrix H and if we impose b ≠ 0, we find(
1 0 0 0 0 0
0 0 0 1 0 −1

)
.

We see that these vectors are independent if we impose the condition
b ≠ 0. We can choose a = 0 and b = 1.

We have the generating vector

w4 = (0,0,0,1,0,−1).

We have found the second Jordan chain for this eigenvalue. It has length
1.

{
(0,0,0,1,0,−1)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(B − λ I6) 2 w1 w4 0

ker(B − λ I6)2 3 w2 0

ker(B − λ I6)3 4 w3 0
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with

w1 = (1,0,0,0,0,0)

w2 = (2,2,−1,0,−1,2)

w3 = (0,1,0,0,−1,0)

w4 = (0,0,0,1,0,−1)

6. Investigation of the second eigenvalue.

We work now with the eigenvalue λ = 1.

7. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 8 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 7. The solution will be completely independent from this
section.

We start from the matrix A.

A =



−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 1

0 0 0 0 0 1



 
( )( ) .

We subtract from this matrix A the matrix λ I6.
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A− λ I6 =



−2 1 0 0 0 0

0 −2 1 0 0 0

0 0 −2 0 0 0

0 0 0 −2 0 0

0 0 0 0 0 1

0 0 0 0 0 0



 
( )( ) .

We see that the space span
{
e5,e6

}
is invariant relative to A− λ I6. If we

restrict A − λ I6 to this space, we have a nilpotent operator and we can
apply the techniques learned in part 2.

We want to investigate the endomorphism A − λ I6 restricted to this
space. We compute now the powers of A− λ I6.

A− λ I6 =



−2 1 0 0 0 0

0 −2 1 0 0 0

0 0 −2 0 0 0

0 0 0 −2 0 0

0 0 0 0 0 1

0 0 0 0 0 0



 
( )( ) ,

(A− λ I6)2 =



4 −4 1 0 0 0

0 4 −4 0 0 0

0 0 4 0 0 0

0 0 0 4 0 0

0 0 0 0 0 0

0 0 0 0 0 0



 
( )( ) .

Let us visualise this situation.
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(a) Visualisation of (A− λ I6). (b) Visualisation of (A− λ I6)2.

Figure 38

We give some comment on the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow colour represents the number 0 and the
red colour represents the number 1. All the blocks with green cells in it
will be keeping the same look however large we take the powers of this
matrix.

If we restrict the mapping A− λ I6 to the subspace span
{
e5,e6

}
which is

an invariant subspace with respect to the operator A−λ I6, then we have
the classic case of a nilpotent operator on a finite dimensional space.
The nilpotent operator has degree of nilpotency 2. Let us take a look
at the third elementary Jordan block in this matrix. We observe that
the original superdiagonal of 1’s in the third block of A − λ I6 is going
upwards in its elementary Jordan block associated with the nilpotent
part of the transformation A − λ I6 when increasing the powers of the
matrix A − λ I6. It finally disappears when taking the second power of
A− λ I6.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that
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{
ker(A− λ I6) = span

{
e5
}
;

ker(A− λ I6)2 = span
{
e5,e6

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I6) 1 1 = dim(ker(A− λ I6))

ker(A− λ I6)2 2 1 = dim(ker(A− λ I6)2)− dim(ker(A− λ I6))

We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I6)i)−dim(ker(A−
λ I6)i−1). In the first row, we have dim(ker(A− λ I6)).

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A− λ I6) ⊊ ker(A− λ I6)2 = ker(A− λ I6)3 = · · · .

We remark by looking at the matrices (A−λ I6)i that we have the follow-
ing mappings {

(A− λ I6) e6 = e5,
(A− λ I6) e5 = 0.

We remark by looking at the matrices (A− λ I6)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I6) e6 = e5,

(A− λ I6)2 e6 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e5 = (A− λ I6) e6,e6

}
.
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After we have found the first Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I6) 1 e5 0

ker(A− λ I6)2 2 e6 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

8. Kernels of (B− λ I6)i.

Kernel of B− λ I6.
We remember that λ = 1. We calculate the kernel of B − λ I6.

The matrix B − λ I6 is

B − λ I6 =


−2 −2 3 2 −4 2

0 −2 −4 −3 −2 −3
0 0 1 2 1 2
0 4 −2 −5 4 −3
0 0 3 2 −1 2
0 −8 0 3 −10 1

 .

We have to solve the matrix equation
−2 −2 3 2 −4 2

0 −2 −4 −3 −2 −3
0 0 1 2 1 2
0 4 −2 −5 4 −3
0 0 3 2 −1 2
0 −8 0 3 −10 1




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in having to solve the following system of linear equations.
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−2z1 − 2z2 + 3z3 + 2z4 − 4 z5 + 2z6 = 0,
− 2z2 − 4z3 − 3z4 − 2 z5 − 3z6 = 0,

z3 + 2z4 + z5 + 2z6 = 0,
4z2 − 2z3 − 5z4 + 4 z5 − 3z6 = 0,

3z3 + 2z4 − z5 + 2z6 = 0,
− 8z2 + 3z4 − 10z5 + z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6) =
{
(0, r2,−2 r2/3, r2/3,−2 r2/3, r2/3) | r2 ∈ K

}
= span

{
(0,1,−2/3,1/3,−2/3,1/3)

}
.

Kernel of (B− λ I6)2.
We calculate the kernel of (B − λ I6)2.

The matrix (B − λ I6)2 is

(B − λ I6)2 =


4 0 −11 −4 7 −4
0 16 4 0 20 0
0 −8 0 0 −12 0
0 −4 4 8 −4 4
0 −8 −4 0 −8 0
0 20 −4 −8 28 −4

 .
We have to solve the matrix equation

4 0 −11 −4 7 −4
0 16 4 0 20 0
0 −8 0 0 −12 0
0 −4 4 8 −4 4
0 −8 −4 0 −8 0
0 20 −4 −8 28 −4




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

4z1 − 11z3 − 4z4 + 7 z5 − 4z6 = 0,
16z2 + 4 z3 + 20z5 = 0,

− 8 z2 − 12z5 = 0,
− 4 z2 + 4 z3 + 8z4 − 4 z5 + 4z6 = 0,
− 8 z2 − 4 z3 − 8 z5 = 0,

20z2 − 4 z3 − 8z4 + 28z5 − 4z6 = 0.
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We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)2 =
{
(r1, r2,−2 r2/3,−r1 + r2/3,−2 r2/3,2 r1 + r2/3)

| r1, r2 ∈ K
}

= span
{
(1,0,0,−1,0,2), (0,1,−2/3,1/3,−2/3,1/3)

}
.

Kernel of (B− λ I6)3.
We calculate the kernel of (B − λ I6)3.

The matrix (B − λ I6)3 is

(B − λ I6)3 =


−8 8 30 8 −10 8

0 −32 0 0 −48 0
0 16 −4 0 28 0
0 8 −8 −16 8 −8
0 16 4 0 20 0
0 −40 16 16 −64 8

 .

We have to solve the matrix equation
−8 8 30 8 −10 8

0 −32 0 0 −48 0
0 16 −4 0 28 0
0 8 −8 −16 8 −8
0 16 4 0 20 0
0 −40 16 16 −64 8




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in having to solve the following system of linear equations.

−8z1 + 8 z2 + 30z3 + 8 z4 − 10z5 + 8z6 = 0,
− 32z2 − 48z5 = 0,

16z2 − 4 z3 + 28z5 = 0,
8 z2 − 8 z3 − 16z4 + 8 z5 − 8z6 = 0,
16z2 + 4 z3 + 20z5 = 0,

− 40z2 + 16z3 + 16z4 − 64z5 + 8z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space
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ker(B − λ I6)3 =
{
(r1, r2,−2 r2/3,−r1 + r2/3,−2 r2/3,2 r1 + r2/3)

| r1, r2 ∈ K
}

= span
{
(1,0,0,−1,0,2), (0,1,−2/3,1/3,−2/3,1/3)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality from the second power onwards in the following
chain of inclusion of sets.

ker(B − λ I6) ⊊ ker((B − λ I6)2) = ker((B − λ I6)3) = · · · .
We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I6) 1 1 = dim(ker(B − λ I6))

ker(B − λ I6)2 2 1 = dim(ker((B − λ I6)2))− dim(ker(B − λ I6))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I6)i))−dim(ker((B−λ I6)i−1)). The first
number of this last column is dim(ker(B − λ I6)).

9. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w5,w6

}
satisfying{

(B − λ I6) w5 = 0,
(B − λ I6) w6 = w5.

or {
(B − λ I6)2 w6 = 0,
(B − λ I6) w6 = w5.

where w6 is in the vector space ker((B − λ I6)2) but not in ker(B − λ I6).
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We look for a generating vector w6. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I6) and must be independent from
vectors of height 2 that were already chosen in ker(B − λ I6)2. We know
that

ker(B − λ I6)2 = span
{
(1,0,0,−1,0,2), (0,1,−2/3,1/3,−2/3,1/3)

}
.

We have at this point not chosen any vector in ker(B − λ I6)2.

We know that a vector in ker((B − λ I6)2) must be of the form

a (1,0,0,−1,0,2)+ b (0,1,−2/3,1/3,−2/3,1/3)

= (a,b,−2b/3,−a+ b/3,−2b/3,2a+ b/3).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(

0 1 −2/3 1/3 −2/3 1/3
a b −2b/3 b/3− a −2b/3 2a+ b/3

)
.

We row reduce this matrix H and if we impose a ≠ 0, we find(
1 0 0 −1 0 2
0 1 −2/3 1/3 −2/3 1/3

)
.

We see that these vectors are independent if we impose the condition
a ≠ 0. So we can choose a = 1 and b = 0.

We have the generating vector

w6 = (1,0,0,−1,0,2).

We start with w6 = (1,0,0,−1,0,2).

We calculate w5.

w5 = (B − λ I6) w6

=


−2 −2 3 2 −4 2

0 −2 −4 −3 −2 −3
0 0 1 2 1 2
0 4 −2 −5 4 −3
0 0 3 2 −1 2
0 −8 0 3 −10 1




1
0
0

−1
0
2

 =


0

−3
2

−1
2

−1

 .
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We have now the first Jordan chain for this eigenvalue. In total we have
found 3 chains. The length of this chain is 2.

{
w5 = (0,−3,2,−1,2,−1),w6 = (1,0,0,−1,0,2)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I6) 1 w5 0

ker((B − λ I6)2) 2 w6 0

with

w5 = (0,−3,2,−1,2,−1)

w6 = (1,0,0,−1,0,2)

10. Result and check of the result.
We construct the matrix of base change P with the coordinates of the
vectors wi found in the Jordan chains in the columns of P .

P =


1 2 0 0 0 1
0 2 1 0 −3 0
0 −1 0 0 2 0
0 0 0 1 −1 −1
0 −1 −1 0 2 0
0 2 0 −1 −1 2

 .
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A = P−1 B P

=


1 −2 −2 −1 −2 −1
0 2 1 0 2 0
0 0 1 0 −1 0
0 −1 1 2 −1 1
0 1 1 0 1 0
0 −2 0 1 −2 1



×


−1 −2 3 2 −4 2

0 −1 −4 −3 −2 −3
0 0 2 2 1 2
0 4 −2 −4 4 −3
0 0 3 2 0 2
0 −8 0 3 −10 2



×


1 2 0 0 0 1
0 2 1 0 −3 0
0 −1 0 0 2 0
0 0 0 1 −1 −1
0 −1 −1 0 2 0
0 2 0 −1 −1 2



=



−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 1

0 0 0 0 0 1



 
( )( ) .
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28 exercise. (6× 6); (J2(−1), J2(−1), J2(1)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible
a matrix A similar to B such that A is in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =


−4 5 0 3 8 6
−8 5 2 −1 15 8
−6 8 −1 3 14 9

7 −3 −2 1 −11 −6
9 −5 −2 2 −16 −8

−13 9 2 0 23 13

 .

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial.

pC-H(λ) = |B − λ I6| = (λ− 1)2 (λ+ 1)4.

We see that the characteristic Cayley-Hamilton polynomial pC-H(λ) can
be factorised in linear polynomials over the field K. So we can apply the
Jordan normalisation machinery.

The eigenvalue λ = −1 has algebraic multiplicity 4. The eigenvalue λ = 1
has algebraic multiplicity 2.

2. Investigation of the first eigenvalue.

We work now with the eigenvalue λ = −1.

3. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
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calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 4 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 3. The solution will be completely independent from this
section.

We start from the matrix A.

A =



−1 1 0 0 0 0

0 −1 0 0 0 0

0 0 −1 1 0 0

0 0 0 −1 0 0

0 0 0 0 1 1

0 0 0 0 0 1



( )
( )

( ) .

We subtract from this matrix A the matrix λ I6.

A− λ I6 =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 2 1

0 0 0 0 0 2



( )
( )

( ) .

We compute also the powers of A− λ I6.

A− λ I6 =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 2 1

0 0 0 0 0 2



( )
( )

( ) ,

(A− λ I6)2 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 4 4

0 0 0 0 0 4



( )
( )

( ) .
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Let us visualise this situation.

(a) Visualisation of A− λ I6. (b) Visualisation of (A− λ I6)2.

Figure 39

We give here some comments about this figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number 0.
The red cells are representing the number 1. All the blocks with green
cells in it will be keeping the same look however large we take the powers
of this matrix.

If we restrict the mapping A − λ I6 to the subspace span
{
e1,e2,e3,e4

}
which is an invariant subspace with respect to the operator A−λ I6, then
we have the classic case of a nilpotent operator on a finite dimensional
space. The nilpotent operator has degree of nilpotency 2. Let us take a
look at the two first elementary Jordan blocks in this matrix.
We observe that the original superdiagonals of 1’s in the two first blocks
of A − λ I6 are going upwards in their respective elementary Jordan
blocks associated with the nilpotent part of the transformation A− λ I6
when increasing the powers of the matrix A−λ I6. They finally disappear
when taking the second power of A− λ I6.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that
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{
ker(A− λ I6) = span

{
e1,e3

}
;

ker(A− λ I6)2 = span
{
e1,e2,e3,e4

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I6) 2 2 = dim(ker(A− λ I6))

ker(A− λ I6)2 4 2 = dim(ker(A− λ I6)2)− dim(ker(A− λ I6))

We observe that the superdiagonals consisting of 1’s in the two first
blocks of A− λ I6 are going upwards in their respective elementary Jor-
dan blocks when increasing the powers of the matrix A− λ I6 until they
ultimately disappear when taking the second power of A− λ I7.

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A− λ I6) ⊊ ker(A− λ I6)2 = ker(A− λ I6)3 = · · · .

We remark by looking at the matrices (A−λ I6)i that we have the follow-
ing mappings {

(A− λ I6) e2 = e1,
(A− λ I6) e1 = 0.

We remark by looking at the matrices (A− λ I6)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I6) e2 = e1,
(A− λ I6) e1 = 0

or {
(A− λ I6) e2 = e1,

(A− λ I6)2 e2 = 0.
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One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e1 = (A− λ I6) e2,e2

}
.

After we have found the first Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I6) 2 e1 1

ker(A− λ I6)2 4 e2 1

We have that the last number in the last column is not zero, and this
means that there is still a chain left of length 2.

Investigating the second Jordan chain.
We remark by looking at the matrices (A−λ I6)i that we have the follow-
ing mappings {

(A− λ I6) e4 = e3,
(A− λ I6) e3 = 0

or {
(A− λ I6) e4 = e3,

(A− λ I6)2 e4 = 0.

We remark by looking at the matrices (A− λ I6)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I6) e4 = e3,

(A− λ I6)2 e4 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e3 = (A− λ I6) e4,e4

}
.

After we have found the second Jordan chain of length 4, we have then
the following table.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(A− λ I6) 1 e1 e3 0

ker(A− λ I6)2 1 e2 e4 0

4. Kernels of (B− λ I6)i.

Kernel of (B− λ I6).
The matrix B − λ I6 is

B − λ I6 =


−3 5 0 3 8 6
−8 6 2 −1 15 8
−6 8 0 3 14 9

7 −3 −2 2 −11 −6
9 −5 −2 2 −15 −8

−13 9 2 0 23 14

 .

We have to solve the matrix equation
−3 5 0 3 8 6
−8 6 2 −1 15 8
−6 8 0 3 14 9

7 −3 −2 2 −11 −6
9 −5 −2 2 −15 −8

−13 9 2 0 23 14




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in having to solve the following system of linear equations.

− 3 z1 + 5z2 + 3z4 + 8 z5 + 6 z6 = 0,
− 8 z1 + 6z2 + 2z3 − z4 + 15z5 + 8 z6 = 0,
− 6 z1 + 8z2 + 3z4 + 14z5 + 9 z6 = 0,

7 z1 − 3z2 − 2z3 + 2z4 − 11z5 − 6 z6 = 0,
9 z1 − 5z2 − 2z3 + 2z4 − 15z5 − 8 z6 = 0,

−13z1 + 9z2 + 2z3 + 23z5 + 14z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space
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ker(B − λ I6) =
{
(r1, r2,−r1/2,−r1 − r2,−r2, r1 + r2) | r1, r2 ∈ K

}
= span

{
(1,0,−1/2,−1,0,1), (0,1,0,−1,−1,1)

}
.

Kernel of (B− λ I6)2.
We calculate the kernel of (B − λ I6)2.

The matrix (B − λ I6)2 is

(B − λ I6)2 =


−16 20 0 8 36 24
−12 12 0 4 24 16
−16 20 0 8 36 24

8 −4 0 0 −12 −8
8 −4 0 0 −12 −8

−20 16 0 4 36 24

 .
We have to solve the matrix equation

−16 20 0 8 36 24
−12 12 0 4 24 16
−16 20 0 8 36 24

8 −4 0 0 −12 −8
8 −4 0 0 −12 −8

−20 16 0 4 36 24




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

−16z1 + 20z2 + 8z4 + 36z5 + 24z6 = 0,
−12z1 + 12z2 + 4z4 + 24z5 + 16z6 = 0,
−16z1 + 20z2 + 8z4 + 36z5 + 24z6 = 0,

8 z1 − 4 z2 − 12z5 − 8 z6 = 0,
8 z1 − 4 z2 − 12z5 − 8 z6 = 0,

−20z1 + 16z2 + 4z4 + 36z5 + 24z6 = 0.
We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)2 =
{
(r1, r2, r3,−r1 − r2, r5, r1 − r2/2− 3 r5/2)

| r1, r2, r3, r5 ∈ K
}

= span
{
(1,0,0,−1,0,1), (0,1,0,−1,0,−1/2),

(0,0,1,0,0,0), (0,0,0,0,1,−3/2)
}
.
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Kernel of (B− λ I6)3.
We calculate the kernel of (B − λ I6)3.

The matrix (B − λ I6)3 is

(B − λ I6)3 =


−44 52 0 20 96 64
−24 24 0 8 48 32
−44 52 0 20 96 64

4 4 0 4 0 0
4 4 0 4 0 0

−28 20 0 4 48 32

 .
We have to solve the matrix equation

−44 52 0 20 96 64
−24 24 0 8 48 32
−44 52 0 20 96 64

4 4 0 4 0 0
4 4 0 4 0 0

−28 20 0 4 48 32




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

−44z1 + 52z2 + 20z4 + 96z5 + 64z6 = 0,
−24z1 + 24z2 + 8 z4 + 48z5 + 32z6 = 0,
−44z1 + 52z2 + 20z4 + 96z5 + 64z6 = 0,

4 z1 + 4 z2 + 4 z4 = 0,
4 z1 + 4 z2 + 4 z4 = 0,

−28z1 + 20z2 + 4 z4 + 48z5 + 32z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)3 =
{
(r1, r2, r3,−r1 − r2, r5, r1 − r2/2− 3 r5/2)

| r1, r2, r3, r5 ∈ K
}

= span
{
(1,0,0,−1,0,1), (0,1,0,−1,0,−1/2),

(0,0,1,0,0,0), (0,0,0,0,1,−3/2)
}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality starting from the second power onwards in the
following chain of inclusion of sets.
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ker(B − λ I6) ⊊ ker((B − λ I6)2) = ker((B − λ I6)3) = · · · .
We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I6) 2 2 = dim(ker(B − λ I6))

ker(B − λ I6)2 4 2 = dim(ker(B − λ I6)2)− dim(ker(B − λ I6))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I6)i))−dim(ker((B−λ I6)i−1)). The first
number of this last column is dim(ker(B − λ I6)).

5. Calculation of Jordan chains.

Calculation of the first Jordan chain.
We look for a linearly independent set of vectors

{
w1,w2

}
satisfying{

(B − λ I6) w1 = 0,
(B − λ I6) w2 = w1,

or {
(B − λ I6)2 w2 = 0,
(B − λ I6) w2 = w1,

where w2 is in the vector space ker((B − λ I6)2) but not in ker(B − λ I6).

We look for a generating vector w2. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I6) and must be independent from
vectors that were already chosen in ker(B − λ I6)2. We know that

ker(B − λ I6) = span
{
(1,0,−1/2,−1,0,1), (0,1,0,−1,−1,1)

}
.

We have at this point not chosen in ker(B − λ I6) any vectors.

We know that a vector in ker((B − λ I6)2) must be of the form
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a (1,0,0,−1,0,1)+ b (0,1,0,−1,0,−(1/2))+ c (0,0,1,0,0,0)

+ d (0,0,0,0,1,−3/2)

= (a,b, c,−a− b,d,a− b/2− 3d/2).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =

 1 0 −1/2 −1 0 1
0 1 0 −1 −1 1
a b c −a− b d a− b/2− 3d/2

 .
We row reduce this matrix H and if we impose a+ 2 c ≠ 0, we find

 1 0 0 −1 (b + d)/(a+ 2 c) (2a− 3b + 4 c − 3d)/(2 (a+ 2 c))
0 1 0 −1 −1 1
0 0 1 0 (2 (b + d))/(a+ 2 c) −3 (b + d)/(a+ 2 c)

 .
We see that these vectors are independent if we impose the condition
a+ 2 c ≠ 0. So we can choose a = 0, b = 0, c = 1, d = 0.
So we have the generating vector

w2 = (0,0,1,0,0,0).

We start with w2 = (0,0,1,0,0,0).

We calculate w1.

w1 = (B − λ I6) w2

=


−3 5 0 3 8 6
−8 6 2 −1 15 8
−6 8 0 3 14 9

7 −3 −2 2 −11 −6
9 −5 −2 2 −15 −8

−13 9 2 0 23 14




0
0
1
0
0
0

 =


0
2
0

−2
−2

2

 .

We have now found the first Jordan chain. It has length 2.

{
w1 = (0,2,0,−2,−2,2),w2 = (0,0,1,0,0,0)

}
.

Let us take a look at our current information table.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I6) 2 w1 1

ker(B − λ I6)2 4 w2 1

with

w1 = (0,2,0,−2,−2,2)

w2 = (0,0,1,0,0,0)

Calculation of the second Jordan chain.
We look for a linearly independent set of vectors

{
w3,w4

}
satisfying{

(B − λ I6) w3 = 0,
(B − λ I6) w4 = w3,

or {
(B − λ I6)2 w4 = 0,
(B − λ I6) w4 = w3

where w4 is in the vector space ker((B − λ I6)2) but not in ker(B − λ I6).

We look for a generating vector w4. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I6)2 and must be independent from
vectors that were already chosen in ker(B − λ I6)2. We know that

ker(B − λ I6) = span
{
(1,0,−1/2,−1,0,1), (0,1,0,−1,−1,1)

}
.

We have at this point chosen in ker((B − λ I6)2) already the vector w2 =
(0,0,1,0,0,0) of height 2.

We know that a vector in ker((B − λ I6)2) must be of the form

a (1,0,0,−1,0,1)+ b (0,1,0,−1,0,−1/2)+ c (0,0,1,0,0,0)

+ d (0,0,0,0,1,−3/2)

= (a,b, c,−a− b,d,a− b/2− 3d/2).
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So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =


1 0 −1/2 −1 0 1
0 1 0 −1 −1 1
0 0 1 0 0 0
a b c −a− b d a− b/2− 3d/2

 .
We row reduce this matrix H and if we impose b + d ≠ 0, we find

1 0 0 −1 0 1
0 1 0 −1 0 −1/2
0 0 1 0 0 0
0 0 0 0 1 −3/2

 .
We see that these vectors are independent if we impose the condition
b + d ≠ 0. We can choose a = 0, b = 2, c = 0, d = 0.

We have the generating vector

w4 = (0,2,0,−2,0,−1).

We start with w4 = (0,2,0,−2,0,−1).

We calculate w3.

w3 = (B − λ I6) w4

=


−3 5 0 3 8 6
−8 6 2 −1 15 8
−6 8 0 3 14 9

7 −3 −2 2 −11 −6
9 −5 −2 2 −15 −8

−13 9 2 0 23 14




0
2
0

−2
0

−1

 =


−2

6
1

−4
−6

4

 .

We have now found a second Jordan chain. It has length 2.

{
w3 = (−2,6,1,−4,−6,4),w4 = (0,2,0,−2,0,−1)

}
.

Let us take a look at our current information table.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(B − λ I6) 2 w1 w3 0

ker(B − λ I6)2 4 w2 w4 0

with

w1 = (0,2,0,−2,−2,2)

w2 = (0,0,1,0,0,0)

w3 = (−2,6,1,−4,−6,4)

w4 = (0,2,0,−2,0,−1)

6. Investigation of the second eigenvalue.

We work now with the eigenvalue λ = 1.

7. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 8 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 7. The solution will be completely independent from this
section.

We start from the matrix A.
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A =



−1 1 0 0 0 0

0 −1 0 0 0 0

0 0 −1 1 0 0

0 0 0 −1 0 0

0 0 0 0 1 1

0 0 0 0 0 1



( )
( )

( ) .

We subtract from this matrix A the matrix λ I6.

A− λ I6 =



−2 1 0 0 0 0

0 −2 0 0 0 0

0 0 −2 1 0 0

0 0 0 −2 0 0

0 0 0 0 0 1

0 0 0 0 0 0



( )
( )

( ) .

We see that the space span
{
e5,e6

}
is invariant relative to A− λ I6. If we

restrict A − λ I6 to this space, we have a nilpotent operator and we can
apply the techniques learned in part 2.

We want to investigate the endomorphism A − λ I6 restricted to this
space. We compute now the powers of A− λ I6.

A− λ I6 =



−2 1 0 0 0 0

0 −2 0 0 0 0

0 0 −2 1 0 0

0 0 0 −2 0 0

0 0 0 0 0 1

0 0 0 0 0 0



( )
( )

( ) ,

(A− λ I6)2 =



4 −4 0 0 0 0

0 4 0 0 0 0

0 0 4 −4 0 0

0 0 0 4 0 0

0 0 0 0 0 0

0 0 0 0 0 0



( )
( )

( ) .

Let us visualise this situation.
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(a) Visualisation of (A− λ I6). (b) Visualisation of (A− λ I6)2.

Figure 40

We give here some comment about the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.
The red cells represent the number 1. All the blocks with green cells in it
will be keeping the same look however large we take the powers of this
matrix. If we restrict the mapping A− λ I6 to the subspace span

{
e5,e6

}
which is an invariant subspace with respect to the operator A−λ I6, then
we have the classic case of a nilpotent operator on a finite dimensional
space. The nilpotent operator has degree of nilpotency 2.

Let us take a look at the third elementary Jordan block in this matrix.
We observe that the original superdiagonal of 1’s in the third block of
A−λ I6 is going upwards in its elementary Jordan block associated with
the nilpotent part of the transformation A − λ I6 when increasing the
powers of the matrix A − λ I6. They finally disappear when taking the
second power of A− λ I6.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that{

ker(A− λ I6) = span
{
e5
}
;

ker(A− λ I6)2 = span
{
e5,e6

}
.
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After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I6) 1 1 = dim(ker(A− λ I6))

ker(A− λ I6)2 2 1 = dim(ker(A− λ I6)2)− dim(ker(A− λ I6))

We observe that the superdiagonals consisting of 1’s in the third block
of A − λ I6 is going upwards in its block when increasing the powers of
the matrix A−λ I6 until it ultimately disappears when taking the second
power of A− λ I6.

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A− λ I6) ⊊ ker(A− λ I6)2 = ker(A− λ I6)3 = · · · .

We remark by looking at the matrices (A−λ I6)i that we have the follow-
ing mappings {

(A− λ I6) e6 = e5,
(A− λ I6) e5 = 0.

We remark by looking at the matrices (A− λ I6)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I6)2 e6 = 0,
(A− λ I6) e6 = e5.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e5 = (A− λ I6) e6,e6

}
.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I6) 1 e5 0

ker(A− λ I6)2 2 e6 0

After we have found the first Jordan chain of length 2, we have then the
following table.

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

8. Kernels of (B− λ I6)i.

Kernel of (B− λ I6).
The matrix B − λ I6 is

B − λ I6 =


−5 5 0 3 8 6
−8 4 2 −1 15 8
−6 8 −2 3 14 9

7 −3 −2 0 −11 −6
9 −5 −2 2 −17 −8

−13 9 2 0 23 12

 .

We have to solve the matrix equation
−5 5 0 3 8 6
−8 4 2 −1 15 8
−6 8 −2 3 14 9

7 −3 −2 0 −11 −6
9 −5 −2 2 −17 −8

−13 9 2 0 23 12




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in having to solve the following system of linear equations.

− 5 z1 + 5z2 + 3z4 + 8 z5 + 6 z6 = 0,
− 8 z1 + 4z2 + 2z3 − z4 + 15z5 + 8 z6 = 0,
− 6 z1 + 8z2 − 2z3 + 3z4 + 14z5 + 9 z6 = 0,

7 z1 − 3z2 − 2z3 − 11z5 − 6 z6 = 0,
9 z1 − 5z2 − 2z3 + 2z4 − 17z5 − 8 z6 = 0,

−13z1 + 9z2 + 2z3 + 23z5 + 12z6 = 0.
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We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6) =
{
(r1,0, r1, r1, r1,−r1) | r1 ∈ K

}
= span

{
(1,0,1,1,1,−1)

}
.

Kernel of (B− λ I6)2.
We calculate the kernel of (B − λ I6)2.

The matrix (B − λ I6)2 is

(B − λ I6)2 =


0 0 0 −4 4 0

20 −8 −8 8 −36 −16
8 −12 4 −4 −20 −12

−20 8 8 −4 32 16
−28 16 8 −8 52 24

32 −20 −8 4 −56 −28

 .
We have to solve the matrix equation

0 0 0 −4 4 0
20 −8 −8 8 −36 −16
8 −12 4 −4 −20 −12

−20 8 8 −4 32 16
−28 16 8 −8 52 24

32 −20 −8 4 −56 −28




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

− 4z4 + 4 z5 = 0,
20z1 − 8 z2 − 8z3 + 8z4 − 36z5 − 16z6 = 0,
8 z1 − 12z2 + 4z3 − 4z4 − 20z5 − 12z6 = 0,

−20z1 + 8 z2 + 8z3 − 4z4 + 32z5 + 16z6 = 0,
−28z1 + 16z2 + 8z3 − 8z4 + 52z5 + 24z6 = 0,

32z1 − 20z2 − 8z3 + 4z4 − 56z5 − 28z6 = 0.
We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)2 =
{
(r1, r2, r1, r1 − 2 r2, r1 − 2 r2,−r1 + 3 r2) | r1, r2 ∈ K

}
= span

{
(1,0,1,1,1,−1), (0,1,0,−2,−2,3)

}
.
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Kernel of (B− λ I6)3.
We calculate the kernel of (B − λ I6)3.

The matrix (B − λ I6)3 is

(B − λ I6)3 =


8 −8 0 8 −24 −8

−48 16 24 −28 84 32
−20 28 −8 8 48 28

40 −8 −24 20 −60 −24
64 −32 −24 28 −116 −48
−64 32 24 −20 108 48

 .
We have to solve the matrix equation

8 −8 0 8 −24 −8
−48 16 24 −28 84 32
−20 28 −8 8 48 28

40 −8 −24 20 −60 −24
64 −32 −24 28 −116 −48

−64 32 24 −20 108 48




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

8 z1 − 8 z2 + 8 z4 − 24 z5 − 8 z6 = 0,
−48z1 + 16z2 + 24z3 − 28z4 + 84 z5 + 32z6 = 0,
−20z1 + 28z2 − 8 z3 + 8 z4 + 48 z5 + 28z6 = 0,

40z1 − 8 z2 − 24z3 + 20z4 − 60 z5 − 24z6 = 0,
64z1 − 32z2 − 24z3 + 28z4 − 116z5 − 48z6 = 0,

−64z1 + 32z2 + 24z3 − 20z4 + 108z5 + 48z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)3 =
{
(r1, r2, r1, r1 − 2 r2, r1 − 2 r2,−r1 + 3 r2) | r1, r2 ∈ K

}
= span

{
(1,0,1,1,1,−1), (0,1,0,−2,−2,3)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality from the second power onwards in the following
chain of inclusion of sets.

ker(B − λ I6) ⊊ ker((B − λ I6)2) = ker((B − λ I6)3) = · · · .
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We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I6) 1 1 = dim(ker(B − λ I6))

ker(B − λ I6)2 2 1 = dim(ker(B − λ I6)2)− dim(ker(B − λ I6))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I6)i))−dim(ker((B−λ I6)i−1)). The first
number of this last column is dim(ker(B − λ I6)).

9. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w5,w6

}
satisfying{

(B − λ I6) w5 = 0,
(B − λ I6) w6 = w5

or {
(B − λ I6)2 w6 = 0,
(B − λ I6) w6 = w5

where w6 is in the vector space ker((B − λ I6)2) but not in ker(B − λ I6).

We look for a generating vector w6. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I6) and must be independent from
vectors of height 2 that were already chosen in ker(B − λ I6)2. We know
that

ker(B − λ I6)2 = span
{
(1,0,1,1,1,−1), (0,1,0,−2,−2,3)

}
.

We have at this point not chosen any vector in a previous Jordan chain
of ker(B − λ I6)2.

We know that a vector in ker(B − λ I6)2 must be of the form

a (1,0,1,1,1,−1)+b (0,1,0,−2,−2,3) = (a,b,a,a−2b,a−2b,−a+3b).
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So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(

1 0 1 1 1 −1
a b a a− 2b a− 2b 3b − a

)
.

We row reduce this matrix H and if we impose b ≠ 0, we find(
1 0 1 1 1 −1
0 1 0 −2 −2 3

)
.

We see that these vectors are independent if we impose the condition
b ≠ 0. We can choose a = 0 and b = 1.

We have the generating vector

w6 = (0,1,0,−2,−2,3).

We start with w6 = (0,1,0,−2,−2,3).

We calculate w5.

w5 = (B − λ I6) w6

=


−5 5 0 3 8 6
−8 4 2 −1 15 8
−6 8 −2 3 14 9

7 −3 −2 0 −11 −6
9 −5 −2 2 −17 −8

−13 9 2 0 23 12




0
1
0

−2
−2

3

 =


1
0
1
1
1

−1

 .
We have now found the first Jordan chain for this eigenvalue. It is the
third Jordan chain found in total. It has length 2.

{
w5 = (1,0,1,1,1,−1),w6 = (0,1,0,−2,−2,3)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I6) 1 w5 0

ker(B − λ I6)2 2 w6 0
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with

w5 = (1,0,1,1,1,−1)

w6 = (0,1,0,−2,−2,3)

10. Result and check of the result.
We construct the matrix of base change P with the coordinates of the
vectors wi found in the Jordan chains in the columns of P .

P =


0 0 −2 0 1 0
2 0 6 2 0 1
0 1 1 0 1 0

−2 0 −4 −2 1 −2
−2 0 −6 0 1 −2

2 0 4 −1 −1 3

 .
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P−1 B P =


11/2 −5 0 −2 −19/2 −6

2 −3 1 −3/2 −9/2 −3
−1 1 0 1/2 3/2 1
−1 1 0 0 2 1
−1 2 0 1 3 2
−3 3 0 1 6 4



×


−4 5 0 3 8 6
−8 5 2 −1 15 8
−6 8 −1 3 14 9

7 −3 −2 1 −11 −6
9 −5 −2 2 −16 −8

−13 9 2 0 23 13



×


0 0 −2 0 1 0
2 0 6 2 0 1
0 1 1 0 1 0

−2 0 −4 −2 1 −2
−2 0 −6 0 1 −2

2 0 4 −1 −1 3



=



−1 1 0 0 0 0

0 −1 0 0 0 0

0 0 −1 1 0 0

0 0 0 −1 0 0

0 0 0 0 1 1

0 0 0 0 0 1



( )
( )

( ) .
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29 exercise. (6× 6); (J3(−1), J1(−1), J2(1)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible
a matrix A similar to B such that A is in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =


−7 7 1 2 13 8
−8 5 2 −1 15 8
−5 7 −1 3 12 8
10 −5 −3 2 −16 −8
9 −5 −2 2 −16 −8

−16 11 3 −1 28 15

 .

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial.

pC-H(λ) = |B − λ I6| = (λ− 1)2 (λ+ 1)4.

We see that the characteristic Cayley-Hamilton polynomial pC-H(λ) can
be factorised in linear polynomials over the field K. So we can apply the
Jordan normalisation machinery.

The eigenvalue λ = 1 has algebraic multiplicity 2. The eigenvalue λ = −1
has algebraic multiplicity 4.

2. Investigation of the first eigenvalue.

We work now with the eigenvalue λ = −1.

3. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
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calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 4 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 3. The solution will be completely independent from this
section.

We start from the matrix A.

A =



−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 1

0 0 0 0 0 1



 
( )( ) .

We subtract from this matrix A the matrix λ I6.

A− λ I6 =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 2 1

0 0 0 0 0 2



 
( )( ) .

We compute also the powers of A− λ I6.

A− λ I6 =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 2 1

0 0 0 0 0 2



 
( )( ) ,

(A− λ I6)2 =



0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 4 4

0 0 0 0 0 4



 
( )( ) ,
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(A− λ I6)3 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 8 12

0 0 0 0 0 8



 
( )( ) .

Let us visualise this situation.

(a) Visualisation of A− λ I6. (b) Visualisation of (A− λ I6)2.

(c) Visualisation of (A− λ I6)3.

Figure 41

We give some comment on the preceding figure.
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We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is rep-
resenting any number. The yellow cells are representing the number
zero. The red cells represent the number 1. All the blocks with green
cells in it will be keeping the same look however large we take the pow-
ers of this matrix. If we restrict the mapping A − λ I6 to the subspace
span

{
e1,e2,e3,e4

}
which is an invariant subspace with respect to the op-

erator A − λ I6, then we have the classic case of a nilpotent operator on
a finite dimensional space. The nilpotent operator has degree of nilpo-
tency 3. Let us take a look at the two first elementary Jordan blocks in
this matrix.

We observe that the original superdiagonals of 1’s in the two first blocks
of A − λ I6 are going upwards in their respective elementary Jordan
blocks associated with the nilpotent part of the transformation A− λ I6
when increasing the powers of the matrix A−λ I6. They finally disappear
when taking the third power of A− λ I6.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A− λ I6) = span
{
e1,e4

}
;

ker(A− λ I6)2 = span
{
e1,e2,e4

}
;

ker(A− λ I6)3 = span
{
e1,e2,e3,e4

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I6) 2 2 = dim(ker(A− λ I6))

ker(A− λ I6)2 3 1 = dim(ker(A− λ I6)2)− dim(ker(A− λ I6))

ker(A− λ I6)3 4 1 = dim(ker(A− λ I6)3)− dim(ker(A− λ I6)2)
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We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I6)i)−dim(ker(A−
λ I6)i−1). In the first row, we have dim(ker(A− λ I6)).

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A− λ I6) ⊊ ker(A− λ I6)2 ⊊ ker(A− λ I6)3 = ker(A− λ I6)4 = · · · .

We remark by looking at the matrices (A−λ I6)i that we have the follow-
ing mappings 

(A− λ I6) e3 = e2,
(A− λ I6) e2 = e1,
(A− λ I6) e1 = 0.

We remark by looking at the matrices (A− λ I6)i or as a consequence of
the previous mappings that we have also the following mappings

(A− λ I6) e3 = e2,

(A− λ I6)2 e3 = e1,

(A− λ I6)3 e3 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e1 = (A− λ I6)2 e3,e2 = (A− λ I6) e3,e3

}
.

After we have found the first Jordan chain of length 3, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I6) 2 e1 1

ker(A− λ I6)2 3 e2 0

ker(A− λ I6)3 4 e3 0
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We have that the last number in the last column is not zero, and this
means that there is still a chain left of length 1.

Investigating the second Jordan chain.
We remark by looking at the matrices (A−λ I6)i that we have the follow-
ing mapping

(A− λ I6) e4 = 0.

We see that we have a second Jordan chain. It has length one.

{
e4
}
.

We have now the following table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(A− λ I6) 2 e1 e4 0

ker(A− λ I6)2 3 e2 0

ker(A− λ I6)3 4 e3 0

4. Kernels of ((B− λ I6)i).

Kernel of (B− λ I6).
The matrix B − λ I6 is

B − λ I6 =


−6 7 1 2 13 8
−8 6 2 −1 15 8
−5 7 0 3 12 8
10 −5 −3 3 −16 −8
9 −5 −2 2 −15 −8

−16 11 3 −1 28 16

 .

We have to solve the matrix equation
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−6 7 1 2 13 8
−8 6 2 −1 15 8
−5 7 0 3 12 8
10 −5 −3 3 −16 −8
9 −5 −2 2 −15 −8

−16 11 3 −1 28 16




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

− 6 z1 + 7 z2 + z3 + 2z4 + 13z5 + 8 z6 = 0,
− 8 z1 + 6 z2 + 2z3 − z4 + 15z5 + 8 z6 = 0,
− 5 z1 + 7 z2 + 3z4 + 12z5 + 8 z6 = 0,

10z1 − 5 z2 − 3z3 + 3z4 − 16z5 − 8 z6 = 0,
9 z1 − 5 z2 − 2z3 + 2z4 − 15z5 − 8 z6 = 0,

−16z1 + 11z2 + 3z3 − z4 + 28z5 + 16z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6) =
{
(r1, r2, r1,−r1 − r2,−r1 − r2,5 r1/2+ r2) | r1, r2 ∈ K

}
= span

{
(1,0,1,−1,−1,5/2), (0,1,0,−1,−1,1)

}
.

Kernel of (B− λ I6)2.
We calculate the kernel of (B − λ I6)2.

The matrix (B − λ I6)2 is

(B − λ I6)2 =


−16 20 0 8 36 24
−13 12 1 3 25 16
−16 20 0 8 36 24

9 −4 −1 1 −13 −8
9 −4 −1 1 −13 −8

−21 16 1 3 37 24

 .
We have to solve the matrix equation

−16 20 0 8 36 24
−13 12 1 3 25 16
−16 20 0 8 36 24

9 −4 −1 1 −13 −8
9 −4 −1 1 −13 −8

−21 16 1 3 37 24




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
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This results in having to solve the following system of linear equations.

−16z1 + 20z2 + 8z4 + 36z5 + 24z6 = 0,
−13z1 + 12z2 + z3 + 3z4 + 25z5 + 16z6 = 0,
−16z1 + 20z2 + 8z4 + 36z5 + 24z6 = 0,

9 z1 − 4 z2 − z3 + z4 − 13z5 − 8 z6 = 0,
9 z1 − 4 z2 − z3 + z4 − 13z5 − 8 z6 = 0,

−21z1 + 16z2 + z3 + 3z4 + 37z5 + 24z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)2 =
{
(r1, r2, r3,−r1 − r2,−r2 − r3, r1 + r2 + 3 r3/2)

| r1, r2, r3 ∈ K
}

= span
{
(1,0,0,−1,0,1), (0,1,0,−1,−1,1),

(0,0,1,0,−1,3/2)
}
.

Kernel of (B− λ I6)3.
We calculate the kernel of (B − λ I6)3.

The matrix (B − λ I6)3 is

(B − λ I6)3 =


−44 52 0 20 96 64
−24 24 0 8 48 32
−44 52 0 20 96 64

4 4 0 4 0 0
4 4 0 4 0 0

−28 20 0 4 48 32

 .

We have to solve the matrix equation
−44 52 0 20 96 64
−24 24 0 8 48 32
−44 52 0 20 96 64

4 4 0 4 0 0
4 4 0 4 0 0

−28 20 0 4 48 32




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in having to solve the following system of linear equations.
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−44z1 + 52z2 + 20z4 + 96z5 + 64z6 = 0,
−24z1 + 24z2 + 8 z4 + 48z5 + 32z6 = 0,
−44z1 + 52z2 + 20z4 + 96z5 + 64z6 = 0,

4 z1 + 4 z2 + 4 z4 = 0,
4 z1 + 4 z2 + 4 z4 = 0,

−28z1 + 20z2 + 4 z4 + 48z5 + 32z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)3 =
{
(r1, r2, r3,−r1 − r2, r5, r1 − r2/2− 3 r5/2)

| r1, r2, r3, r5 ∈ K
}

= span
{
(1,0,0,−1,0,1), (0,1,0,−1,0,−1/2),

(0,0,1,0,0,0), (0,0,0,0,1,−3/2)
}
.

Kernel of (B− λ 6)4.
We calculate the kernel of (B − λ I6)4.

The matrix (B − λ I6)4 is

(B − λ I6)4 =


−112 128 0 48 240 160
−48 48 0 16 96 64
−112 128 0 48 240 160
−16 32 0 16 48 32
−16 32 0 16 48 32
−32 16 0 0 48 32

 .

We have to solve the matrix equation
−112 128 0 48 240 160
−48 48 0 16 96 64
−112 128 0 48 240 160
−16 32 0 16 48 32
−16 32 0 16 48 32
−32 16 0 0 48 32




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in having to solve the following system of linear equations.
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−112z1 + 128z2 + 48z4 + 240z5 + 160z6 = 0,
− 48 z1 + 48 z2 + 16z4 + 96 z5 + 64 z6 = 0,
−112z1 + 128z2 + 48z4 + 240z5 + 160z6 = 0,
− 16 z1 + 32 z2 + 16z4 + 48 z5 + 32 z6 = 0,
− 16 z1 + 32 z2 + 16z4 + 48 z5 + 32 z6 = 0,
− 32 z1 + 16 z2 + 48 z5 + 32 z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)4 =
{
(r1, r2, r3,−r1 − r2, r5, r1 − r2/2− 3 r5/2)

| r1, r2, r3, r5 ∈ K
}

= span
{
(1,0,0,−1,0,1), (0,1,0,−1,0,−1/2),

(0,0,1,0,0,0), (0,0,0,0,1,−3/2)
}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that we
are having equality from the third power onwards in the following chain
of inclusion of sets.

ker(B − λ I6) ⊊ ker((B − λ I6)2) ⊊ ker((B − λ I6)3) = ker((B − λ I6)4) = · · · .

We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I6) 2 2 = dim(ker(B − λ I6))

ker(B − λ I6)2 3 1 = dim(ker((B − λ I6)2))− dim(ker(B − λ I6))

ker(B − λ I6)3 4 1 = dim(ker((B − λ I6)3))− dim(ker((B − λ I6)2))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I6)i))−dim(ker((B−λ I6)i−1)). The first
number of this last column is dim(ker(B − λ I6)).
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5. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w1,w2,w3

}
satisfying

(B − λ I6) w1 = 0,
(B − λ I6) w2 = w1,
(B − λ I6) w3 = w2,

or 
(B − λ I6)3 w3 = 0,

(B − λ I6)2 w3 = w1,
(B − λ I6) w3 = w2,

where w3 is in the vector space ker((B − λ I6)3) but not in ker((B − λ I6)2).

We look for a generating vector w3. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I6)2 and must be independent from
vectors of height 3 that were already chosen in ker(B − λ I6)3.

We have at this point not chosen any vector of height 3 in a previous
Jordan chain of ker((B − λ I6)3).

We remember that

ker((B − λ I6)3) = span
{
(1,0,0,−1,0,1), (0,1,0,−1,0,−1/2),

(0,0,1,0,0,0)(0,0,0,0,1,−3/2)
}
.

We know that a vector in ker((B − λ I6)3) must be of the form

a (1,0,0,−1,0,1)+ b (0,1,0,−1,0,−1/2)+ c (0,0,1,0,0,0)

+ d (0,0,0,0,1,−3/2)

= (a,b, c,−a− b,d,a− b/2− 3d/2).

We remember also that

ker(B − λ I6)2 = span
{
(1,0,0,−1,0,1), (0,1,0,−1,−1,1),

(0,0,1,0,−1,3/2)
}
.
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So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =


1 0 0 −1 0 1
0 1 0 −1 −1 1
0 0 1 0 −1 3/2
a b c −a− b d a− b/2− 3d/2

 .
We row reduce this matrix H and if we impose b + c + d ≠ 0, we find

1 0 0 −1 0 1
0 1 0 −1 0 −1/2
0 0 1 0 0 0
0 0 0 0 1 −3/2

 .
We see that these vectors are independent if we impose the condition
b + c + d ≠ 0. We can take a = 0, b = 1, c = 0 and d = 0.
We have the generating vector

w3 = (0,1,0,−1,0,−1/2).

We start with w3 = (0,1,0,−1,0,−1/2).

We calculate w2.

w2 = (B − λ I6) w4

=


−6 7 1 2 13 8
−8 6 2 −1 15 8
−5 7 0 3 12 8
10 −5 −3 3 −16 −8
9 −5 −2 2 −15 −8

−16 11 3 −1 28 16




0
1
0
−1
0

−1/2

 =


1
3
0

−4
−3

4


and
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w1 = (B − λ I6)2 w3

=


−16 20 0 8 36 24
−13 12 1 3 25 16
−16 20 0 8 36 24

9 −4 −1 1 −13 −8
9 −4 −1 1 −13 −8

−21 16 1 3 37 24




0
1
0
−1
0

−1/2

 =


0
1
0

−1
−1

1

 .

We have now found a first Jordan chain. It has length 3.

{
w1 = (0,1,0,−1,−1,1),w2 = (1,3,0,−4,−3,4),

w3 = (0,1,0,−1,0,−1/2)
}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I6) 2 w1 1

ker((B − λ I6)2) 3 w2 0

ker((B − λ I6)3) 4 w3 0

with

w1 = (0,1,0,−1,−1,1)

w2 = (1,3,0,−4,−3,4)

w3 = (0,1,0,−1,0,−1/2)

Calculation of the second Jordan chain.
We look for a linearly independent set of vectors

{
w4
}

satisfying
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(B − λ I6) w4 = 0,

where w4 is in the vector space ker(B − λ I6).

We look for a generating vector w4. This vector must be linearly inde-
pendent of vectors that were already chosen in ker(B − λ I6). We know
that

ker(B − λ I6) = span
{
(1,0,1,−1,−1,5/2), (0,1,0,−1,−1,1)

}
.

We have at this point chosen in ker(B − λ I6) already the vector w1 =
(0,1,0,−1,−1,1).

We know that a vector in ker(B − λ I6) must be of the form

a (1,0,1,−1,−1,5/2)+ b (0,1,0,−1,−1,1)

= (a,b,a,−a− b,−a− b,5a/2+ b).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(

0 1 0 −1 −1 1
a b a −a− b −a− b 5a/2+ b

)
.

We row reduce this matrix H and if we impose a ≠ 0, we find(
1 0 1 −1 −1 5/2
0 1 0 −1 −1 1

)
.

We see that these vectors are independent if we impose the condition
a ≠ 0. So we have a = 1 and b = 0.

So we have the generating vector

w4 = (1,0,1,−1,−1,5/2).

We have now found a second Jordan chain. It has length one.

{
(1,0,1,−1,−1,5/2)

}
.

Let us take a look at our current information table.
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Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(B − λ I6) 2 w1 w4 0

ker(B − λ I6)2 3 w2 0

ker(B − λ I6)3 4 w3 0

with

w1 = (0,1,0,−1,−1,1)

w2 = (1,3,0,−4,−3,4)

w3 = (0,1,0,−1,0,−1/2)

w4 = (1,0,1,−1,−1,5/2)

6. Investigation of the second eigenvalue.

We work now with the eigenvalue λ = 1.

7. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 8 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 7. The solution will be completely independent from this
section.

We start from the matrix A.
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A =



−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 1

0 0 0 0 0 1



 
( )( ) .

We subtract from this matrix A the matrix λ I6.

A− λ I6 =



−2 1 0 0 0 0

0 −2 1 0 0 0

0 0 −2 0 0 0

0 0 0 −2 0 0

0 0 0 0 0 1

0 0 0 0 0 0



 
( )( ) .

We see that the space span
{
e5,e6

}
is invariant relative to A− λ I6. If we

restrict A − λ I6 to this space, we have a nilpotent operator and we can
apply the techniques learned in part 2.

We want to investigate the endomorphism A − λ I6 restricted to this
space. We compute now the powers of A− λ I6.

A− λ I6 =



−2 1 0 0 0 0

0 −2 1 0 0 0

0 0 −2 0 0 0

0 0 0 −2 0 0

0 0 0 0 0 1

0 0 0 0 0 0



 
( )( ) ,

(A− λ I6)2 =



4 −4 1 0 0 0

0 4 −4 0 0 0

0 0 4 0 0 0

0 0 0 4 0 0

0 0 0 0 0 0

0 0 0 0 0 0



 
( )( ) .

Let us visualise this situation.
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(a) Visualisation of (A− λ I6). (b) Visualisation of (A− λ I6)2.

Figure 42

We give some comment on the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.
The red cells represent the number 1. All the blocks with green cells in it
will be keeping the same look however large we take the powers of this
matrix.

If we restrict the mapping A− λ I6 to the subspace span
{
e5,e6

}
which is

an invariant subspace with respect to the operator A−λ I6, then we have
the classic case of a nilpotent operator on a finite dimensional space.
The nilpotent operator has degree of nilpotency 2. Let us take a look at
the third elementary Jordan block in this matrix.

We observe that the original superdiagonal of 1’s in the third block of
A−λ I6 is going upwards in its elementary Jordan block associated with
the nilpotent part of the transformation A − λ I6 when increasing the
powers of the matrix A − λ I6. It finally disappears when taking the
second power of A− λ I6.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that
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{
ker(A− λ I6) = span

{
e5
}
;

ker(A− λ I6)2 = span
{
e5,e6

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I6) 1 1 = dim(ker(A− λ I6))

ker(A− λ I6)2 2 1 = dim(ker(A− λ I6)2)− dim(ker(A− λ I6))

We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I6)i)−dim(ker(A−
λ I6)i−1). In the first row, we have dim(ker(A− λ I6)).

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A− λ I6) ⊊ ker(A− λ I6)2 = ker(A− λ I6)3 = · · · .

We remark by looking at the matrices (A−λ I6)i that we have the follow-
ing mappings {

(A− λ I6) e6 = e5,
(A− λ I6) e5 = 0.

We remark by looking at the matrices (A− λ I6)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I6)2 e6 = 0,
(A− λ I6) e6 = e5.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e5 = (A− λ I6) e6,e6

}
.

After we have found the first Jordan chain of length 4, we have then the
following table.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I6) 1 e5 0

ker(A− λ I6)2 2 e6 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

8. Kernels of (B− λ I6)i.

Kernel of (B− λ I6).
We calculate the kernel of B − λ I6.

The matrix B − λ I6 is

B − λ I6 =


−8 7 1 2 13 8
−8 4 2 −1 15 8
−5 7 −2 3 12 8
10 −5 −3 1 −16 −8
9 −5 −2 2 −17 −8

−16 11 3 −1 28 14

 .

We have to solve the matrix equation
−8 7 1 2 13 8
−8 4 2 −1 15 8
−5 7 −2 3 12 8
10 −5 −3 1 −16 −8
9 −5 −2 2 −17 −8

−16 11 3 −1 28 14




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in having to solve the following system of linear equations.

− 8 z1 + 7 z2 + z3 + 2z4 + 13z5 + 8 z6 = 0,
− 8 z1 + 4 z2 + 2z3 − z4 + 15z5 + 8 z6 = 0,
− 5 z1 + 7 z2 − 2z3 + 3z4 + 12z5 + 8 z6 = 0,

10z1 − 5 z2 − 3z3 + z4 − 16z5 − 8 z6 = 0,
9 z1 − 5 z2 − 2z3 + 2z4 − 17z5 − 8 z6 = 0,

−16z1 + 11z2 + 3z3 − z4 + 28z5 + 14z6 = 0.
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We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6) =
{
(r1,0, r1, r1, r1,−r1) | r1 ∈ K

}
= span

{
(1,0,1,1,1,−1)

}
.

Kernel of (B− λ I6)2.
We calculate the kernel of (B − λ I6)2.

The matrix (B − λ I6)2 is

(B − λ I6)2 =


12 −8 −4 0 −16 −8
19 −8 −7 7 −35 −16
4 −8 4 −4 −12 −8

−31 16 11 −7 51 24
−27 16 7 −7 51 24

43 −28 −11 7 −75 −36

 .
We have to solve the matrix equation

12 −8 −4 0 −16 −8
19 −8 −7 7 −35 −16
4 −8 4 −4 −12 −8

−31 16 11 −7 51 24
−27 16 7 −7 51 24

43 −28 −11 7 −75 −36




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

12z1 − 8 z2 − 4 z3 − 16z5 − 8 z6 = 0,
19z1 − 8 z2 − 7 z3 + 7z4 − 35z5 − 16z6 = 0,
4 z1 − 8 z2 + 4 z3 − 4z4 − 12z5 − 8 z6 = 0,

−31z1 + 16z2 + 11z3 − 7z4 + 51z5 + 24z6 = 0,
−27z1 + 16z2 + 7 z3 − 7z4 + 51z5 + 24z6 = 0,

43z1 − 28z2 − 11z3 + 7z4 − 75z5 − 36z6 = 0.
We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)2 =
{
(r1, r2, r1, r1 − 2 r2, r1 − 2 r2,−r1 + 3 r2) | r1, r2 ∈ K

}
= span

{
(1,0,1,1,1,−1), (0,1,0,−2,−2,3)

}
.
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Kernel of (B− λ I6)3.
We calculate the kernel of (B − λ I6)3.

The matrix (B − λ I6)3 is

(B − λ I6)3 =


−28 16 12 −4 36 16
−42 16 18 −22 78 32
−8 16 −8 8 24 16
70 −32 −30 26 −114 −48
58 −32 −18 22 −110 −48

−94 56 30 −26 162 72

 .
We have to solve the matrix equation

−28 16 12 −4 36 16
−42 16 18 −22 78 32
−8 16 −8 8 24 16
70 −32 −30 26 −114 −48
58 −32 −18 22 −110 −48

−94 56 30 −26 162 72




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

−28z1 + 16z2 + 12z3 − 4 z4 + 36 z5 + 16z6 = 0,
−42z1 + 16z2 + 18z3 − 22z4 + 78 z5 + 32z6 = 0,
− 8 z1 + 16z2 − 8 z3 + 8 z4 + 24 z5 + 16z6 = 0,

70z1 − 32z2 − 30z3 + 26z4 − 114z5 − 48z6 = 0,
58z1 − 32z2 − 18z3 + 22z4 − 110z5 − 48z6 = 0,

−94z1 + 56z2 + 30z3 − 26z4 + 162z5 + 72z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)3 =
{
(r1, r2, r1, r1 − 2 r2, r1 − 2 r2,−r1 + 3 r2) | r1, r2 ∈ K

}
= span

{
(1,0,1,1,1,−1), (0,1,0,−2,−2,3)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality from the second power onwards in the following
chain of inclusion of sets.

ker(B − λ I6) ⊊ ker((B − λ I6)2) = ker((B − λ I6)3) = · · · .
We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I6) 1 1 = dim(ker(B − λ I6))

ker(B − λ I6)2 2 1 = dim(ker(B − λ I6)2)− dim(ker(B − λ I6))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I6)i))−dim(ker((B−λ I6)i−1)). The first
number of this last column is dim(ker(B − λ I6)).

9. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w5,w6

}
satisfying{

(B − λ I6) w5 = 0,
(B − λ I6) w6 = w5

or {
(B − λ I6)2 w6 = 0,
(B − λ I6) w6 = w5

where w6 is in the vector space ker((B − λ I6)2) but not in ker(B − λ I6).

We look for a generating vector w6. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I6) and must be independent from
vectors of height 2 that were already chosen in ker(B − λ I6)2. We know
that

ker((B − λ I6)2) = span
{
(1,0,1,1,1,−1), (0,1,0,−2,−2,3)

}
.

We have at this point not chosen any vector in a previous Jordan chain
of ker((B − λ I6)2).

We know that a vector in ker((B − λ I6)2) must be of the form

a (1,0,1,1,1,−1)+b (0,1,0,−2,−2,3) = (a,b,a,a−2b,a−2b,−a+3b).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.
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H =
(

1 0 1 1 1 −1
a b a a− 2b a− 2b 3b − a

)
.

We row reduce this matrix H and if we impose b ≠ 0, we find(
1 0 1 1 1 −1
0 1 0 −2 −2 3

)
.

We see that these vectors are independent if we impose the condition
b ≠ 0. We can choose a = 0 and b = 1.

We have the generating vector

w6 = (0,1,0,−2,−2,3).

We start with w6 = (0,1,0,−2,−2,3).

We calculate w5.

w5 = (B − λ I6) w6

=


−8 7 1 2 13 8
−8 4 2 −1 15 8
−5 7 −2 3 12 8
10 −5 −3 1 −16 −8
9 −5 −2 2 −17 −8

−16 11 3 −1 28 14




0
1
0

−2
−2

3

 =


1
0
1
1
1

−1

 .

We have found a first Jordan chain for this eigenvalue. We have found
three Jordan chains in total. The length of this chain is 2.

{
w5 = (1,0,1,1,1,−1),w6 = (0,1,0,−2,−2,3)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I6) 1 w5 0

ker(B − λ I6)2 2 w6 0
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with

w5 = (1,0,1,1,1,−1)

w6 = (0,1,0,−2,−2,3)

10. Result and check of the result.
We construct the matrix of base change P with the coordinates of the
vectors wi found in the Jordan chains in the columns of P .

P =


0 1 0 1 1 0
1 3 1 0 0 1
0 0 0 1 1 0
−1 −4 −1 −1 1 −2
−1 −3 0 −1 1 −2

1 4 −1/2 5/2 −1 3

 .



www.mathandphoto.eu. Exercise Notes Jordan 577

P−1 B P =


1 −2 2 0 −7 −4
1 0 −1 0 0 0

−1 0 1 −1 1 0
1 −2 1 −1 −3 −2

−1 2 0 1 3 2
−3 3 0 1 6 4



×


−7 7 1 2 13 8
−8 5 2 −1 15 8
−5 7 −1 3 12 8
10 −5 −3 2 −16 −8
9 −5 −2 2 −16 −8

−16 11 3 −1 28 15



×


0 1 0 1 1 0
1 3 1 0 0 1
0 0 0 1 1 0

−1 −4 −1 −1 1 −2
−1 −3 0 −1 1 −2

1 4 −1/2 5/2 −1 3



=



−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 1

0 0 0 0 0 1



 
( )( ) .
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30 exercise. (6× 6); (J2(−1), J2(−1), J2(1)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible
a matrix A similar to B such that A is in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =


−4 5 0 3 8 6
−8 5 2 −1 15 8
−6 8 −1 3 14 9

7 −3 −2 1 −11 −6
9 −5 −2 2 −16 −8

−13 9 2 0 23 13

 .

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial.

pC-H(λ) = |B − λ I6| = (λ− 1)2 (λ+ 1)4.

We see that the characteristic Cayley-Hamilton polynomial pC-H(λ) can
be factorised in linear polynomials over the field K. So we can apply the
Jordan normalisation machinery.

The eigenvalue λ = −1 has algebraic multiplicity 4. The eigenvalue λ = 1
has algebraic multiplicity 2.

2. Investigation of the first eigenvalue.

We work now with the eigenvalue λ = −1.

3. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
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calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 4 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 3. The solution will be completely independent from this
section.

We start from the matrix A.

A =



−1 1 0 0 0 0

0 −1 0 0 0 0

0 0 −1 1 0 0

0 0 0 −1 0 0

0 0 0 0 1 1

0 0 0 0 0 1



( )
( )

( ) .

We subtract from this matrix A the matrix λ I6.

A− λ I6 =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 2 1

0 0 0 0 0 2



( )
( )

( ) .

We compute also the powers of A− λ I6.

A− λ I6 =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 2 1

0 0 0 0 0 2



( )
( )

( ) ,

(A− λ I6)2 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 4 4

0 0 0 0 0 4



( )
( )

( ) .
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Let us visualise this situation.

(a) Visualisation of A− λ I6. (b) Visualisation of (A− λ I6)2.

Figure 43

We give here some comment on the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.
The red cells represent the number 1. All the blocks with green cells in it
will be keeping the same look however large we take the powers of this
matrix.

If we restrict the mapping A − λ I6 to the subspace span
{
e1,e2,e3,e4

}
which is an invariant subspace with respect to the operator A − λ I6,
then we have the classic case of a nilpotent operator on a finite dimen-
sional space. The nilpotent operator has degree of nilpotency 2. Let us
take a look at the two first elementary Jordan blocks in this matrix. We
observe that the original superdiagonals of 1’s in the two first blocks of
A− λ I6 are going upwards in their respective elementary Jordan blocks
associated with the nilpotent part of the transformation A − λ I6 when
increasing the powers of the matrix A−λ I6. They finally disappear when
taking the second power of A− λ I6.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that
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{
ker(A− λ I6) = span

{
e1,e3

}
;

ker(A− λ I6)2 = span
{
e1,e2,e3,e4

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I6) 2 2 = dim(ker(A− λ I6))

ker(A− λ I6)2 4 2 = dim(ker(A− λ I6)2)− dim(ker(A− λ I6))

We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I6)i)−dim(ker(A−
λ I6)i−1). In the first row, we have dim(ker(A− λ I6)).

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A− λ I6) ⊊ ker(A− λ I6)2 = ker(A− λ I6)3 = · · · .

We remark by looking at the matrices (A−λ I6)i that we have the follow-
ing mappings {

(A− λ I6) e2 = e1,
(A− λ I6) e1 = 0.

We remark by looking at the matrices (A− λ I6)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I6) e2 = e1,

(A− λ I6)2 e2 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e1 = (A− λ I6) e2,e2

}
.
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After we have found the first Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I6) 2 e1 1

ker(A− λ I6)2 4 e2 1

We have that the last number in the last column is not zero, and this
means that there is still a chain left of length 2.

Investigating the second Jordan chain.
We remark by looking at the matrices (A−λ I6)i that we have the follow-
ing mappings {

(A− λ I6) e4 = e3,
(A− λ I6) e3 = 0.

We remark by looking at the matrices (A− λ I6)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I6) e4 = e3,

(A− λ I6)2 e4 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e3 = (A− λ I6) e4,e4

}
.

We have found the second Jordan chain. It has length 2. We have now
the following table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(A− λ I6) 2 e1 e3 0

ker(A− λ I6)2 4 e2 e4 0



www.mathandphoto.eu. Exercise Notes Jordan 583

4. Kernels of (B− λ I6)i.

Kernel of (B− λ I6).
The matrix B − λ I6 is

B − λ I6 =


−3 5 0 3 8 6
−8 6 2 −1 15 8
−6 8 0 3 14 9

7 −3 −2 2 −11 −6
9 −5 −2 2 −15 −8

−13 9 2 0 23 14

 .

We have to solve the matrix equation
−3 5 0 3 8 6
−8 6 2 −1 15 8
−6 8 0 3 14 9

7 −3 −2 2 −11 −6
9 −5 −2 2 −15 −8

−13 9 2 0 23 14




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in having to solve the following system of linear equations.

− 3 z1 + 5z2 + 3z4 + 8 z5 + 6 z6 = 0,
− 8 z1 + 6z2 + 2z3 − z4 + 15z5 + 8 z6 = 0,
− 6 z1 + 8z2 + 3z4 + 14z5 + 9 z6 = 0,

7 z1 − 3z2 − 2z3 + 2z4 − 11z5 − 6 z6 = 0,
9 z1 − 5z2 − 2z3 + 2z4 − 15z5 − 8 z6 = 0,

−13z1 + 9z2 + 2z3 + 23z5 + 14z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6) =
{
(r1, r2,−r1/2,−r1 − r2,−r2, r1 + r2) | r1, r2 ∈ K

}
= span

{
(1,0,−1/2,−1,0,1), (0,1,0,−1,−1,1)

}
.

Kernel of (B− λ I6)2.
We calculate the kernel of (B − λ I6)2.

The matrix (B − λ I6)2 is
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(B − λ I6)2 =


−16 20 0 8 36 24
−12 12 0 4 24 16
−16 20 0 8 36 24

8 −4 0 0 −12 −8
8 −4 0 0 −12 −8

−20 16 0 4 36 24

 .

We have to solve the matrix equation
−16 20 0 8 36 24
−12 12 0 4 24 16
−16 20 0 8 36 24

8 −4 0 0 −12 −8
8 −4 0 0 −12 −8

−20 16 0 4 36 24




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in having to solve the following system of linear equations.

−16z1 + 20z2 + 8z4 + 36z5 + 24z6 = 0,
−12z1 + 12z2 + 4z4 + 24z5 + 16z6 = 0,
−16z1 + 20z2 + 8z4 + 36z5 + 24z6 = 0,

8 z1 − 4 z2 − 12z5 − 8 z6 = 0,
8 z1 − 4 z2 − 12z5 − 8 z6 = 0,

−20z1 + 16z2 + 4z4 + 36z5 + 24z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)2 =
{
(r1, r2, r3,−r1 − r2, r5, r1 − r2/2− 3 r5/2)

| r1, r2, r3, r5 ∈ K
}

= span
{
(1,0,0,−1,0,1), (0,1,0,−1,0,−1/2),

(0,0,1,0,0,0), (0,0,0,0,1,−3/2)
}
.

Kernel of (B− λ I6)3.
We calculate the kernel of (B − λ I6)3.

The matrix (B − λ I6)3 is
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(B − λ I6)3 =


−44 52 0 20 96 64
−24 24 0 8 48 32
−44 52 0 20 96 64

4 4 0 4 0 0
4 4 0 4 0 0

−28 20 0 4 48 32

 .
We have to solve the matrix equation

−44 52 0 20 96 64
−24 24 0 8 48 32
−44 52 0 20 96 64

4 4 0 4 0 0
4 4 0 4 0 0

−28 20 0 4 48 32




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

−44z1 + 52z2 + 20z4 + 96z5 + 64z6 = 0,
−24z1 + 24z2 + 8 z4 + 48z5 + 32z6 = 0,
−44z1 + 52z2 + 20z4 + 96z5 + 64z6 = 0,

4 z1 + 4 z2 + 4 z4 = 0,
4 z1 + 4 z2 + 4 z4 = 0,

−28z1 + 20z2 + 4 z4 + 48z5 + 32z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)3 =
{
(r1, r2, r3,−r1 − r2, r5, r1 − r2/2− 3 r5/2)

| r1, r2, r3, r5 ∈ K
}

= span
{
(1,0,0,−1,0,1), (0,1,0,−1,0,−1/2),

(0,0,1,0,0,0), (0,0,0,0,1,−3/2)
}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality from the second power onwards in the following
chain of inclusion of sets.

ker(B − λ I6) ⊊ ker((B − λ I6)2) = ker((B − λ I6)3) · · · .
We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I6) 2 2 = dim(ker(B − λ I6))

ker(B − λ I6)2 4 2 = dim(ker(B − λ I6)2)− dim(ker(B − λ I6))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I6)i))−dim(ker((B−λ I6)i−1)). The first
number of this last column is dim(ker(B − λ I6)).

5. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w1,w2

}
satisfying{

(B − λ I6) w1 = 0,
(B − λ I6) w2 = w1

or {
(B − λ I6)2 w2 = 0,
(B − λ I6) w2 = w1

where w2 is in the vector space ker((B − λ I6)2) but not in ker(B − λ I6).

We look for a generating vector w2. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I6) and must be independent from
vectors of height 2 that were already chosen in ker(B − λ I6)2. We know
that

ker((B − λ I6)2) = span
{
(1,0,0,−1,0,1), (0,1,0,−1,0,−1/2),

(0,0,1,0,0,0), (0,0,0,0,1,−3/2)
}
.

We have at this point not chosen any vector of height 2 of ker((B−λ I6)2)
in a previous Jordan chain.

We know that a vector in ker(B − λ I6)2 must be of the form
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a (1,0,0,−1,0,1)+ b (0,1,0,−1,0,−1/2)+ c (0,0,1,0,0,0)

+ d (0,0,0,0,1,−3/2)

= (a,b, c,−a− b,d,a− b/2− 3d/2).

We remember also

ker(B − λ I6) = span
{
(1,0,−1/2,−1,0,1), (0,1,0,−1,−1,1)

}
.

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =

 1 0 −1/2 −1 0 1
0 1 0 −1 −1 1
a b c −a− b d a− b/2− 3d/2

 .
We row reduce this matrix H and if we impose a+ 2 c ≠ 0, we find

 1 0 0 −1 (b + d)/(a+ 2 c) (2a− 3b + 4 c − 3d)/(2 (a+ 2 c))
0 1 0 −1 −1 1
0 0 1 0 2 (b + d)/(a+ 2 c) −3 (b + d)/(a+ 2 c)

 .
We see that these vectors are independent if we impose the condition
a+ 2 c ≠ 0. So we can choose a = 1, b = 0, c = 0, d = 0.

We have now the generating vector

w2 = (1,0,0,−1,0,1).

We start with w2 = (1,0,0,−1,0,1).

We calculate w1.

w1 = (B − λ I6) w2

=


−3 5 0 3 8 6
−8 6 2 −1 15 8
−6 8 0 3 14 9

7 −3 −2 2 −11 −6
9 −5 −2 2 −15 −8

−13 9 2 0 23 14




1
0
0

−1
0
1

 =


0
1
0

−1
−1

1

 .
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We have now found a first Jordan chain. It has length 2.

{
w1 = (0,1,0,−1,−1,1),w2 = (1,0,0,−1,0,1)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I6) 2 w1 1

ker(B − λ I6)2 4 w2 1

with

w1 = (0,1,0,−1,−1,1)

w2 = (1,0,0,−1,0,1)

Calculation of the second Jordan chain.
We look for a linearly independent set of vectors

{
w3,w4

}
satisfying{

(B − λ I6) w3 = 0,
(B − λ I6) w4 = w3

or {
(B − λ I6)2 w4 = 0,
(B − λ I6) w4 = w3

where w4 is in the vector space ker((B − λ I6)2) but not in ker(B − λ I6).

We look for a generating vector w4. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I6) and must be independent from
vectors that were already chosen in ker(B − λ I6)2. We know that

ker((B − λ I6)2) = span
{
(1,0,0,−1,0,1), (0,1,0,−1,0,−1/2),

(0,0,1,0,0,0), (0,0,0,0,1,−3/2)
}
.
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We know that a vector in ker(B − λ I6)2 must be of the form

a (1,0,0,−1,0,1)+ b (0,1,0,−1,0,−1/2)

+ c (0,0,1,0,0,0)+ d (0,0,0,0,1,−3/2)

= (a,b, c,−a− b,d,a− b/2− 3d/2).

We have at this point chosen in ker(B − λ I6)2 already the vector w2 =
(1,0,0,−1,0,1) of height 2.

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =


1 0 −1/2 −1 0 1
0 1 0 −1 −1 1
1 0 0 −1 0 1
a b 0 −a− b c a− b/2− 3 c/2

 .
We row reduce this matrix H and if we impose b + c ≠ 0, we find

1 0 0 −1 0 1
0 1 0 −1 0 −1/2
0 0 1 0 0 0
0 0 0 0 1 −3/2

 .
We see that these vectors are independent if we impose the condition
b + c ≠ 0. So we can take a = 0, b = 2, c = 0 and d = 0.

So we have the generating vector

w4 = (0,2,0,−2,0,−1).

We start with w4 = (0,2,0,−2,0,−1).

We calculate w3.

w3 = (B − λ I6) w4

=


−3 5 0 3 8 6
−8 6 2 −1 15 8
−6 8 0 3 14 9

7 −3 −2 2 −11 −6
9 −5 −2 2 −15 −8

−13 9 2 0 23 14




0
2
0
−2

0
−1

 =


−2

6
1

−4
−6

4

 .
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We have now found a second Jordan chain. It has length 2.

{
w3 = (−2,6,1,−4,−6,4),w4 = (0,2,0,−2,0,−1)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 chain 2 remaining dim

ker(B − λ I6) 2 w1 w3 0

ker(B − λ I6)2 4 w2 w4 0

with

w1 = (0,1,0,−1,−1,1)

w2 = (1,0,0,−1,0,1)

w3 = (−2,6,1,−4,−6,4)

w4 = (0,2,0,−2,0,−1)

6. Investigation of the second eigenvalue.

We work now with the eigenvalue λ = 1.

7. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 8 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
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subsection 7. The solution will be completely independent from this
section.

We start from the matrix A.

A =



−1 1 0 0 0 0

0 −1 0 0 0 0

0 0 −1 1 0 0

0 0 0 −1 0 0

0 0 0 0 1 1

0 0 0 0 0 1



( )
( )

( ) .

We subtract from this matrix A the matrix λ I6.

A− λ I6 =



−2 1 0 0 0 0

0 −2 0 0 0 0

0 0 −2 1 0 0

0 0 0 −2 0 0

0 0 0 0 0 1

0 0 0 0 0 0



( )
( )

( ) .

We see that the space span
{
e5,e6

}
is invariant relative to A− λ I6. If we

restrict A − λ I6 to this space, we have a nilpotent operator and we can
apply the techniques learned in part 2.

We want to investigate the endomorphism A − λ I6 restricted to this
space. We compute now the powers of A− λ I6.

A− λ I6 =



−2 1 0 0 0 0

0 −2 0 0 0 0

0 0 −2 1 0 0

0 0 0 −2 0 0

0 0 0 0 0 1

0 0 0 0 0 0



( )
( )

( ) ,

(A− λ I6)2 =



4 −4 0 0 0 0

0 4 0 0 0 0

0 0 4 −4 0 0

0 0 0 4 0 0

0 0 0 0 0 0

0 0 0 0 0 0



( )
( )

( ) .
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Let us visualise this situation.

(a) Visualisation of (A− λ I6). (b) Visualisation of (A− λ I6)2.

Figure 44

We give here some comments about the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. All these green elementary Jordan blocks have the
same look however large the exponent of A − λ I6. The yellow cells are
representing the number zero. The nilpotent part of the matrix is the
third elementary Jordan block. It changes by moving the superdiagonal
upwards when increasing the exponents of A− λ I6.

Investigation of the first Jordan chain.
Let us take a look at the third coloured block. This block is a nilpo-
tent operator on the invariant subspace span

{
e5,e6

}
with respect to the

operator A− λ I6.

We observe that the original superdiagonal of 1’s in the third block of
the matrix A−λ I6 is going upwards in the powers of the matrix A−λ I6
until it finally disappears when taking the second power of A− λ I6.

It is interesting to observe how the kernels change. We can see almost
without calculation that{

ker(A− λ I6) = span
{
e5
}
;

ker(A− λ I6)2 = span
{
e5,e6

}
.
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After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I6) 1 1 = dim(ker(A− λ I6))

ker(A− λ I6)2 2 1 = dim(ker(A− λ I6)2)− dim(ker(A− λ I6))

We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I6)i)−dim(ker(A−
λ I6)i−1). In the first row, we have dim(ker(A− λ I6)).

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A− λ I6) ⊊ ker(A− λ I6)2 = ker(A− λ I6)3 = · · · .

We remark by looking at the matrices (A−λ I6)i that we have the follow-
ing mappings {

(A− λ I6) e6 = e5,
(A− λ I6) e5 = 0.

We remark by looking at the matrices (A− λ I6)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I6) e6 = e5,

(A− λ I6)2 e6 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e5 = (A− λ I6) e6,e6

}
.

After we have found the first Jordan chain of length 2, we have then the
following table.
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Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I6) 1 e5 0

ker(A− λ I6)2 1 e6 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

8. Kernels of (B− λ I6)i.

Kernel of (B− λI).
We calculate the kernel of B − λ I6.

The matrix B − λ I6 is

B − λ I6 =


−5 5 0 3 8 6
−8 4 2 −1 15 8
−6 8 −2 3 14 9

7 −3 −2 0 −11 −6
9 −5 −2 2 −17 −8

−13 9 2 0 23 12

 .

We have to solve the matrix equation
−5 5 0 3 8 6
−8 4 2 −1 15 8
−6 8 −2 3 14 9

7 −3 −2 0 −11 −6
9 −5 −2 2 −17 −8

−13 9 2 0 23 12




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .

This results in having to solve the following system of linear equations.

− 5 z1 + 5z2 + 3z4 + 8 z5 + 6 z6 = 0,
− 8 z1 + 4z2 + 2z3 − z4 + 15z5 + 8 z6 = 0,
− 6 z1 + 8z2 − 2z3 + 3z4 + 14z5 + 9 z6 = 0,

7 z1 − 3z2 − 2z3 − 11z5 − 6 z6 = 0,
9 z1 − 5z2 − 2z3 + 2z4 − 17z5 − 8 z6 = 0,

−13z1 + 9z2 + 2z3 + 23z5 + 12z6 = 0.
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We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6) =
{
(r1,0, r1, r1, r1,−r1) | r1 ∈ K

}
= span

{
(1,0,1,1,1,−1)

}
.

Kernel of (B− λ I6)2.
We calculate the kernel of (B − λ I6)2. The matrix (B − λ I6)2 is

(B − λ I6)2 =


0 0 0 −4 4 0

20 −8 −8 8 −36 −16
8 −12 4 −4 −20 −12

−20 8 8 −4 32 16
−28 16 8 −8 52 24

32 −20 −8 4 −56 −28

 .
We have to solve the matrix equation

0 0 0 −4 4 0
20 −8 −8 8 −36 −16
8 −12 4 −4 −20 −12

−20 8 8 −4 32 16
−28 16 8 −8 52 24

32 −20 −8 4 −56 −28




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

− 4z4 + 4 z5 = 0,
20z1 − 8 z2 − 8z3 + 8z4 − 36z5 − 16z6 = 0,
8 z1 − 12z2 + 4z3 − 4z4 − 20z5 − 12z6 = 0,

−20z1 + 8 z2 + 8z3 − 4z4 + 32z5 + 16z6 = 0,
−28z1 + 16z2 + 8z3 − 8z4 + 52z5 + 24z6 = 0,

32z1 − 20z2 − 8z3 + 4z4 − 56z5 − 28z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)2 =
{
(r1, r2, r1, r1 − 2 r2, r1 − 2 r2,−r1 + 3 r2) | r1, r2 ∈ K

}
= span

{
(1,0,1,1,1,−1), (0,1,0,−2,−2,3)

}
.
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Kernel of (B− λ I6)3. We calculate the kernel of (B − λ I6)3.

The matrix (B − λ I6)3 is

(B − λ I6)3 =


8 −8 0 8 −24 −8

−48 16 24 −28 84 32
−20 28 −8 8 48 28

40 −8 −24 20 −60 −24
64 −32 −24 28 −116 −48
−64 32 24 −20 108 48

 .
We have to solve the matrix equation

8 −8 0 8 −24 −8
−48 16 24 −28 84 32
−20 28 −8 8 48 28

40 −8 −24 20 −60 −24
64 −32 −24 28 −116 −48

−64 32 24 −20 108 48




z1

z2

z3

z4

z5

z6

 =


0
0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

8 z1 − 8 z2 + 8 z4 − 24 z5 − 8 z6 = 0,
−48z1 + 16z2 + 24z3 − 28z4 + 84 z5 + 32z6 = 0,
−20z1 + 28z2 − 8 z3 + 8 z4 + 48 z5 + 28z6 = 0,

40z1 − 8 z2 − 24z3 + 20z4 − 60 z5 − 24z6 = 0,
64z1 − 32z2 − 24z3 + 28z4 − 116z5 − 48z6 = 0,

−64z1 + 32z2 + 24z3 − 20z4 + 108z5 + 48z6 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I6)3 =
{
(r1, r2, r1, r1 − 2 r2, r1 − 2 r2,−r1 + 3 r2) | r1, r2, r3 ∈ K

}
= span

{
(1,0,1,1,1,−1), (0,1,0,−2,−2,3)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality from the second power onwards in the following
chain of inclusion of sets.

ker(B − λ I6) ⊊ ker((B − λ I6)2) = ker((B − λ I6)3) = · · · .
We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I6) 1 1 = dim(ker(B − λ I6))

ker(B − λ I6)2 2 1 = dim(ker(B − λ I6)2)− dim(ker(B − λ I6))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I6)i))−dim(ker((B−λ I6)i−1)). The first
number of this last column is dim(ker(B − λ I6)).

9. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w5,w6

}
satisfying{

(B − λ I6) w5 = 0,
(B − λ I6) w6 = w5

or {
(B − λ I6)2 w6 = 0,
(B − λ I6) w6 = w5

where w6 is in the vector space ker((B − λ I6)2) but not in ker((B − λ I6)).

We look for a generating vector w6. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I6) and must be independent from
vectors that were already chosen in ker(B − λ I6)2. We know that

ker((B − λ I6)2) = span
{
(1,0,1,1,1,−1), (0,1,0,−2,−2,3)

}
.

We have at this point not chosen any vector of height 2 in ker((B−λ I6)2).

We know that a vector in ker((B − λ I6)2) must be of the form

a (1,0,1,1,1,−1)+b (0,1,0,−2,−2,3) = (a,b,a,a−2b,a−2b,−a+3b).

We remember that

ker(B − λ I6) = span
{
(1,0,1,1,1,−1)

}
.
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So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(

1 0 1 1 1 −1
a b a a− 2b a− 2b 3b − a

)
.

We row reduce this matrix H and if we impose b ≠ 0, we find(
1 0 1 1 1 −1
0 1 0 −2 −2 3

)
.

We see that these vectors are independent if we impose the condition
b ≠ 0. We can choose a = 0 and b = 1.

We have the generating vector

w6 = (0,1,0,−2,−2,3).

We start with w6 = (0,1,0,−2,−2,3).

We calculate w5.

w5 = (B − λ I6) w6

=


−5 5 0 3 8 6
−8 4 2 −1 15 8
−6 8 −2 3 14 9

7 −3 −2 0 −11 −6
9 −5 −2 2 −17 −8

−13 9 2 0 23 12




0
1
0

−2
−2

3

 =


1
0
1
1
1

−1

 .

We have now the Jordan chain

{
w5 = (1,0,1,1,1,−1),w6 = (0,1,0,−2,−2,3)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I6) 1 w5 0

ker(B − λ I6)2 2 w6 0
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with

w5 = (1,0,1,1,1,−1)

w6 = (0,1,0,−2,−2,3)

10. Result and check of the result.
We construct the matrix of base change P with the coordinates of the
vectors wi found in the Jordan chains in the columns of P .

P =


0 1 −2 0 1 0
1 0 6 2 0 1
0 0 1 0 1 0

−1 −1 −4 −2 1 −2
−1 0 −6 0 1 −2

1 1 4 −1 −1 3

 .
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P−1 B P =


−1 8 −6 5 8 6

4 −6 2 −3 −9 −6
1 −2 1 −1 −3 −2

−1 1 0 0 2 1
−1 2 0 1 3 2
−3 3 0 1 6 4



×


−4 5 0 3 8 6
−8 5 2 −1 15 8
−6 8 −1 3 14 9

7 −3 −2 1 −11 −6
9 −5 −2 2 −16 −8

−13 9 2 0 23 13



×


0 1 −2 0 1 0
1 0 6 2 0 1
0 0 1 0 1 0

−1 −1 −4 −2 1 −2
−1 0 −6 0 1 −2

1 1 4 −1 −1 3



=



−1 1 0 0 0 0

0 −1 0 0 0 0

0 0 −1 1 0 0

0 0 0 −1 0 0

0 0 0 0 1 1

0 0 0 0 0 1



( )
( )

( ) .
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31 exercise. (5× 5); (J3(−1), J2(2)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible
a matrix A similar to B such that A is in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =


−3 0 −5 4 1
−4 2 −4 −1 −1

2 1 3 −5 1
0 −1 1 1 −2
3 −2 5 0 −2

 .

Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial.

pC-H(λ) = |B − λ I5| = −(λ− 2)2 (λ+ 1)3.

We see that the characteristic Cayley-Hamilton polynomial pC-H(λ) can
be factorised in linear polynomials over the field K. So we can apply the
Jordan normalisation machinery.

The eigenvalue λ = 2 has algebraic multiplicity 2. The eigenvalue λ = −1
has algebraic multiplicity 3.

2. Investigation of the first eigenvalue.

We work now with the eigenvalue λ = −1.

3. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
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subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 4 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 3. The solution will be completely independent from this
section.

We start from the matrix A.

A =


−1 1 0 0 0

0 −1 1 0 0

0 0 −1 0 0

0 0 0 2 1

0 0 0 0 2



 
( ) .

We subtract from this matrix A the matrix λ I5.

A− λ I5 =


0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 3 1

0 0 0 0 3



 
( ) .

We compute also the powers of A− λ I5.

A− λ I5 =


0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 3 1

0 0 0 0 3



 
( ) ,

(A− λ I5)2 =


0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 9 6

0 0 0 0 9



 
( ) ,

(A− λ I5)3 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 27 27

0 0 0 0 27



 
( ) .



www.mathandphoto.eu. Exercise Notes Jordan 603

Let us visualise this situation.

(a) Visualisation of A− λ I5. (b) Visualisation of (A− λ I5)2.

(c) Visualisation of (A− λ I5)3.

Figure 45

We give here some comment on the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.
The red cells represent the number 1. All the blocks with green cells in it
will be keeping the same look however large we take the powers of this
matrix.
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If we restrict the mapping A−λ I5 to the subspace span
{
e1,e2,e3

}
which

is an invariant subspace with respect to the operator A − λ I5, then we
have the classic case of a nilpotent operator on a finite dimensional
space. The nilpotent operator has degree of nilpotency 3. Let us take
a look at the first elementary Jordan block in this matrix.

We observe that the original superdiagonal of 1’s in the first block of
A−λ I5 is going upwards in its elementary Jordan block associated with
the nilpotent part of the transformation A − λ I5 when increasing the
powers of the matrix A−λ I5. It finally disappears when taking the third
power of A− λ I5.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A− λ I5) = span
{
e1
}
;

ker(A− λ I5)2 = span
{
e1,e2

}
;

ker(A− λ I5)3 = span
{
e1,e2,e3

}
.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I5) 1 1 = dim(ker(A− λ I5))

ker(A− λ I5)2 2 1 = dim(ker(A− λ I5)2)− dim(ker(A− λ I5))

ker(A− λ I5)3 3 1 = dim(ker(A− λ I5)3)− dim(ker(A− λ I5)2)

We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I5)i)−dim(ker(A−
λ I5)i−1). In the first row, we have dim(ker(A− λ I5)).

We see also that there is equality in the inclusion of sets from the third
power onwards.

ker(A− λ I5) ⊊ ker(A− λ I5)2 ⊊ ker(A− λ I5)3 = ker(A− λ I5)4 = · · · .
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We remark by looking at the matrices (A−λ I5)i that we have the follow-
ing mappings 

(A− λ I5) e3 = e2,
(A− λ I5) e2 = e1,
(A− λ I5) e1 = 0.

We remark by looking at the matrices (A− λ I5)i or as a consequence of
the previous mappings that we have also the following mappings

(A− λ I5) e3 = e2,

(A− λ I5)2 e3 = e1,

(A− λ I5)3 e3 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e1 = (A− λ I5)2 e3,e2 = (A− λ I5) e3,e3

}
.

After we have found the first Jordan chain of length 3, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I5) 1 e1 0

ker(A− λ I5)2 2 e2 0

ker(A− λ I5)3 3 e3 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

4. Kernels of (B− λ I5)i.

Kernel of (B− λ I5).
We calculate the kernel of B − λ I5.

The matrix B − λ I5 is
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B − λ I5 =


−2 0 −5 4 1
−4 3 −4 −1 −1

2 1 4 −5 1
0 −1 1 2 −2
3 −2 5 0 −1

 .
We have to solve the matrix equation

−2 0 −5 4 1
−4 3 −4 −1 −1

2 1 4 −5 1
0 −1 1 2 −2
3 −2 5 0 −1



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

−2z1 − 5z3 + 4z4 + z5 = 0,
−4z1 + 3z2 − 4z3 − z4 − z5 = 0,

2z1 + z2 + 4z3 − 5z4 + z5 = 0,
− z2 + z3 + 2z4 − 2z5 = 0,

3z1 − 2z2 + 5z3 − z5 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I5) =
{
(r1, r1/2,−r1/2,0,−r1/2) | r1 ∈ K

}
= span

{
(1,1/2,−1/2,0,−1/2)

}
.

Kernel of (B− λ I5)2.
We calculate the kernel of (B − λ I5)2.

The matrix (B − λ I5)2 is

(B − λ I5)2 =


−3 −11 −1 25 −16
−15 8 −14 −1 −8

3 10 2 −23 14
0 0 0 0 0
9 1 8 −11 11

 .
We have to solve the matrix equation
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−3 −11 −1 25 −16
−15 8 −14 −1 −8

3 10 2 −23 14
0 0 0 0 0
9 1 8 −11 11



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

− 3 z1 − 11z2 − z3 + 25z4 − 16z5 = 0,
−15z1 + 8 z2 − 14z3 − z4 − 8 z5 = 0,

3 z1 + 10z2 + 2 z3 − 23z4 + 14z5 = 0,
9 z1 + z2 + 8 z3 − 11z4 + 11z5 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I5)2 =
{
(r1, r2,−2 r1/3+ r2/3,−r1/3+ 2 r2/3,−2 r1/3+ r2/3)

| r1, r2 ∈ K
}

= span
{
(1,0,−2/3,−1/3,−2/3), (0,1,1/3,2/3,1/3)

}
.

Kernel of (B− λ I5)3.
We calculate the kernel of (B − λ I5)3.

The matrix (B − λ I5)3 is

(B − λ I5)3 =


0 −27 0 54 −27

−54 27 −54 0 −27
0 27 0 −54 27
0 0 0 0 0

27 0 27 −27 27

 .
We have to solve the matrix equation

0 −27 0 54 −27
−54 27 −54 0 −27

0 27 0 −54 27
0 0 0 0 0

27 0 27 −27 27



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This results in having to solve the following system of linear equations.
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− 27z2 + 54z4 − 27z5 = 0,

−54z1 + 27z2 − 54z3 − 27z5 = 0,
+ 27z2 − 54z4 + 27z5 = 0,

27z1 + 27z3 − 27z4 + 27z5 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I5)3 =
{
(r1, r2, r3,−r1 + r2 − r3,−2 r1 + r2 − 2 r3)

| r1, r2, r3 ∈ K
}

= span
{
(1,0,0,−1,−2), (0,1,0,1,1), (0,0,1,−1,−2)

}
.

Kernel of (B− λ I5)4.
We calculate the kernel of (B − λ I5)4.

The matrix (B − λ I5)4 is

(B − λ I5)4 =


27 −81 27 135 −54

−189 81 −189 27 −108
−27 81 −27 −135 54

0 0 0 0 0
81 0 81 −81 81

 .
We have to solve the matrix equation

27 −81 27 135 −54
−189 81 −189 27 −108
−27 81 −27 −135 54

0 0 0 0 0
81 0 81 −81 81



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

27 z1 − 81z2 + 27 z3 + 135z4 − 54 z5 = 0,
−189z1 + 81z2 − 189z3 + 27 z4 − 108z5 = 0,
− 27 z1 + 81z2 − 27 z3 − 135z4 + 54 z5 = 0,

81 z1 + 81 z3 − 81 z4 + 81 z5 = 0.

We solve this system and this gives us the solutions set which is a sub-
space
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ker(B − λ I5)4 =
{
(r1, r2, r3,−r1 + r2 − r3,−2 r1 + r2 − 2 r3) | r1, r2, r3 ∈ K

}
= span

{
(1,0,0,−1,−2), (0,1,0,1,1), (0,0,1,−1,−2)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that we
are having equality from the third power onwards in the following chain
of inclusion of sets.

ker(B − λ I5) ⊊ ker((B − λ I5)2) ⊊ ker((B − λ I5)3) = ker((B − λ I5)4) = · · · .

We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I5) 1 1 = dim(ker(B − λ I5))

ker(B − λ I5)2 2 1 = dim(ker(B − λ I5)2)− dim(ker(B − λ I5))

ker(B − λ I5)3 3 1 = dim(ker(B − λ I5)3)− dim(ker(B − λ I5)2)

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I5)i))−dim(ker((B−λ I5)i−1)). The first
number of this last column is dim(ker(B − λ I5)).

5. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w1,w2,w3

}
satisfying

(B − λ I5) w1 = 0,
(B − λ I5) w2 = w1,
(B − λ I5) w3 = w2

or 
(B − λ I5)3 w3 = 0,

(B − λ I5)2 w3 = w1,
(B − λ I5) w3 = w2



www.mathandphoto.eu. Exercise Notes Jordan 610

where w3 is in the vector space ker((B − λ I5)3) but not in ker((B − λ I5)2).

We look for a generating vector w3. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I5)2 and must be independent from
vectors of height 3 that were already chosen in ker(B − λ I5)3. We know
that

ker((B − λ I5)3) = span
{
(1,0,0,−1,−2), (0,1,0,1,1), (0,0,1,−1,−2)

}
.

We have at this point not chosen any vector of height 3 in ker((B−λ I5)3).
We know that a vector in ker((B − λ I5)3) must be of the form

a (1,0,0,−1,−2)+ b (0,1,0,1,1)+ c (0,0,1,−1,−2)

= (a,b, c,−a+ b − c,−2a+ b − 2 c).

We remember that

ker(B − λ I5)2 = span
{
(1,0,−2/3,−1/3,−2/3), (0,1,1/3,2/3,1/3)

}
.

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =

 1 0 −2/3 −1/3 −2/3
0 1 1/3 2/3 1/3
a b c −a+ b − c −2a+ b − 2 c

 .
We row reduce this matrix H and if we impose 2a− b+ 3 c ≠ 0, we find 1 0 0 −1 −2

0 1 0 1 1
0 0 1 −1 −2

 .
We see that these vectors are independent if we impose the condition
2a− b + 3 c ≠ 0. We can choose a = 1, b = 0 and c = 0.

We have the generating vector

w3 = (1,0,0,−1,−2).

We start with w3 = (1,0,0,−1,−2).
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We calculate w2.

w2 = (B − λ I5) w3

=


−2 0 −5 4 1
−4 3 −4 −1 −1

2 1 4 −5 1
0 −1 1 2 −2
3 −2 5 0 −1




1
0
0

−1
−2

 =


−8
−1

5
2
5



and

w2 = (B − λ I5)2 w4

=


−3 −11 −1 25 −16
−15 8 −14 −1 −8

3 10 2 −23 14
0 0 0 0 0
9 1 8 −11 11




1
0
0

−1
−2

 =


4
2

−2
0

−2

 .

So we have the Jordan chain

{
w1 = (4,2,−2,0,−2),w2 = (−8,−1,5,2,5),w3 = (1,0,0,−1,−2)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I5) 1 w1 0

ker((B − λ I5)2) 2 w2 0

ker((B − λ I5)3) 3 w3 0
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w1 = (4,2,−2,0,−2)

w2 = (−8,−1,5,2,5)

w3 = (1,0,0,−1,−2)

6. Investigation of the second eigenvalue.

We work now with the eigenvalue λ = 2.

7. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 8 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 7. The solution will be completely independent from this
section.

We start from the matrix A.

A =


−1 1 0 0 0

0 −1 1 0 0

0 0 −1 0 0

0 0 0 2 1

0 0 0 0 2



 
( ) .

We subtract from this matrix A the matrix λ I5.

A− λ I5 =


−3 1 0 0 0

0 −3 1 0 0

0 0 −3 0 0

0 0 0 0 1

0 0 0 0 0



 
( ) .
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We see that the space span
{
e4,e5

}
is invariant relative to A− λ I5. If we

restrict A − λ I5 to this space, we have a nilpotent operator and we can
apply the techniques learned in part 2.

We want to investigate the endomorphism A − λ I5 restricted to this
space. We compute now the powers of A− λ I5.

A− λ I5 =


−3 1 0 0 0

0 −3 1 0 0

0 0 −3 0 0

0 0 0 0 1

0 0 0 0 0



 
( ) ,

(A− λ I5)2 =


9 −6 1 0 0

0 9 −6 0 0

0 0 9 0 0

0 0 0 0 0

0 0 0 0 0



 
( ) .

Let us visualise this situation.

(a) Visualisation of (A− λ I5). (b) Visualisation of (A− λ I5)2.

Figure 46

We give here some comment on the preceding figure.
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We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells represent the number 0. The red
cells represent the number 1. All the blocks with green cells in it will be
keeping the same look however large we take the powers of this matrix.

If we restrict the mapping A− λ I5 to the subspace span
{
e4,e5

}
which is

an invariant subspace with respect to the operator A−λ I5, then we have
the classic case of a nilpotent operator on a finite dimensional space.
The nilpotent operator has degree of nilpotency 2. Let us take a look at
the second elementary Jordan block in this matrix. We observe that the
original superdiagonal of 1’s in the second block of A − λ I5 are going
upwards in their respective elementary Jordan blocks associated with
the nilpotent part of the transformation A − λ I5 when increasing the
powers of the matrix A − λ I5. It finally disappears when taking the
second power of A− λ I5.

All these green elementary Jordan blocks have the same look however
large the exponent of A − λ I5. The yellow cells are representing the
number zero. The nilpotent part of the matrix is the second elementary
Jordan block. It changes by moving the superdiagonal upwards when
increasing the exponents of A− λ I5.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that{

ker(A− λ I5) = span
{
e4
}
;

ker(A− λ I5)2 = span
{
e4,e5

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I5) 1 1 = dim(ker(A− λ I5))

ker(A− λ I5)2 2 1 = dim(ker(A− λ I5)2)− dim(ker(A− λ I5))
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We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I5)i)−dim(ker(A−
λ I5)i−1). In the first row, we have dim(ker(A− λ I5)).

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A− λ I5) ⊊ ker(A− λ I5)2 = ker(A− λ I5)3 = · · · .

We remark by looking at the matrices (A−λ I5)i that we have the follow-
ing mappings {

(A− λ I5) e5 = e4,
(A− λ I5) e4 = 0.

We remark by looking at the matrices (A− λ I5)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I5) e5 = e4,

(A− λ I5)2 e5 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e4 = (A− λ I5) e5,e5

}
.

After we have found the Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I5) 1 e4 0

ker(A− λ I5)2 2 e5 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.
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8. Kernels of (B− λ I5)i.

Kernel of (B− λ I5).
We calculate the kernel of B − λ I5.

The matrix B − λ I5 is

B − λ I5 =


−2 0 −5 4 1
−4 3 −4 −1 −1

2 1 4 −5 1
0 −1 1 2 −2
3 −2 5 0 −1

 .
We have to solve the matrix equation

−2 0 −5 4 1
−4 3 −4 −1 −1

2 1 4 −5 1
0 −1 1 2 −2
3 −2 5 0 −1



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

−2z1 − 5z3 + 4z4 + z5 = 0,
−4z1 + 3z2 − 4z3 − z4 − z5 = 0,

2z1 + z2 + 4z3 − 5z4 + z5 = 0,
− z2 + z3 + 2z4 − 2z5 = 0,

3z1 − 2z2 + 5z3 − z5 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I5) =
{
(r1, r1/2,−r1/2,0,−r1/2) | r1 ∈ K

}
= span

{
(1,1/2,−1/2,0,−1/2)

}
.

Kernel of (B− λ I5)2.
We calculate the kernel of (B − λ I5)2.

The matrix (B − λ I5)2 is
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(B − λ I5)2 =


−3 −11 −1 25 −16
−15 8 −14 −1 −8

3 10 2 −23 14
0 0 0 0 0
9 1 8 −11 11

 .
We have to solve the matrix equation

−3 −11 −1 25 −16
−15 8 −14 −1 −8

3 10 2 −23 14
0 0 0 0 0
9 1 8 −11 11



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

− 3 z1 − 11z2 − z3 + 25z4 − 16z5 = 0,
−15z1 + 8 z2 − 14z3 − z4 − 8 z5 = 0,

3 z1 + 10z2 + 2 z3 − 23z4 + 14z5 = 0,
9 z1 + z2 + 8 z3 − 11z4 + 11z5 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I5)2 =
{
(r1, r2,−2 r1/3+ r2/3,−r1/3+ 2 r2/3,−2 r1/3+ r2/3)

| r1, r2 ∈ K
}

= span
{
(1,0,−2/3,−1/3,−2/3), (0,1,1/3,2/3,1/3)

}
.

Kernel of (B− λ I5)3.
We calculate the kernel of (B − λ I5)3.

The matrix (B − λ I5)3 is

(B − λ I5)3 =


−54 72 −126 −63 144
−27 9 −36 −18 18

27 −36 63 18 −72
0 −27 27 27 −54

27 −63 90 72 −126

 .
We have to solve the matrix equation
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−54 72 −126 −63 144
−27 9 −36 −18 18

27 −36 63 18 −72
0 −27 27 27 −54

27 −63 90 72 −126



z1

z2

z3

z4

z5

 =


0
0
0
0
0

 .
This results in having to solve the following system of linear equations.

−54z1 + 72z2 − 126z3 − 63z4 + 144z5 = 0,
−27z1 + 9 z2 − 36 z3 − 18z4 + 18 z5 = 0,

27z1 − 36z2 + 63 z3 + 18z4 − 72 z5 = 0,
− 27z2 + 27 z3 + 27z4 − 54 z5 = 0,

27z1 − 63z2 + 90 z3 + 72z4 − 126z5 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I5)3 =
{
(r1, r2,−r1,0,−r1/2− r2/2) | r1, r2 ∈ K

}
= span

{
(1,0,−1,0,−1/2), (0,1,0,0,−1/2)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality from the second power onwards in the following
chain of inclusion of sets.

ker(B − λ I5) ⊊ ker((B − λ I5)2) = ker((B − λ I5)3) · · · .
We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I5) 1 1 = dim(ker(B − λ I5))

ker(B − λ I5)2 2 1 = dim(ker(B − λ I5)2)− dim(ker(B − λ I5))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I5)i))−dim(ker((B−λ I5)i−1)). The first
number of this last column is dim(ker(B − λ I5)).
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9. Calculation of Jordan chains.

Calculation of the Jordan chain.
We look for a linearly independent set of vectors

{
w4,w5

}
satisfying{

(B − λ I5) w4 = 0,
(B − λ I5) w5 = w4,

or {
(B − λ I5)2 w5 = 0,
(B − λ I5) w5 = w4

where w5 is in the vector space ker((B − λ I5)2) but not in ker(B − λ I5).

We look for a generating vector w5. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I5) and must be independent from
vectors that were already chosen in ker(B − λ I5)2. We know that

ker((B − λ I5)2) = span
{
(1,0,−1,0,−1/2), (0,1,0,0,−1/2)

}
.

We have at this point not chosen any vector of height 2 in ker((B−λ I5)2).

We know that a vector in ker((B − λ I5)2) must be of the form

a (1,0,−1,0,−1/2)+ b (0,1,0,0,−1/2) = (a,b,−a,0,−a/2).

We remember also

ker(B − λ I5) = span
{
(1,1/2,−1/2,0,−1/2)

}
.

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(

1 1/2 −1/2 0 −1/2
a b −a 0 −a/2− b/2

)
.

We row reduce this matrix H and if we impose a− 2b ≠ 0, we find(
1 0 b−a

a−2b 0 a−b
2 (2b−a)

0 1 a
a−2b 0 − b

2b−a

)
.

We see that these vectors are independent if we impose the condition
a− 2b ≠ 0. We can choose a = 2 and b = 0.
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We have the generating vector

w5 = (2,0,−2,0,−1).

We start with w5 = (2,0,−2,0,−1).

We calculate w4.

w4 = (B − λ I5) w5

=


−5 0 −5 4 1
−4 0 −4 −1 −1

2 1 1 −5 1
0 −1 1 −1 −2
3 −2 5 0 −4




2
0

−2
0

−1

 =


−1

1
1
0
0

 .

So we have the Jordan chain

{
w4 = (−1,1,1,0,0),w5 = (2,0,−2,0,−1)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I5) 1 w4 0

ker(B − λ I5)2 2 w5 0

with

w4 = (−1,1,1,0,0)

w5 = (2,0,−2,0,−1)

10. Result and check of the result.
We construct the matrix of base change P with the coordinates of the
vectors wi found in the Jordan chains in the columns of P .
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P =


4 −8 1 −1 2
2 −1 0 1 0

−2 5 0 1 −2
0 2 −1 0 0

−2 5 −2 0 −1

 .

P−1 B P =


1/2 −1/8 5/8 1 −1/4
0 −1/4 1/4 1 −1/2
0 −1/2 1/2 1 −1
−1 1 −1 −1 0
−1 0 −1 1 −1



×


−3 0 −5 4 1
−4 2 −4 −1 −1

2 1 3 −5 1
0 −1 1 1 −2
3 −2 5 0 −2



×


4 −8 1 −1 2
2 −1 0 1 0

−2 5 0 1 −2
0 2 −1 0 0

−2 5 −2 0 −1



=


−1 1 0 0 0

0 −1 1 0 0

0 0 −1 0 0

0 0 0 2 1

0 0 0 0 2



 
( ) .
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32 exercise. (4× 4); (J2(−2), J2(2)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible
a matrix A similar to B such that A is in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =


10 5 3 4

−12 −7 −3 −4
−8 −5 −1 −4
−5 −1 −4 −2

 .
Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial.

pC-H(λ) = |B − λ I4| = (λ− 2)2 (λ+ 2)2.

We see that the characteristic Cayley-Hamilton polynomial pC-H(λ) can
be factorised in linear polynomials over the field K. So we can apply the
Jordan normalisation machinery.

The eigenvalue λ = −2 has algebraic multiplicity 2, The eigenvalue λ = 2
has algebraic multiplicity 2.

2. Investigation of the first eigenvalue.

We work now with the eigenvalue λ = −2.

3. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
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after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 4 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 3. The solution will be completely independent from this
section.

We start from the matrix A.

A =


−2 1 0 0

0 −2 0 0

0 0 2 1

0 0 0 2


( )

( ) .

We subtract from this matrix A the matrix λ I4.

A− λ I4 =


0 1 0 0

0 0 0 0

0 0 4 1

0 0 0 4


( )

( ) .

We compute also the powers of A− λ I4.

A− λ I4 =


0 1 0 0

0 0 0 0

0 0 4 1

0 0 0 4


( )

( ) ,

(A− λ I4)2 =


0 0 0 0

0 0 0 0

0 0 16 8

0 0 0 16


( )

( ) .

Let us visualise this situation.
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(a) Visualisation of A− λ I4. (b) Visualisation of (A− λ I4)2.

Figure 47

We give some comment on the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.
The red cells represent the number 1. All the blocks with green cells in it
will be keeping the same look however large we take the powers of this
matrix.

If we restrict the mapping A− λ I4 to the subspace span
{
e1,e2

}
which is

an invariant subspace with respect to the operator A−λ I4, then we have
the classic case of a nilpotent operator on a finite dimensional space.
The nilpotent operator has degree of nilpotency 2. Let us take a look
at the first elementary Jordan block in this matrix. We observe that
the original superdiagonals of 1’s in the first block of A − λ I4 is going
upwards in its elementary Jordan block associated with the nilpotent
part of the transformation A − λ I4 when increasing the powers of the
matrix A − λ I4. It finally disappears when taking the second power of
A− λ I4.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that
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{
ker(A− λ I4) = span

{
e1
}
;

ker(A− λ I4)2 = span
{
e1,e2

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I4) 1 1 = dim(ker(A− λ I4))

ker(A− λ I4)2 2 1 = dim(ker(A− λ I4)2)− dim(ker(A− λ I4))

We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I4)i)−dim(ker(A−
λ I4)i−1). In the first row, we have dim(ker(A− λ I4)).

We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A− λ I4) ⊊ ker(A− λ I4)2 = ker(A− λ I4)3 = · · · .

We remark by looking at the matrices (A−λ I4)i that we have the follow-
ing mappings {

(A− λ I4) e2 = e1,
(A− λ I4) e1 = 0.

We remark by looking at the matrices (A− λ I4)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I4) e2 = e1,

(A− λ I4)2 e2 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e1 = (A− λ I4) e2,e2

}
.
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After we have found the first Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I4) 1 e1 0

ker(A− λ I4)2 1 e2 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

4. Kernels of (B− λ I4)i.

Kernel of (B− λ I4).
We calculate the kernel of B − λ I4.

The matrix B − λ I4 is

B − λ I4 =


12 5 3 4

−12 −5 −3 −4
−8 −5 1 −4
−5 −1 −4 0

 .
We have to solve the matrix equation

12 5 3 4
−12 −5 −3 −4
−8 −5 1 −4
−5 −1 −4 0



z1

z2

z3

z4

 =


0
0
0
0

 .
This results in having to solve the following system of linear equations.

12z1 + 5z2 + 3z3 + 4z4 = 0,
−12z1 − 5z2 − 3z3 − 4z4 = 0,
− 8 z1 − 5z2 + z3 − 4z4 = 0,
− 5 z1 − z2 − 4z3 = 0.

We solve this system and this gives us the solutions set which is a sub-
space
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ker(B − λ I4) =
{
(r1,−r1,−r1,−r1) | r1 ∈ K

}
= span

{
(1,−1,−1,−1)

}
.

Kernel of (B− λ I4)2.
We calculate the kernel of (B − λ I4)2.

The matrix (B − λ I4)2 is

(B − λ I4)2 =


40 16 8 16

−40 −16 −8 −16
−24 −16 8 −16
−16 0 −16 0

 .
We have to solve the matrix equation

40 16 8 16
−40 −16 −8 −16
−24 −16 8 −16
−16 0 −16 0



z1

z2

z3

z4

 =


0
0
0
0

 .
This results in having to solve the following system of linear equations.

40z1 + 16z2 + 8 z3 + 16z4 = 0,
−40z1 − 16z2 − 8 z3 − 16z4 = 0,
−24z1 − 16z2 + 8 z3 − 16z4 = 0,
−16z1 − 16z3 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I4)2 =
{
(r1, r2,−r1,−2 r1 − r2) | r1, r2 ∈ K

}
= span

{
(1,0,−1,−2), (0,1,0,−1)

}
.

Kernel of (B− λ I4)3.
We calculate the kernel of (B − λ I4)3.

The matrix (B − λ I4)3 is
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(B − λ I4)3 =


144 64 16 64

−144 −64 −16 −64
−80 −64 48 −64
−64 0 −64 0

 .
We have to solve the matrix equation

144 64 16 64
−144 −64 −16 −64
−80 −64 48 −64
−64 0 −64 0



z1

z2

z3

z4

 =


0
0
0
0

 .
This results in having to solve the following system of linear equations.

144z1 + 64z2 + 16z3 + 64z4 = 0,
−144z1 − 64z2 − 16z3 − 64z4 = 0,
− 80 z1 − 64z2 + 48z3 − 64z4 = 0,
− 64 z1 − 64z3 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I4)3 =
{
(r1, r2,−r1,−2 r1 − r2) | r1, r2 ∈ K

}
= span

{
(1,0,−1,−2), (0,1,0,−1)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality from the second power onwards in the following
chain of inclusion of sets.

ker(B − λ I4) ⊊ ker((B − λ I4)2) = ker((B − λ I4)3) · · · .
We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I4) 1 1 = dim(ker(B − λ I4))

ker(B − λ I4)2 2 1 = dim(ker(B − λ I4)2)− dim(ker(B − λ I4))
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The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I4)i))−dim(ker((B−λ I4)i−1)). The first
number of this last column is dim(ker(B − λ I4)).

5. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w1,w2

}
satisfying{

(B − λ I4) w1 = 0,
(B − λ I4) w2 = w1

or {
(B − λ I4)2 w2 = 0,
(B − λ I4) w2 = w1

where w2 is in the vector space ker((B − λ I4)2) but not in ker((B − λ I4)).

We look for a generating vector w2. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I4) and must be independent from
vectors of height 2 that were already chosen in ker(B − λ I4)2. We know
that

ker((B − λ I4)2) = span
{
(1,0,−1,−2), (0,1,0,−1)

}
.

We have at this point not chosen any vector of height 2 in ker((B−λ I4))2.

We know that a vector in ker((B − λ I4)2) must be of the form

a (1,0,−1,−2)+ b (0,1,0,−1) = (a,b,−a,−2a− b).

We remember that

ker(B − λ I4) = span
{
(1,−1,−1,−1)

}
.

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(

1 −1 −1 −1
a b −a −2a− b

)
.

We row reduce this matrix H and if we impose a+ b ≠ 0, we find(
1 0 −1 −2
0 1 0 −1

)
.
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We see that these vectors are independent if we impose the condition
a+ b ≠ 0. We can choose a = 1 and b = 0.

We have the generating vector

w2 = (1,0,−1,−2).

We start with w2 = (1,0,−1,−2).

We calculate

w1 = (B − λ I4) w2

=


12 5 3 4

−12 −5 −3 −4
−8 −5 1 −4
−5 −1 −4 0




1
0

−1
−2

 =


1

−1
−1
−1

 .

We have the Jordan chain

{
w1 = (1,−1,−1,−1),w2 = (1,0,−1,−2)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I4) 1 w1 0

ker((B − λ I4)2) 2 w2 0

with

w1 = (1,−1,−1,−1)

w2 = (1,0,−1,−2)
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6. Investigation of the second eigenvalue.

We work now with the eigenvalue λ = 2.

7. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 8 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 7. The solution will be completely independent from this
section.

We start from the matrix A.

A =


−2 1 0 0

0 −2 0 0

0 0 2 1

0 0 0 2


( )

( ) .

We subtract from this matrix A the matrix λ I4.

A− λ I4 =


−4 1 0 0

0 −4 0 0

0 0 0 1

0 0 0 0


( )

( ) .

We see that the space span
{
e3,e4

}
is invariant relative to A− λ I4. If we

restrict A − λ I4 to this space, we have a nilpotent operator and we can
apply the techniques learned in part 2.

We want to investigate the endomorphism A − λ I4 restricted to this
space. We compute now the powers of A− λ I4.
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A− λ I4 =


−4 1 0 0

0 −4 0 0

0 0 0 1

0 0 0 0


( )

( ) ,

(A− λ I4)2 =


16 −8 0 0

0 16 0 0

0 0 0 0

0 0 0 0


( )

( ) .

Let us visualise this situation.

(a) Visualisation of (A− λ I4). (b) Visualisation of (A− λ I4)2.

Figure 48

We give here some comment on the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.
The red cells represent the number 1. All the blocks with green cells in it
will be keeping the same look however large we take the powers of this
matrix.

If we restrict the mapping A− λ I4 to the subspace span
{
e3,e4

}
which is

an invariant subspace with respect to the operator A−λ I4, then we have
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the classic case of a nilpotent operator on a finite dimensional space.
The nilpotent operator has degree of nilpotency 2. Let us take a look
at the second elementary Jordan block in this matrix. We observe that
the original superdiagonal of 1’s in the second block of A− λ I4 is going
upwards in its elementary Jordan block associated with the nilpotent
part of the transformation A − λ I4 when increasing the powers of the
matrix A − λ I4. It finally disappears when taking the second power of
A− λ I4.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that{

ker(A− λ I4) = span
{
e3
}
;

ker(A− λ I4)2 = span
{
e3,e4

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I4) 1 1 = dim(ker(A− λ I4))

ker(A− λ I4)2 2 1 = dim(ker(A− λ I4)2)− dim(ker(A− λ I4))

We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I4)i)−dim(ker(A−
λ I4)i−1). In the first row, we have dim(ker(A− λ I4)).

We see that the kernels are starting to stabilise. We mean by this that
we are having equality from the second power onwards in the following
chain of inclusion of sets.

ker(A− λ I4) ⊊ ker(A− λ I4)2 = ker(A− λ I4)3 = · · · .

We remark by looking at the matrices (A−λ I4)i that we have the follow-
ing mappings
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{
(A− λ I4) e4 = e3,
(A− λ I4) e3 = 0.

We remark by looking at the matrices (A− λ I4)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I4) e4 = e3,

(A− λ I4)2 e4 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e3 = (A− λ I4) e4,e4

}
.

After we have found the first Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I4) 1 e3 0

ker(A− λ I4)2 1 e4 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

8. Kernels of (B− λ I4)i.

Kernel of (B− λ I4).
We calculate the kernel of B − λ I4.

The matrix B − λ I4 is

B − λ I4 =


12 5 3 4

−12 −5 −3 −4
−8 −5 1 −4
−5 −1 −4 0

 .
We have to solve the matrix equation
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12 5 3 4

−12 −5 −3 −4
−8 −5 1 −4
−5 −1 −4 0



z1

z2

z3

z4

 =


0
0
0
0

 .
This results in having to solve the following system of linear equations.

12z1 + 5z2 + 3z3 + 4z4 = 0,
−12z1 − 5z2 − 3z3 − 4z4 = 0,
− 8 z1 − 5z2 + z3 − 4z4 = 0,
− 5 z1 − z2 − 4z3 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I4) =
{
(r1,−r1,−r1,−r1) | r1 ∈ K

}
= span

{
(1,−1,−1,−1)

}
.

Kernel of (B− λ I)2.
We calculate the kernel of (B − λ I4)2.

The matrix (B − λ I4)2 is

(B − λ I4)2 =


−40 −24 −16 −16

56 40 16 16
40 24 16 16
24 8 16 16

 .
We have to solve the matrix equation

−40 −24 −16 −16
56 40 16 16
40 24 16 16
24 8 16 16



z1

z2

z3

z4

 =


0
0
0
0

 .
This results in having to solve the following system of linear equations.

−40z1 − 24z2 − 16z3 − 16z4 = 0,
56z1 + 40z2 + 16z3 + 16z4 = 0,
40z1 + 24z2 + 16z3 + 16z4 = 0,
24z1 + 8 z2 + 16z3 + 16z4 = 0.
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We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I4)2 =
{
(r1,−r1, r3,−r1 − r3) | r1, r3 ∈ K

}
= span

{
(1,−1,0,−1), (0,0,1,−1)

}
.

Kernel of (B− λ I)3.
We calculate the kernel of (B − λ I4)3.

The matrix (B − λ I4)3 is

(B − λ I4)3 =


176 112 64 64

−240 −176 −64 −64
−176 −112 −64 −64
−112 −48 −64 −64

 .
We have to solve the matrix equation

176 112 64 64
−240 −176 −64 −64
−176 −112 −64 −64
−112 −48 −64 −64



z1

z2

z3

z4

 =


0
0
0
0

 .
This results in having to solve the following system of linear equations.

176z1 + 112z2 + 64z3 + 64z4 = 0,
−240z1 − 176z2 − 64z3 − 64z4 = 0,
−176z1 − 112z2 − 64z3 − 64z4 = 0,
−112z1 − 48 z2 − 64z3 − 64z4 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I4)3 =
{
(r1,−r1, r3,−r1 − r3) | r1, r3 ∈ K

}
= span

{
(1,−1,0,−1), (0,0,1,−1)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality from the second power onwards in the following
chain of inclusion of sets.
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ker(B − λ I4) ⊊ ker((B − λ I4)2) = ker((B − λ I4)3) = · · · .
We assemble all this information in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I4) 1 1 = dim(ker(B − λ I4))

ker(B − λ I4)2 2 1 = dim(ker(B − λ I4)2)− dim(ker(B − λ I4))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I4)i))−dim(ker((B−λ I4)i−1)). The first
number of this last column is dim(ker(B − λ I4)).

9. Calculation of Jordan chains.

Calculation of the Jordan chain.
We look for a linearly independent set of vectors

{
w3,w4

}
.{

(B − λ I4) w3 = 0,
(B − λ I4) w4 = w3.

where w4 is in the vector space ker((B − λ I4)2) but not in ker(B − λ I4).

We look for a generating vector w4. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I4) and must be independent from
vectors of height 2 that were already chosen in ker(B − λ I4)2. We know
that

ker((B − λ I4)2) = span
{
(1,−1,0,−1), (0,0,1,−1)

}
.

We have at this point not chosen in ker((B − λ I4)2) any vector of height
2.

We know that a vector in ker((B − λ I4)2) must be of the form

a (1,−1,0,−1)+ b (0,0,1,−1) = (a,−a,b,−a− b).

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.
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H =
(

1 −1 −1 0
a −a b −a− b

)
.

We row reduce this matrix H and if we impose a+ b ≠ 0, we find(
1 −1 0 −1
0 0 1 −1

)
.

We see that these vectors are independent if we impose the condition
a+ b ≠ 0. We can choose a = 1 and b = 0.

We have the generating vector

w4 = (1,−1,0,−1).

We start with w4 = (1,−1,0,−1).

We calculate w3.

w3 = (B − λ I4) w4

=


8 5 3 4

−12 −9 −3 −4
−8 −5 −3 −4
−5 −1 −4 −4




1
−1

0
−1

 =


−1

1
1
0

 .

We have the Jordan chain

{
w3 = (−1,1,1,0),w4 = (1,−1,0,−1)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I4) 1 w3 0

ker(B − λ I4)2 2 w4 0

with
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w3 = (−1,1,1,0)

w4 = (1,−1,0,−1)

10. Result and check of the result.
We construct the matrix of base change P with the coordinates of the
vectors wi found in the Jordan chains in the columns of P .

P =


1 1 −1 1

−1 0 1 −1
−1 −1 1 0
−1 −2 0 −1

 .

P−1 B P =


−3 −2 −1 −1

1 1 0 0
−2 −1 0 −1

1 0 1 0



×


10 5 3 4

−12 −7 −3 −4
−8 −5 −1 −4
−5 −1 −4 −2



×


1 1 −1 1

−1 0 1 −1
−1 −1 1 0
−1 −2 0 −1



=


−2 1 0 0

0 −2 0 0

0 0 2 1

0 0 0 2


( )

( ) .
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33 exercise. (3× 3); (J3(−2)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible
a matrix A similar to B such that A is in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =

 −4 0 1
−3 −3 2
−5 −1 1

 .
Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial.

pC-H(λ) = |B − λ I3| = −(λ+ 2)3.

We see that the characteristic Cayley-Hamilton polynomial pC-H(λ) can
be factorised in linear polynomials over the field K. So we can apply the
Jordan normalisation machinery.

The eigenvalue λ = −2 has algebraic multiplicity 3.

2. investigating the eigenvalue

We work now with the eigenvalue λ = −2.

3. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
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this subsection and start with subsection 4 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 3. The solution will be completely independent from this
section.

We start from the matrix A.

A =

 −2 1 0

0 −2 1

0 0 −2

  .

We subtract from this matrix A the matrix λ I3.

A− λ I3 =

 0 1 0

0 0 1

0 0 0

  .

We compute also the powers of A− λ I3.

A− λ I3 =

 0 1 0

0 0 1

0 0 0

  ,

(A− λ I3)2 =

 0 0 1

0 0 0

0 0 0

  ,

(A− λ I3)3 =

 0 0 0

0 0 0

0 0 0

  .

Let us visualise this situation.
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(a) Visualisation of A− λ I3. (b) Visualisation of (A− λ I3)2.

(c) Visualisation of (A− λ I3)3.

Figure 49

We give some comment on the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.
The red cells represent the number 1. All the blocks with green cells in it
will be keeping the same look however large we take the powers of this
matrix.

If we restrict the mapping A−λ I3 to the subspace span
{
e1,e2,e3

}
which

is an invariant subspace with respect to the operator A − λ I3, then we
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have the classic case of a nilpotent operator on a finite dimensional
space. Remark that the word restriction is not necessary here because
we have only one elementary Jordan block. The nilpotent operator has
degree of nilpotency 3. Let us take a look at the first and only elementary
Jordan block in this matrix. We observe that the original superdiagonal
of 1’s in the first and only block of A − λ I3 is going upwards in its
elementary Jordan block associated with the nilpotent part of the trans-
formation A− λ I3 when increasing the powers of the matrix A− λ I3. It
finally disappears when taking the third power of A− λ I3.

Investigation of the Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that

ker(A− λ I3) = span
{
e1
}
;

ker(A− λ I3)2 = span
{
e1,e2

}
;

ker(A− λ I3)3 = span
{
e1,e2,e3

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I3) 1 1 = dim(ker(A− λ I3))

ker(A− λ I3)2 2 1 = dim(ker(A− λ I3)2)− dim(ker(A− λ I3))

ker(A− λ I3)3 3 1 = dim(ker(A− λ I3)3)− dim(ker(A− λ I3)2)

We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I3)i)−dim(ker(A−
λ I3)i−1). In the first row, we have dim(ker(A− λ I3)).

We see also that there is equality in the inclusion of sets from the third
power onwards.

ker(A− λ I3) ⊊ ker(A− λ I3)2 ⊊ ker(A− λ I3)3 = ker(A− λ I3)4 = · · · .



www.mathandphoto.eu. Exercise Notes Jordan 644

We remark by looking at the matrices (A−λ I3)i that we have the follow-
ing mappings 

(A− λ I3) e3 = e2,
(A− λ I3) e2 = e1,
(A− λ I3) e1 = 0.

We remark by looking at the matrices (A− λ I3)i or as a consequence of
the previous mappings that we have also the following mappings

(A− λ I3) e3 = e2,

(A− λ I3)2 e3 = e1,

(A− λ I3)3 e3 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e1 = (A− λ I3)2 e3,e2 = (A− λ I3) e3,e3

}
.

After we have found the first Jordan chain of length 3, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I3) 1 e1 0

ker(A− λ I3)2 2 e2 0

ker(A− λ I3)3 3 e3 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

4. Kernels of (B− λ I3)i.

Kernel of (B− λ I3).
We calculate the kernel of B − λ I3.

The matrix B − λ I3 is
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B − λ I3 =

 −2 0 1
−3 −1 2
−5 −1 3

 .
We have to solve the matrix equation −2 0 1

−3 −1 2
−5 −1 3

  z1

z2

z3

 =

 0
0
0

 .
This results in having to solve the following system of linear equations.

−2z1 + z3 = 0,
−3z1 − z2 + 2z3 = 0,
−5z1 − z2 + 3z3 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I3) =
{
(r1, r1,2 r1) | r1 ∈ K

}
= span

{
(1,1,2)

}
.

Kernel of (B− λ I3)2.
We calculate the kernel of (B − λ I3)2.

The matrix (B − λ I3)2 is

(B − λ I3)2 =

 −1 −1 1
−1 −1 1
−2 −2 2

 .
We have to solve the matrix equation −1 −1 1

−1 −1 1
−2 −2 2

  z1

z2

z3

 =

 0
0
0

 .
This results in having to solve the following system of linear equations.

− z1 − z2 + z3 = 0,
− z1 − z2 + z3 = 0,
−2z1 − 2z2 + 2z3 = 0.
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We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I3)2 =
{
(r1, r2, r1 + r2) | r1, r2 ∈ K

}
= span

{
(1,0,1), (0,1,1)

}
.

Kernel of (B− λ I3)3.
We calculate the kernel of (B − λ I3)3.

The matrix (B − λ I3)3 is

(B − λ I3)3 =

 0 0 0
0 0 0
0 0 0

 .
We have to solve the matrix equation 0 0 0

0 0 0
0 0 0

  z1

z2

z3

 =

 0
0
0

 .
We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I3)3 = K3.

Kernel of (B− λ I3)4.
We calculate the kernel of (B − λ I3)4. The matrix (B − λ I3)4 is

(B − λ I3)4 =

 0 0 0
0 0 0
0 0 0

 .
We have again that ker(B − λ I3)4 = K3.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that we
are having equality from the third power onwards in the following chain
of inclusion of sets.

ker(B − λ I3) ⊊ ker((B − λ I3)2) ⊊ ker((B − λ I3)3) = ker((B − λ I3)4) = · · · .

We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I3) 1 1 = dim(ker(B − λ I3))

ker(B − λ I3)2 2 1 = dim(ker((B − λ I3)2))− dim(ker(B − λ I3))

ker(B − λ I3)3 3 1 = dim(ker((B − λ I3)3))− dim(ker((B − λ I3)2))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I3)i))−dim(ker((B−λ I3)i−1)). The first
number of this last column is dim(ker(B − λ I3)).

5. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w1,w2,w3

}
satisfying

(B − λ I3) w1 = 0,
(B − λ I3) w2 = w1,
(B − λ I3) w3 = w2.

where w3 is in the vector space ker((B − λ I3)3) but not in ker((B − λ I3)2).

We look for a generating vector w3. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I3)2 and must be independent from
vectors of height 3 that were already chosen in ker(B − λ I3)3. We know
that

ker((B − λ I3)3) = span
{
(1,0,0), (0,1,0), (0,0,1)

}
.

We know that a vector in ker((B − λ I3)3) must be of the form

a (1,0,0)+ b (0,1,0)+ c (0,0,1) = (a,b, c).

We remember also that

ker(B − λ I3)2 = span
{
(1,0,1), (0,1,1)

}
.

So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.
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H =

 1 0 1
0 1 1
a b c

 .
We row reduce this matrix H and if we impose a+ b − c ≠ 0, we find 1 0 0

0 1 0
0 0 1

 .
We see that these vectors are independent if we impose the condition
a+ b − c ≠ 0. We can choose a = 1, b = 0 and c = 0.

We have the generating vector

w3 = (1,0,0).

We start with w3 = (1,0,0).

We calculate w2.

w2 = (B − λ I3) w3 =

 −2 0 1
−3 −1 2
−5 −1 3

  1
0
0

 =

 −2
−3
−5


and

w1 = (B − λ I3)2 w4 =

 −1 −1 1
−1 −1 1
−2 −2 2

  1
0
0

 =

 −1
−1
−2

 .
We have the Jordan chain

{
w1 = (−1,−1,−2),w2 = (−2,−3,−5),w3 = (1,0,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I3) 1 w1 0

ker(B − λ I3)2 2 w2 0

ker(B − λ I3)3 3 w3 0
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with

w1 = (−1,−1,−2)

w2 = (−2,−3,−5)

w3 = (1,0,0)

6. Result and check of the result.
We construct the matrix of base change P with the coordinates of the
vectors wi found in the Jordan chains in the columns of P .

P =

 −1 −2 1
−1 −3 0
−2 −5 0

 .

P−1 B P =

 0 5 −3
0 −2 1
1 1 −1

  −4 0 1
−3 −3 2
−5 −1 1

  −1 −2 1
−1 −3 0
−2 −5 0


=

 −2 1 0
0 −2 1
0 0 −2



=

 −2 1 0

0 −2 1

0 0 −2

  .
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34 exercise. (3× 3); (J2(3), J1(−2)).

Use the relevant vector spaces ker(B−λ I)j to investigate and predict the
structure of the Jordan normal form of the matrix B. Find if possible
a matrix A similar to B such that A is in Jordan normal form. Find
explicitly a matrix P that is invertible and represents the base change:
A = P−1 B P . Find explicitly Jordan chains that are necessary to construct
the matrix P .

B =

 10 1 5
−14 1 −10
−12 −1 −7

 .
Solution.

1. Eigenvalues and the characteristic polynomial.

We check first the eigenvalues by computing the Cayley-Hamilton or
characteristic polynomial.

pC-H(λ) = |B − λ I3| = −(λ− 3)2 (λ+ 2).

We see that the characteristic Cayley-Hamilton polynomial pC-H(λ) can
be factorised in linear polynomials over the field K. So we can apply the
Jordan normalisation machinery.

The eigenvalue λ = 3 has algebraic multiplicity 2. The eigenvalue λ = −2
has algebraic multiplicity 1.

2. Investigation of the first eigenvalue.

We work now with the eigenvalue λ = 3.

3. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
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this subsection and start with subsection 4 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 3. The solution will be completely independent from this
section.

We start from the matrix A.

A =

 3 1 0
0 3 0
0 0 −2

( )
( ) .

We subtract from this matrix A the matrix λ I3.

A− λ I3 =

 0 1 0
0 0 0
0 0 −5

( )
( ) .

We compute also the powers of A− λ I3.

A− λ I3 =

 0 1 0
0 0 0
0 0 −5

( )
( ) ,

(A− λ I3)2 =

 0 0 0
0 0 0
0 0 25

( )
( ) .

Let us visualise this situation.

(a) Visualisation of A− λ I3. (b) Visualisation of (A− λ I3)2.

Figure 50
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We give here some comment on the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The yellow cells are representing the number zero.
The red cells represent the number 1.

All the block with green cells in it will be keeping the same look how-
ever large we take the powers of this matrix. If we restrict the mapping
A−λ I3 to the subspace span

{
e1,e2

}
which is an invariant subspace with

respect to the operator A−λ I3, then we have the classic case of a nilpo-
tent operator on a finite dimensional space. The nilpotent operator has
degree of nilpotency 2. Let us take a look at the first elementary Jordan
block in this matrix. We observe that the original superdiagonal of 1’s
in the first block of A − λ I3 is going upwards in its elementary Jordan
block associated with the nilpotent part of the transformation A − λ I3
when increasing the powers of the matrix A−λ I3. They finally disappear
when taking the second power of A− λ I3.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that{

ker(A− λ I3) = span
{
e1
}
;

ker(A− λ I3)2 = span
{
e1,e2

}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I3) 1 1 = dim(ker(A− λ I3))

ker(A− λ I3)2 2 1 = dim(ker(A− λ I3)2)− dim(ker(A− λ I3))

We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I3)i)−dim(ker(A−
λ I3)i−1). In the first row, we have dim(ker(A− λ I3)).
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We see also that there is equality in the inclusion of sets from the second
power onwards.

ker(A− λ I3) ⊊ ker(A− λ I3)2 = ker(A− λ I3)3 = · · · .

We remark by looking at the matrices (A−λ I3)i that we have the follow-
ing mappings {

(A− λ I3) e2 = e1,
(A− λ I3) e1 = 0.

We remark by looking at the matrices (A− λ I3)i or as a consequence of
the previous mappings that we have also the following mappings{

(A− λ I3) e2 = e1,

(A− λ I3)2 e2 = 0.

One sees that we have a Jordan chain of linearly independent vectors.
We write a Jordan chain in reverse order.

{
e1 = (A− λ I3) e2,e2

}
.

After we have found the first Jordan chain of length 2, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I3) 1 e1 0

ker(A− λ I3)2 2 e2 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

4. Kernels of (B− λ I3)i.

Kernel of (B− λ I3).

We calculate the kernel of B − λ I3.

The matrix B − λ I3 is
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B − λ I3 =

 7 1 5
−14 −2 −10
−12 −1 −10

 .
We have to solve the matrix equation 7 1 5

−14 −2 −10
−12 −1 −10

  z1

z2

z3

 =

 0
0
0

 .
This results in having to solve the following system of linear equations.

7 z1 + z2 + 5 z3 = 0,
−14z1 − 2z2 − 10z3 = 0,
−12z1 − z2 − 10z3 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I3) =
{
(r1,−2 r1,−r1) | r1 ∈ K

}
= span

{
(1,−2,−1)

}
.

Kernel of (B− λ I3)2.
We calculate the kernel of (B − λ I3)2.

The matrix (B − λ I3)2 is

(B − λ I3)2 =

 −25 0 −25
50 0 50
50 0 50

 .
We have to solve the matrix equation −25 0 −25

50 0 50
50 0 50

  z1

z2

z3

 =

 0
0
0

 .
This results in having to solve the following system of linear equations.

−25z1 − 25z3 = 0,
50z1 + 50z3 = 0,
50z1 + 50z3 = 0.
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We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I3)2 =
{
(r1, r2,−r1) | r1, r2 ∈ K

}
= span

{
(1,0,−1), (0,1,0)

}
.

Kernel of (B− λ I3)3.
We calculate the kernel of (B − λ I3)3.

The matrix (B − λ I3)3 is

(B − λ I3)3 =

 125 0 125
−250 0 −250
−250 0 −250

 .
We have to solve the matrix equation 125 0 125

−250 0 −250
−250 0 −250

  z1

z2

z3

 =

 0
0
0

 .
This results in having to solve the following system of linear equations.

125z1 + 125z3 = 0,
−250z1 − 250z3 = 0,
−250z1 − 250z3 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I3)3 =
{
(r1, r2,−r1) | r1, r2 ∈ K

}
= span

{
(1,0,−1), (0,1,0)

}
.

Stabilisation of the kernels.
We see that the kernels are starting to stabilise. We mean by this that
we are having equality from the second power onwards in the following
chain of inclusion of sets.

ker(B − λ I3) ⊊ ker((B − λ I3)2) = ker((B − λ I3)3) = · · · .
We assemble all this information in the following table.
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Keeping track of chains and dimensions.

dim remaining dim

ker(B − λ I3) 1 1 = dim(ker(B − λ I3))

ker(B − λ I3)2 2 1 = dim(ker(B − λ I3)2)− dim(ker(B − λ I3))

The last column in this table is the column of the consecutive differences
of the first column, dim(ker((B−λ I3)i))−dim(ker((B−λ I3)i−1)). The first
number of this last column is dim(ker(B − λ I3)).

5. Calculation of Jordan chains.

We look for a linearly independent set of vectors
{
w1,w2

}
satisfying{

(B − λ I3) w1 = 0,
(B − λ I3) w2 = w1

or {
(B − λ I3)2 w2 = 0,
(B − λ I3) w2 = w1

where w2 is in the vector space ker((B − λ I3)2) but not in ker((B − λ I3)).

We look for a generating vector w2. This vector must be linearly inde-
pendent of all vectors in ker(B − λ I3) and must be independent from
vectors that were already chosen in ker(B − λ I3). We know that

ker((B − λ I3)2) = span
{
(1,0,−1), (0,1,0)

}
.

We have at this point not chosen any vector of height 2 in a previous
Jordan chain of ker((B − λ I3)2).

We know that a vector in ker((B − λ I3)2) must be of the form

a (1,0,−1)+ b (0,1,0) = (a,b,−a).

We remember that

ker(B − λ I3) = span
{
(1,−2,−1)

}
.
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So we have that the vectors just mentioned must be linearly independent
and we place them in the rows of a matrix H.

H =
(

1 −2 −1
a b −a

)
.

We row reduce this matrix H and if we impose 2a+ b ≠ 0, we find(
1 0 −1
0 1 0

)
.

We see that these vectors are independent if we impose the condition
2a+ b ≠ 0. We can choose a = 0 and b = 1.

We have the generating vector

w2 = (0,1,0).

We start with w2 = (0,1,0).

So we calculate

w1 = (B − λ I3) w2 =

 7 1 5
−14 −2 −10
−12 −1 −10

  0
1
0

 =

 1
−2
−1

 .
So we have the Jordan chain

{
w1 = (1,−2,−1),w2 = (0,1,0)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I3) 1 w1 0

ker(B − λ I3)2 2 w2 0

with

w1 = (1,−2,−1)

w2 = (0,1,0)
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6. Investigation of the second eigenvalue.

We work now with the eigenvalue λ = −2.

7. Digression about a related matrix.

We take a look in this subsection at a related matrix A that is already
in Jordan normal form. It will later turn out that this is exactly the ma-
trix A that we are looking for. A good analysis of this matrix A can be
a way to better understand what we will do later on in the solution of
this exercise starting from the next subsection. Almost every action or
calculation we will make from there on has its counterpart here in this
subsection in the analysis of A. There will be much less surprises left
after this analysis. A more advanced reader can of course skip entirely
this subsection and start with subsection 8 of the solution. The solu-
tion from that subsection onwards will make no reference at all to this
subsection 7. The solution will be completely independent from this
section.

We start from the matrix A.

A =

 3 1 0
0 3 0
0 0 −2

( )
( ) .

We subtract from this matrix A the matrix λ I3.

A− λ I3 =

 5 1 0
0 5 0
0 0 0

( )
( ) .

Let us visualise this situation.
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(a) Visualisation of (A− λ I3).

Figure 51

We give here some comment on the preceding figure.

We visualise this type of matrix by colouring the diagonal elements
which are not zero by dark green and the colour light green is repre-
senting any number. The green elementary Jordan blocks have the same
look however large the exponent of A− λ I3. The yellow cells are repre-
senting the number zero. The nilpotent part of the matrix is the second
elementary Jordan block. The superdiagonal does not exist in this case.
We need only the first power of A− λ I3 to make the non existing super-
diagonal disappear. We observe that it is enough to find one nonzero
vector in the kernel of the matrix A− λ I3. This is an eigenvector of A.

Investigation of the first Jordan chain.

It is interesting to observe how the kernels change. We can see almost
without calculation that ker(A− λ I3) = span

{
e3
}
.

After having investigated the kernels, we can look at the data we have
found in the following table.

Keeping track of chains and dimensions.

dim remaining dim

ker(A− λ I3) 1 1 = dim(ker(A− λ I3))
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We find in the first column the dimensions of the kernels. In the sec-
ond column, we have in every row i but the first the consecutive differ-
ences of the kernel dimensions numbers dim(ker(A−λ I3)i)−dim(ker(A−
λ I3)i−1). In the first row, we have dim(ker(A− λ I3)).

We remark by looking at the matrices (A−λ I3) that we have the following
mappings

(A− λ I3) e3 = 0.

One sees that we have a Jordan chain of one linearly independent vector.

{
e3
}
.

After we have found the first Jordan chain of length 1, we have then the
following table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(A− λ I3) 1 e3 0

We have now in the last column only 0’s and this means that we are done
looking for Jordan chains.

8. Kernels of (B− λ I3)i.

Kernels of B− λ I3.
We calculate the kernel of (B − λ I3).

The matrix B − λ I3 is

B − λ I3 =

 12 1 5
−14 3 −10
−12 −1 −5

 .
We have to solve the matrix equation 12 1 5

−14 3 −10
−12 −1 −5

  z1

z2

z3

 =

 0
0
0

 .
This results in having to solve the following system of linear equations.
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12z1 + z2 + 5 z3 = 0,
−14z1 + 3z2 − 10z3 = 0,
−12z1 − z2 − 5 z3 = 0.

We solve this system and this gives us the solutions set which is a sub-
space

ker(B − λ I3) =
{
(r1,−2 r1,−2 r1) | r1 ∈ K

}
= span

{
(1,−2,−2)

}
.

9. Calculation of Jordan chains.

We have the Jordan chain

{
w3 = (1,−2,−2)

}
.

Let us take a look at our current information table.

Keeping track of chains and dimensions.

dim chain 1 remaining dim

ker(B − λ I3) 1 w3 0

with

w3 = (1,−2,−2)

10. Result and check of the result.
We construct the matrix of base change P with the coordinates of the
vectors wi found in the Jordan chains in the columns of P .

P =

 1 0 1

−2 1 −2

−1 0 −2

 .
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P−1 B P =

 2 0 1
2 1 0

−1 0 −1

  10 1 5
−14 1 −10
−12 −1 −7

  1 0 1
−2 1 −2
−1 0 −2


=

 3 1 0
0 3 0
0 0 −2



=

 3 1 0

0 3 0

0 0 −2


( )

( ) .



          Part 4
       Appendix
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1. Calculation of Jordan chains. Choosing a generating

vector in a single Jordan chain.

We have used a strategy for choosing a generating vector of an elemen-
tary Jordan chain in the text. We will try to illustrate the reasoning
behind it without giving a complete proof.

Suppose we have a nilpotent operator B. Suppose that a Jordan chain of
length e.g. 4 exists. If one has to look for an elementary Jordan chain,
say e.g. of length 4, then we must look for a vector in ker(B4) that is not
in ker(B3). We set out explaining why this produces a chain of linearly
independent vectors.

Vectors of a Jordan chain are necessarily linearly independent.

We prove here that vectors in one Jordan chain are necessarily linearly
independent.

Suppose that we have a vector w4 that is in ker(B4) but not in ker(B3).
Suppose that such a vector indeed exists and that we have thorougly
checked the existence of such a vector what we tried to do in our solu-
tions. Then we prove that the chain

{
B3 w4, B2 w4, Bw4,w4

}
is a chain of linearly independent vectors.

Suppose given the following equation

λ1 B3 w4 + λ2 B2 w4 + λ3 Bw4 + λ4 w4 = 0.

Then we multiply the left hand side and the right hand side of this equa-
tion with B3 which is the same as applying the operator B3 on the vector
on the left hand side and on the vector on the right hand side.
We have then the equation

λ1 B6w4 + λ2 B5 w4 + λ3 B4 w4 + λ4 B3 w4 = 0.

But B6 w4 = 0, because w4 ∈ ker(B4) ⊆ ker(B3), and we can reason analo-
gously for B5 w4 = 0, B4 w4 = 0.

So there remains from the equation only λ4 B3 w4 = 0. Now we know by
the very choice of w4 that w4 ∉ ker(B3), so B3 w4 ≠ 0 and we have λ4 = 0.
The equation is reduced to
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λ1 B3 w4 + λ2 B2 w4 + λ3 Bw4 = 0.

We multiply then the left-hand side and the right-hand side by B2 and
find similarly that λ3 = 0.

So we have by reasoning in a similar way that vectors in one Jordan
chain are necessarily linearly independent and that by the choice of w4

the length is exactly 4 because w4 ∈ ker(B4) but not in ker(B3).

Choosing a generating vector when building a second Jordan chain.

Suppose once again that we have a nilpotent operator B. Suppose that
we have already found a first Jordan chain as described above of length
4.

Suppose now that we have to choose a generating vector for a second
Jordan chain of length 2. We stated in the text that it is enough to
choose first a generating vector w6 for that chain so that w6 is in ker(B2)
but not in ker(B). This ensures that w6 is generating a chain of length
two and that the vectors in this chain are an independent set.

So we take care that w6 is linearly independent from all basis vectors in
ker(B). We secondly also demand that it is at the same time linearly in-
dependent from the already chosen vector in the previous Jordan chain
B2 w4 of exactly height 2 which is also in ker(B2) but not in ker(B). To be
crystal clear, we have now that the set

{w6,w2 = B2 w4, a basis of ker(B)}
is a set consisting of linearly independent vectors. This is the procedure
that we always followed in our solutions. We have to prove now that the
set

{
w1 = B3 w4,w2 = B2 w4,w3 = Bw4,w4,w5 = Bw6,w6

}
is a linearly independent set of vectors. We stress that we know already
that the separate sets {w1,w2,w3,w4} and {w5,w6} consist of linearly
independent vectors by what we proved for separate Jordan chains.

Let us consider the following equation

µ1 w1 + µ2 w2 + µ3 w3 + µ4 w4 + µ5 w5 + µ6 w6 = 0
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or

µ1 B3 w4 + µ2 B2 w4 + µ3 Bw4 + µ4 w4 + µ5 Bw6 + µ6 w6 = 0.

We have to prove for linearly independence that it follows that µ1 = µ2 =
µ3 = µ4 = µ5 = µ6 = 0. We multiply left hand side and right hand side of
the equation with B3. Then

µ1 B6 w4 + µ2 B5 w4 + µ3 B4 w4 + µ4 B3 w4 + µ5 B4 w6 + µ6 B3 w6 = 0.

All terms Biwj but B3 w4 are 0. The reason for this is that Biwj are in
the ker(B3) for j = 4 because w4 is in ker(B4) and are in ker(B2) for j = 6
because w6 is in ker(B2).

There remains µ4 B3 w4 = 0 and we know that B3 w4 ≠ 0. So we have
µ4 = 0.

There remains from the equation that

µ1 w1 + µ2 w2 + µ3 w3 + µ5 w5 + µ6 w6 = 0

or

µ1 B3 w4 + µ2 B2 w4 + µ3 Bw4 + µ5 Bw6 + µ6 w6 = 0.

We multiply left hand side and right hand side of the equation with B2

and we have now

µ1 B5 w4 + µ2 B4 w4 + µ3 B3 w4 + µ5 B3 w6 + µ6 B2 w6 = 0.

As before we have B5 w4 = 0, B4 w4 = 0, B3 w6 = 0, B2 w6 = 0.

There remains from the equation that

µ3 B3 w4 = 0

and we have now µ3 = 0 because B3 w4 ≠ 0.

There remains from the equation

µ1 w1 + µ2 w2 + µ5 w5 + µ6 w6 = 0.

or

µ1 B3 w4 + µ2 B2 w4 + µ5 Bw6 + µ6 w6 = 0.
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We multiply left hand side and right hand side of the equation with B
and we have

µ1 B4 w4 + µ2 B3 w4 + µ5 B2 w6 + µ6 Bw6 = 0.

We are left with

µ2 B3 w4 + µ6 Bw6 = 0.

We can rewrite this as

B
(
µ2 B2 w4 + µ6 w6

)
= 0.

We conclude that µ2 B2 w4+µ6 w6 ∈ ker(B). So µ2 B2 w4+µ6 w6 = b where
b ∈ ker(B). But w6 was explicitly chosen to be independent from B2 w4

and any vector in ker(B). This means that the set
{
w6, B2 w4,b

}
is a set

of linearly independent vectors. We have thus that b = 0 and therefore
that µ2 = 0 and µ6 = 0.

There remains from the equation that

µ1 w1 + µ5 w5 = 0

or

µ1 B3 w4 + µ5 Bw6 = 0.

We can rewrite this equation as

B
(
µ1 B2 w4 + µ5 w6

)
= 0.

We conclude that µ1 B2 w4 + µ5 w6 ∈ ker(B) and reason as before that
µ1 = 0 and µ5 = 0.

Remarks.

1. It is wise to do independency checks while making Jordan exer-
cises. But it is only necessary to do them while choosing generating
vectors for a Jordan chain. We have indicated this in the text with
the words “we choose”.

2. There is an opinion that says that it is not worthwhile to do any
independency check. The justification is then that if one has a
linearly independent set of vectors in V that is not a basis in V , then
making a random choice of a supplementary vector is enough to
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guarantee that this vector can considered to be statistically linearly
independent from the previous set. This is undeniably true. There
is a big “but” though in daily practice. Because one tends to choose
vectors with many zero’s to ensure easy calculations afterwards
and one almost automatically chooses digits that are already used
many times in the same exercise and last but not least one chooses
almost invariably coefficients in a very bounded set in N, one is
way far-off from true randomness. The probability of not being
linearly dependent is far larger then 0 in daily practice when one
chooses a so called “random” vector. If one chooses this way of
proceeding, then it is even more important to check the end result.
The matrix P can often not be found because in that case it is
possible to choose generating vectors having the wrong height and
then columns to build P are missing or in other words a basis of
Jordan chains cannot be found. It can also be the case that one sees
problems first by zero divisions. A matrix P of the basis change is
miraculously not invertible. So there is a caveat and some caution
is advised.

3. One subtle mistake can be made. In the notation of the calcula-
tions we have done in our comments on choosing the generating
vectors, we have used as criterion that the set

{
B2 w4,w6,b

}
, b is a

set of basis vectors of ker(B), must consist of linearly independent
vectors. It is not enough to check that w6 is independent from all
basis vectors b ∈ ker(B) separately, and afterwards checking that
B2 w4 and w6 are linearly independent. This does not guarantee
that the set

{
B2 w4,w6,b

}
, b is a set of basis vectors of ker(B), con-

sists of linearly independent vectors.

How to check linear independence of vectors in a Jordan chain.
Suppose we have already found a Jordan chain

{
v1,v2,v3,v4

}
.

Suppose we have to choose a generating vector of height 2.

1. Choose a generic vector w. This vector is a generic linear combina-
tion of generators of ker(B2).

2. Take the vectors of height exactly 2 already found in previously
chosen Jordan chains.

3. Choose a basis for ker(B).
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4. Take care that all the vectors previously mentioned are a linearly
independent set.

2. Some remarks about the tables used in the text.

The geometric dimension.

Keeping track of chains and dimensions.

dim remaining dim

ker(A λI7) 2 2 dim(ker(A λI7))

ker(A λI7)2 4 2 dim(ker(A λI7)2) dim(ker(A λI7))

Figure 52. The first number in the column with label “remaining dimen-
sions” in the initial table for the eigenvalue λ is the geometric dimension
for that eigenvalue. It indicates how many elementary Jordan chains can
be build for this eigenvalue.

The last non zero number in the column “remaining dimensions”.

Keeping track of chains and dimensions.

dim remaining dim

ker(B λ I7) 2 2 dim(ker(B λ I7))

ker(B λ I7)2 4 2 dim(ker(B λ I7)2) dim(ker(B λ I7))

Figure 53. The last nonzero number in the column with label “remaining
dimensions” in any table for the eigenvalue λ is the number of remain-
ing Jordan chains of length exactly equal to the row number in which
this number is situated. These remaining Jordan chains can be chosen
with linearly independent vectors. In this example the last non zero
number is in row number 2. This means that two Jordan chains can still
be found with length 2 (the row number). These chains can be chosen
with linearly independent vectors.
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3. Geometric interpretation of a nilpotent Jordan matrix.

It can be interesting to see what a matrix does by looking at the map it
can represent. Let us take a nilpotent Jordan matrix and see what it does
in the affine space A3 in R.

The nilpotent Jordan matrix that we will study is

P =

 0 1 0
0 0 1
0 0 0

 .
Let A3 be the real affine space. Let us look at the mapping

g : A3 -→ A3 :

 x
y
z

 -→ P

 x
y
z

 =

 y
z
0

 .
We remark immediately that consecutive applications of this map give

P2

 x
y
z

 =

 0 0 1
0 0 0
0 0 0

  x
y
z

 =

 z
0
0


and

P3

 x
y
z

 =

 0 0 0
0 0 0
0 0 0

  x
y
z

 =

 0
0
0

 .
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Figure 54. We can look upon P as a transformation build in two
steps. We start with the red point. That red point is projected along
the X-direction in an intermediate step following the transformation
(x,y, z) , (0, y, z). This is a projection on the Y -Z plane along the X
direction. This mapped point is the purple point. We see that the red
point loses its X-component. This is essentially due to the fact that the
X axis is essentially the kernel. This purple point is then copied to the
X-Y plane with the same X-Y coordinates as the coordinates of the pur-
ple point in the Y -Z plane. The resulting point is green coloured. This
is the transformation (0, y, z) , (y,z,0). We will apply the map P once
again on our resulting point in green.
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Figure 55. The green point in the previous figure is now coloured in
red. We will apply the map defined by P once again. We can look upon P
again as a transformation build in two steps. We start with the red point.
That red point is projected along the X direction in an intermediate step
following the transformation (x,y, z) , (0, y, z). This is a projection on
the Y -Z plane along the X direction. This mapped point is the purple
point. We see that the red point loses its X-component. This is essen-
tially due to the fact that the X axis is essentially the kernel. This purple
point is then copied to the X-Y plane with the same X-Y coordinates as
the coordinates of the purple point in the Y -Z plane. This is the trans-
formation (0, y, z) , (y,z,0).

It is clear that if we map this green point again that it will be the zero
vector when projecting along the X direction. So the mapped vector will
be the zero point 0.
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Figure 56. We have here a sphere coloured in red. We use the word
sphere for the set of points satisfying the equation (x − 2)2 + (y − 2)2 +
(z − 2)2 = 1. We will apply the map defined by P once again. We can
look upon P again as a transformation build in two steps. We start with
the red sphere. That red sphere is projected along the X-direction in an
intermediary step following the transformation (x,y, z) , (0, y, z). This
is a projection on the Y -Z-plane along the X-direction. This mapped
sphere is then the purple disk. We see that the red sphere loses its X
component. This is essentially due to the fact that the X-axis is essen-
tially the kernel. This purple disk is then copied to the X-Y -plane with
the same X-Y -position as the position of the purple disk in the Y -Z-
plane. This is the transformation (0, y, z) , (y,z,0). The by P trans-
formed sphere is now the green disk. We will map the green disk in the
following figure once again following P .



www.mathandphoto.eu. Exercise Notes Jordan 674

Figure 57. The green disk of the preceding figure is now coloured in red.
We will apply the map defined by P on the red disk once again. We can
look upon P again as a transformation build in two steps. We start with
the red disk. That red disk is projected along the X-direction in an inter-
mediate step following the transformation (x,y, z) , (0, y, z). This is a
projection on the Y -Z-plane along the X-direction. This mapped disk is
then the purple interval. We see that the red disk loses its X-component.
This is essentially due to the fact that the X-axis is essentially the ker-
nel. This purple interval is then copied to the X-Y -plane with the same
X-Y -position as the position of the purple interval in the Y -Z-plane. This
is the transformation (0, y, z) , (y,z,0). The by P transformed disk is
now the green interval.

It is clear that if we map this green interval again that it will be the zero
vector when projecting along the X-direction. So the mapped interval
will be the zero point 0 by another application of P .

4. The minimal polynomial of B.

Suppose that the characteristic polynomial is

(λ− λ1)e1 (λ− λ2)e2 · · · (λ− λn)en

where the λi are the eigenvalues of B.
The minimal polynomial m(λ) is defined as the monic generator of the
ideal in K[λ] that annihilates B. It is a divisor of the characteristic
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polymial because the characteristic polynomial is also in the annihilating
ideal. So the general form of the minimal polynomial is

m(λ) = (λ− λ1)m1 (λ− λ2)m2 · · · (λ− λn)mn

where for all i we have that mi ≤ ei.

We remark that we can write down this polynomial at the end of every
exercise we have made in these notes. We have made enough calcula-
tions to construct this polynomial. For every i we have investigated the
space V (λi) =

⋃
k≥1 ker(B − λi)k. The number mi is now equal to the

following numbers which are all equal

1. either the height of nilpotency of the operator B−λi I restricted on
the subspace V (λi)

2. or the first exponent where the ascending chain ker(B−λi) ⊆ ker(B−
λi)2 ⊆ ker(B − λi)3 · · · starts to stabilise

3. or the size of the largest elementary Jordan block associated to the
eigenvalue λi.



       Part 5
  Copy & Paste
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The following matrices are written in code with no typographic instruc-
tions. So they are ideal for copy and paste to the editor of a calculator.
Brackets and delimiters can be changed in that editor with its search and
replace functionality.

Exercise 1.
Jordan structure: (4× 4); (J4(0)).

B =
(
( 1 , -2 , 3 , 1 ),
( 4 , -5 , 7 , 2 ),
( 3 , -3 , 4 , 1 ),
( -1 , 0 , 0 , 0 )
)

Exercise 2.
(4× 4); (J3(0), J1(0)).

B =
(
( 1 , 1 , -2 , 0 ),
( 1 , 0 , -1 , 0 ),
( 1 , 0 , -1 , 0 ),
( 0 , 1 , -1 , 0 )
)

Exercise 3.
(4× 4); (J2(0), J2(0)).

B =
(
( 1 , 0 , 1 , 0 ),
( 0 , 0 , 1 , -1 ),
( -1 , 0 , -1 , 0 ),
( -1 , 0 , -1 , 0 )
)
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Exercise 4.
(7× 7); (J3(0), J3(0), J1(0)).

B =
(
( -2 , 1 , 0 , -2 , 1 , 3 , 2 ),
( 1 , -1 , 0 , 1 , -1 , -2 , -1 ),
( 1 , -1 , 0 , 1 , -1 , -2 , -1 ),
( 0 , -1 , 0 , 2 , 2 , 1 , -2 ),
( 0 , 1 , 1 , 0 , 2 , 2 , 0 ),
( -1 , 0 , -1 , -1 , -1 , 0 , 1 ),
( -1 , 1 , 1 , 1 , 5 , 5 , -1 )
)

Exercise 5.
(7× 7); (J3(0), J2(0), J2(0)).

B =
(
( 3 , 3 , -4 , 2 , 1 , 1 , -1 ),
( -3 , -3 , 3 , -2 , 0 , 0 , 1 ),
( -1 , -1 , 1 , -1 , 0 , 0 , 1 ),
( -1 , -1 , 3 , -1 , -2 , -2 , 1 ),
( -5 , -5 , 6 , -4 , 0 , 0 , 3 ),
( 4 , 4 , -5 , 3 , 0 , 0 , -2 ),
( 0 , 0 , 1 , 0 , -1 , -1 , 0 )
)

Exercise 6.
(7× 7); (J2(0), J2(0), J2(0), J1(0)).

B =
(
( 0 , -1 , 0 , -1 , 1 , 0 , 0 ),
( 0 , -1 , -1 , -4 , 3 , -1 , -1 ),
( 0 , -2 , -1 , -5 , 4 , -1 , -1 ),
( 1 , -1 , -2 , -5 , 4 , -1 , -1 ),
( 1 , -2 , -3 , -9 , 7 , -2 , -2 ),
( -1 , -1 , 2 , 3 , -2 , 1 , 1 ),
( 0 , 2 , -1 , -1 , 0 , -1 , -1 )
)
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Exercise 7.
(6× 6); (J5(0), J1(0)).

B =
(
( 1 , 2 , -1 , 0 , 2 , 1 ),
( -1 , -1 , 1 , 0 , -2 , -1 ),
( 0 , 1 , 0 , 0 , 0 , 0 ),
( 1 , 1 , -1 , 0 , 2 , 1 ),
( 1 , 1 , -1 , 0 , 0 , 0 ),
( -1 , -1 , 1 , 0 , 1 , 0 )
)

Exercise 8.
(6× 6); (J4(0), J2(0)).

B =
(
( 2 , -2 , -1 , 2 , 1 , 1 ),
( 4 , -5 , -3 , 5 , 1 , 2 ),
( -1 , 2 , 1 , -3 , 1 , 0 ),
( 1 , -1 , -1 , 1 , 1 , 1 ),
( -1 , 1 , 0 , 0 , 0 , 0 ),
( 3 , -4 , -2 , 2 , 0 , 1 )
)

Exercise 9.
(6× 6); (J3(0), J3(0)).

B =
(
( 3 , 3 , -1 , 2 , 2 , 1 ),
( -5 , -5 , 1 , -3 , -3 , -1 ),
( -12 , -10 , 3 , -8 , -5 , -3 ),
( -1 , -1 , 1 , -1 , -1 , -1 ),
( 0 , 1 , 0 , 0 , 1 , 0 ),
( -4 , -4 , 1 , -3 , -2 , -1 )
)
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Exercise 10.
(5× 5); (J4(0), J1(0)).

B =
(
( 0 , 2 , -1 , -4 , -2 ),
( 0 , 1 , 0 , -2 , -1 ),
( 0 , -1 , 0 , 1 , 1 ),
( 0 , 1 , 0 , -1 , -1 ),
( 0 , 0 , -1 , -2 , 0 )
)

Exercise 11.
(5× 5); (J3(0), J2(0)).

B =
(
( 0 , 0 , 1 , 1 , 0 ),
( 1 , 0 , 1 , 2 , 1 ),
( 3 , -1 , 1 , 3 , 2 ),
( -2 , 1 , -1 , -2 , -1 ),
( 2 , -1 , 0 , 1 , 1 )
)

Exercise 12.
(5× 5); (J2(0), J2(0), J1(0)).

B =
(
( 1 , 0 , 1 , -1 , -2 ),
( -1 , 0 , -1 , 1 , 2 ),
( 1 , -1 , 0 , 0 , -2 ),
( 0 , -1 , -1 , 1 , 0 ),
( 1 , 0 , 1 , -1 , -2 )
)
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Exercise 13.
(3× 3); (J2(0), J1(0)).

B =
(
( -1 , -1 , 1 ),
( 1 , 1 , -1 ),
( 0 , 0 , 0 )
)

Exercise 14.
(3× 3); (J3(0)).

B =
(
( -2 , 1 , -2 ),
( -1 , 0 , -1 ),
( 2 , -1 , 2 )
)

Exercise 15.
(2× 2); (J2(0)).

B =
(
( -1 , 1 ),
( -1 , 1 )
)

Exercise 16.
(8× 8); (J4(0), J2(0), J2(0)).

B =
(
( 10 , -1 , 9 , -11 , 6 , 3 , -5 , -9 ),
( 20 , 0 , 19 , -20 , 16 , 4 , -15 , -19 ),
( -5 , 0 , -5 , 5 , -4 , -1 , 4 , 5 ),
( 6 , -1 , 5 , -7 , 3 , 2 , -2 , -5 ),
( -3 , 0 , -3 , 3 , -2 , -1 , 2 , 3 ),
( -23 , 1 , -21 , 24 , -15 , -6 , 13 , 20 ),
( 21 , -1 , 19 , -22 , 15 , 5 , -13 , -19 ),
( -25 , 1 , -23 , 26 , -18 , -6 , 16 , 23 )
)
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Exercise 17.
(3× 3); (J3(0)).

B =
(
( 3 , 2 , -1 ),
( -3 , -2 , 1 ),
( 2 , 1 , -1 )
)

Exercise 18.
(5× 5); (J3(0), J2(0)).

B =
(
( 2 , 1 , 1 , -2 , -1 ),
( -2 , -1 , 0 , 1 , 2 ),
( -3 , -1 , -1 , 2 , 2 ),
( -1 , 0 , 0 , 0 , 1 ),
( 1 , 0 , 1 , -1 , 0 )
)

Exercise 19.
(4× 4); (J4(0)).

B =
(
( -1 , 1 , -1 , 0 ),
( 7 , -4 , 9 , 3 ),
( 3 , -2 , 4 , 1 ),
( 3 , -2 , 3 , 1 )
)
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Exercise 23.
(7× 7); (J2(1), J2(1), J3(−1)).

B =
(
( 0 , 2 , 0 , -2 , -1 , 0 , 0 ),
( 0 , 1 , 0 , 0 , 0 , 0 , 0 ),
( 1 , -1 , 1 , 2 , 1 , 0 , 0 ),
( 0 , -1 , 0 , 4 , 3 , -1 , 0 ),
( 1 , 0 , 0 , -4 , -4 , 2 , 0 ),
( -1 , 1 , 1 , -3 , -2 , 0 , 1 ),
( -1 , 1 , -2 , -2 , -1 , 0 , -1 )
)

Exercise 24.
(7× 7); (J3(1), J2(1), J2(2)).

B =
(
( 2 , 1 , 0 , 0 , 0 , 1 , 0 ),
( -2 , 0 , 1 , 1 , 1 , -1 , -2 ),
( -2 , -2 , 3 , 1 , -1 , -3 , -1 ),
( 1 , 1 , -1 , 1 , 1 , 2 , 1 ),
( -1 , 0 , 1 , 0 , 1 , -1 , -1 ),
( 0 , -1 , 0 , 0 , -1 , 0 , 1 ),
( 0 , 0 , 0 , 0 , 0 , 0 , 2 )
)

Exercise 25.
(7× 7); (J2(2), J2(2), J1(2), J2(1)).

B =
(
( 1 , 0 , 0 , 0 , 0 , 0 , 0 ),
( -2 , 1 , 0 , -2 , 1 , 2 , 1 ),
( -3 , -1 , 2 , -1 , 1 , 2 , 1 ),
( 0 , 0 , 0 , 2 , 0 , 0 , 0 ),
( 3 , 1 , 0 , 1 , 1 , -2 , -1 ),
( 4 , 1 , -1 , 1 , -1 , -1 , -1 ),
( -15 , -4 , 2 , -5 , 4 , 10 , 6 )
)
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Exercise 26.
(7× 7); (J4(1), J1(1), J2(−1)).

B =
(
( -2 , 1 , -2 , -1 , 0 , 0 , -2 ),
( 1 , 1 , 2 , 0 , 0 , -1 , 1 ),
( 2 , 0 , 2 , 1 , 0 , -1 , 1 ),
( 1 , -1 , 0 , 2 , 0 , 2 , 0 ),
( 1 , 0 , 2 , 0 , 1 , -1 , 1 ),
( 1 , 0 , 1 , 0 , 0 , -2 , 1 ),
( 0 , -1 , 0 , 0 , 0 , 0 , 1 )
)

Exercise 27.
(6× 6); (J3(−1), J1(−1), J2(1)).

B =
(
( -1 , -2 , 3 , 2 , -4 , 2 ),
( 0 , -1 , -4 , -3 , -2 , -3 ),
( 0 , 0 , 2 , 2 , 1 , 2 ),
( 0 , 4 , -2 , -4 , 4 , -3 ),
( 0 , 0 , 3 , 2 , 0 , 2 ),
( 0 , -8 , 0 , 3 , -10 , 2 )
)

Exercise 28.
(6× 6); (J2(−1), J2(−1), J2(1)).

B =
(
( -4 , 5 , 0 , 3 , 8 , 6 ),
( -8 , 5 , 2 , -1 , 15 , 8 ),
( -6 , 8 , -1 , 3 , 14 , 9 ),
( 7 , -3 , -2 , 1 , -11 , -6 ),
( 9 , -5 , -2 , 2 , -16 , -8 ),
( -13 , 9 , 2 , 0 , 23 , 13 )
)



www.mathandphoto.eu. Exercise Notes Jordan 685

Exercise 29.
(6× 6); (J3(−1), J1(−1), J2(1)).

B =
(
( -7 , 7 , 1 , 2 , 13 , 8 ),
( -8 , 5 , 2 , -1 , 15 , 8 ),
( -5 , 7 , -1 , 3 , 12 , 8 ),
( 10 , -5 , -3 , 2 , -16 , -8 ),
( 9 , -5 , -2 , 2 , -16 , -8 ),
( -16 , 11 , 3 , -1 , 28 , 15 )
)

Exercise 30.
(6× 6); (J2(−1), J2(−1), J2(1)).

B =
(
( -4 , 5 , 0 , 3 , 8 , 6 ),
( -8 , 5 , 2 , -1 , 15 , 8 ),
( -6 , 8 , -1 , 3 , 14 , 9 ),
( 7 , -3 , -2 , 1 , -11 , -6 ),
( 9 , -5 , -2 , 2 , -16 , -8 ),
( -13 , 9 , 2 , 0 , 23 , 13 )
)

Exercise 31.
(5× 5); (J3(−1), J2(2)).

B =
(
( -3 , 0 , -5 , 4 , 1 ),
( -4 , 2 , -4 , -1 , -1 ),
( 2 , 1 , 3 , -5 , 1 ),
( 0 , -1 , 1 , 1 , -2 ),
( 3 , -2 , 5 , 0 , -2 )
)
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Exercise 32.
(4× 4); (J2(−2), J2(2)).

B =
(
( 10 , 5 , 3 , 4 ),
( -12 , -7 , -3 , -4 ),
( -8 , -5 , -1 , -4 ),
( -5 , -1 , -4 , -2 )
)

Exercise 33.
(3× 3); (J3(−2)).

B =
(
( -4 , 0 , 1 ),
( -3 , -3 , 2 ),
( -5 , -1 , 1 )
)

Exercise 34.
(3× 3); (J2(3), J1(−2)).

B =
(
( 10 , 1 , 5 ),
( -14 , 1 , -10 ),
( -12 , -1 , -7 )
)
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